LuaJIT/src/lj_asm.c

4494 lines
140 KiB
C
Raw Normal View History

2009-12-08 10:46:35 -08:00
/*
** IR assembler (SSA IR -> machine code).
2011-01-09 08:12:53 -08:00
** Copyright (C) 2005-2011 Mike Pall. See Copyright Notice in luajit.h
2009-12-08 10:46:35 -08:00
*/
#define lj_asm_c
#define LUA_CORE
#include "lj_obj.h"
#if LJ_HASJIT
#include "lj_gc.h"
#include "lj_str.h"
#include "lj_tab.h"
#include "lj_frame.h"
#if LJ_HASFFI
#include "lj_ctype.h"
#endif
2009-12-08 10:46:35 -08:00
#include "lj_ir.h"
#include "lj_jit.h"
#include "lj_iropt.h"
#include "lj_mcode.h"
#include "lj_iropt.h"
#include "lj_trace.h"
#include "lj_snap.h"
#include "lj_asm.h"
#include "lj_dispatch.h"
#include "lj_vm.h"
#include "lj_target.h"
/* -- Assembler state and common macros ----------------------------------- */
/* Assembler state. */
typedef struct ASMState {
RegCost cost[RID_MAX]; /* Reference and blended allocation cost for regs. */
MCode *mcp; /* Current MCode pointer (grows down). */
MCode *mclim; /* Lower limit for MCode memory + red zone. */
IRIns *ir; /* Copy of pointer to IR instructions/constants. */
jit_State *J; /* JIT compiler state. */
x86ModRM mrm; /* Fused x86 address operand. */
RegSet freeset; /* Set of free registers. */
RegSet modset; /* Set of registers modified inside the loop. */
RegSet weakset; /* Set of weakly referenced registers. */
2009-12-08 10:46:35 -08:00
RegSet phiset; /* Set of PHI registers. */
uint32_t flags; /* Copy of JIT compiler flags. */
int loopinv; /* Loop branch inversion (0:no, 1:yes, 2:yes+CC_P). */
int32_t evenspill; /* Next even spill slot. */
int32_t oddspill; /* Next odd spill slot (or 0). */
IRRef curins; /* Reference of current instruction. */
IRRef stopins; /* Stop assembly before hitting this instruction. */
IRRef orignins; /* Original T->nins. */
IRRef snapref; /* Current snapshot is active after this reference. */
IRRef snaprename; /* Rename highwater mark for snapshot check. */
SnapNo snapno; /* Current snapshot number. */
SnapNo loopsnapno; /* Loop snapshot number. */
IRRef fuseref; /* Fusion limit (loopref, 0 or FUSE_DISABLED). */
IRRef sectref; /* Section base reference (loopref or 0). */
IRRef loopref; /* Reference of LOOP instruction (or 0). */
BCReg topslot; /* Number of slots for stack check (unless 0). */
MSize gcsteps; /* Accumulated number of GC steps (per section). */
GCtrace *T; /* Trace to assemble. */
GCtrace *parent; /* Parent trace (or NULL). */
2009-12-08 10:46:35 -08:00
MCode *mcbot; /* Bottom of reserved MCode. */
MCode *mctop; /* Top of generated MCode. */
MCode *mcloop; /* Pointer to loop MCode (or NULL). */
MCode *invmcp; /* Points to invertible loop branch (or NULL). */
MCode *testmcp; /* Pending opportunity to remove test r,r. */
MCode *realign; /* Realign loop if not NULL. */
IRRef1 phireg[RID_MAX]; /* PHI register references. */
uint16_t parentmap[LJ_MAX_JSLOTS]; /* Parent slot to RegSP map. */
} ASMState;
#define IR(ref) (&as->ir[(ref)])
#define ASMREF_TMP1 REF_TRUE /* Temp. register. */
#define ASMREF_TMP2 REF_FALSE /* Temp. register. */
#define ASMREF_L REF_NIL /* Stores register for L. */
2009-12-08 10:46:35 -08:00
/* Check for variant to invariant references. */
#define iscrossref(as, ref) ((ref) < as->sectref)
/* Inhibit memory op fusion from variant to invariant references. */
#define FUSE_DISABLED (~(IRRef)0)
#define mayfuse(as, ref) ((ref) > as->fuseref)
#define neverfuse(as) (as->fuseref == FUSE_DISABLED)
#define opisfusableload(o) \
((o) == IR_ALOAD || (o) == IR_HLOAD || (o) == IR_ULOAD || \
(o) == IR_FLOAD || (o) == IR_XLOAD || (o) == IR_SLOAD || (o) == IR_VLOAD)
2009-12-08 10:46:35 -08:00
/* Instruction selection for XMM moves. */
#define XMM_MOVRR(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVSD : XO_MOVAPS)
#define XMM_MOVRM(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVLPD : XO_MOVSD)
/* Sparse limit checks using a red zone before the actual limit. */
#define MCLIM_REDZONE 64
#define checkmclim(as) \
if (LJ_UNLIKELY(as->mcp < as->mclim)) asm_mclimit(as)
static LJ_NORET LJ_NOINLINE void asm_mclimit(ASMState *as)
{
lj_mcode_limiterr(as->J, (size_t)(as->mctop - as->mcp + 4*MCLIM_REDZONE));
}
/* -- Emit x86 instructions ----------------------------------------------- */
#define MODRM(mode, r1, r2) ((MCode)((mode)+(((r1)&7)<<3)+((r2)&7)))
#if LJ_64
#define REXRB(p, rr, rb) \
{ MCode rex = 0x40 + (((rr)>>1)&4) + (((rb)>>3)&1); \
if (rex != 0x40) *--(p) = rex; }
#define FORCE_REX 0x200
#define REX_64 (FORCE_REX|0x080000)
2009-12-08 10:46:35 -08:00
#else
#define REXRB(p, rr, rb) ((void)0)
#define FORCE_REX 0
#define REX_64 0
2009-12-08 10:46:35 -08:00
#endif
#define emit_i8(as, i) (*--as->mcp = (MCode)(i))
#define emit_i32(as, i) (*(int32_t *)(as->mcp-4) = (i), as->mcp -= 4)
#define emit_u32(as, u) (*(uint32_t *)(as->mcp-4) = (u), as->mcp -= 4)
2009-12-08 10:46:35 -08:00
#define emit_x87op(as, xo) \
(*(uint16_t *)(as->mcp-2) = (uint16_t)(xo), as->mcp -= 2)
/* op */
static LJ_AINLINE MCode *emit_op(x86Op xo, Reg rr, Reg rb, Reg rx,
MCode *p, int delta)
{
int n = (int8_t)xo;
#if defined(__GNUC__)
if (__builtin_constant_p(xo) && n == -2)
p[delta-2] = (MCode)(xo >> 24);
else if (__builtin_constant_p(xo) && n == -3)
*(uint16_t *)(p+delta-3) = (uint16_t)(xo >> 16);
else
#endif
*(uint32_t *)(p+delta-5) = (uint32_t)xo;
p += n + delta;
#if LJ_64
{
uint32_t rex = 0x40 + ((rr>>1)&(4+(FORCE_REX>>1)))+((rx>>2)&2)+((rb>>3)&1);
if (rex != 0x40) {
rex |= (rr >> 16);
2009-12-08 10:46:35 -08:00
if (n == -4) { *p = (MCode)rex; rex = (MCode)(xo >> 8); }
else if ((xo & 0xffffff) == 0x6600fd) { *p = (MCode)rex; rex = 0x66; }
2009-12-08 10:46:35 -08:00
*--p = (MCode)rex;
}
}
#else
UNUSED(rr); UNUSED(rb); UNUSED(rx);
#endif
return p;
}
/* op + modrm */
#define emit_opm(xo, mode, rr, rb, p, delta) \
(p[(delta)-1] = MODRM((mode), (rr), (rb)), \
emit_op((xo), (rr), (rb), 0, (p), (delta)))
/* op + modrm + sib */
#define emit_opmx(xo, mode, scale, rr, rb, rx, p) \
(p[-1] = MODRM((scale), (rx), (rb)), \
p[-2] = MODRM((mode), (rr), RID_ESP), \
emit_op((xo), (rr), (rb), (rx), (p), -1))
/* op r1, r2 */
static void emit_rr(ASMState *as, x86Op xo, Reg r1, Reg r2)
{
MCode *p = as->mcp;
as->mcp = emit_opm(xo, XM_REG, r1, r2, p, 0);
}
#if LJ_64 && defined(LUA_USE_ASSERT)
/* [addr] is sign-extended in x64 and must be in lower 2G (not 4G). */
2010-02-23 16:29:11 -08:00
static int32_t ptr2addr(const void *p)
2009-12-08 10:46:35 -08:00
{
lua_assert((uintptr_t)p < (uintptr_t)0x80000000);
return i32ptr(p);
}
#else
#define ptr2addr(p) (i32ptr((p)))
#endif
/* op r, [addr] */
static void emit_rma(ASMState *as, x86Op xo, Reg rr, const void *addr)
{
MCode *p = as->mcp;
*(int32_t *)(p-4) = ptr2addr(addr);
#if LJ_64
p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
as->mcp = emit_opm(xo, XM_OFS0, rr, RID_ESP, p, -5);
#else
as->mcp = emit_opm(xo, XM_OFS0, rr, RID_EBP, p, -4);
#endif
}
/* op r, [base+ofs] */
static void emit_rmro(ASMState *as, x86Op xo, Reg rr, Reg rb, int32_t ofs)
{
MCode *p = as->mcp;
x86Mode mode;
if (ra_hasreg(rb)) {
if (ofs == 0 && (rb&7) != RID_EBP) {
mode = XM_OFS0;
} else if (checki8(ofs)) {
*--p = (MCode)ofs;
mode = XM_OFS8;
} else {
p -= 4;
*(int32_t *)p = ofs;
mode = XM_OFS32;
}
if ((rb&7) == RID_ESP)
*--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
} else {
*(int32_t *)(p-4) = ofs;
#if LJ_64
p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
p -= 5;
rb = RID_ESP;
#else
p -= 4;
rb = RID_EBP;
#endif
mode = XM_OFS0;
}
as->mcp = emit_opm(xo, mode, rr, rb, p, 0);
}
/* op r, [base+idx*scale+ofs] */
static void emit_rmrxo(ASMState *as, x86Op xo, Reg rr, Reg rb, Reg rx,
x86Mode scale, int32_t ofs)
{
MCode *p = as->mcp;
x86Mode mode;
if (ofs == 0 && (rb&7) != RID_EBP) {
mode = XM_OFS0;
} else if (checki8(ofs)) {
mode = XM_OFS8;
*--p = (MCode)ofs;
} else {
mode = XM_OFS32;
p -= 4;
*(int32_t *)p = ofs;
}
as->mcp = emit_opmx(xo, mode, scale, rr, rb, rx, p);
}
/* op r, i */
static void emit_gri(ASMState *as, x86Group xg, Reg rb, int32_t i)
{
MCode *p = as->mcp;
x86Op xo;
2009-12-08 10:46:35 -08:00
if (checki8(i)) {
*--p = (MCode)i;
xo = XG_TOXOi8(xg);
2009-12-08 10:46:35 -08:00
} else {
p -= 4;
*(int32_t *)p = i;
xo = XG_TOXOi(xg);
2009-12-08 10:46:35 -08:00
}
as->mcp = emit_opm(xo, XM_REG, (Reg)(xg & 7) | (rb & REX_64), rb, p, 0);
2009-12-08 10:46:35 -08:00
}
/* op [base+ofs], i */
static void emit_gmroi(ASMState *as, x86Group xg, Reg rb, int32_t ofs,
int32_t i)
{
x86Op xo;
if (checki8(i)) {
emit_i8(as, i);
xo = XG_TOXOi8(xg);
2009-12-08 10:46:35 -08:00
} else {
emit_i32(as, i);
xo = XG_TOXOi(xg);
2009-12-08 10:46:35 -08:00
}
emit_rmro(as, xo, (Reg)(xg & 7), rb, ofs);
2009-12-08 10:46:35 -08:00
}
#define emit_shifti(as, xg, r, i) \
(emit_i8(as, (i)), emit_rr(as, XO_SHIFTi, (Reg)(xg), (r)))
/* op r, rm/mrm */
static void emit_mrm(ASMState *as, x86Op xo, Reg rr, Reg rb)
{
MCode *p = as->mcp;
x86Mode mode = XM_REG;
if (rb == RID_MRM) {
rb = as->mrm.base;
if (rb == RID_NONE) {
rb = RID_EBP;
mode = XM_OFS0;
p -= 4;
*(int32_t *)p = as->mrm.ofs;
if (as->mrm.idx != RID_NONE)
goto mrmidx;
#if LJ_64
*--p = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
rb = RID_ESP;
#endif
} else {
if (as->mrm.ofs == 0 && (rb&7) != RID_EBP) {
mode = XM_OFS0;
} else if (checki8(as->mrm.ofs)) {
*--p = (MCode)as->mrm.ofs;
mode = XM_OFS8;
} else {
p -= 4;
*(int32_t *)p = as->mrm.ofs;
mode = XM_OFS32;
}
if (as->mrm.idx != RID_NONE) {
mrmidx:
as->mcp = emit_opmx(xo, mode, as->mrm.scale, rr, rb, as->mrm.idx, p);
return;
}
if ((rb&7) == RID_ESP)
*--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
}
}
as->mcp = emit_opm(xo, mode, rr, rb, p, 0);
}
static void emit_addptr(ASMState *as, Reg r, int32_t ofs)
{
if (ofs) {
if ((as->flags & JIT_F_LEA_AGU))
emit_rmro(as, XO_LEA, r, r, ofs);
else
emit_gri(as, XG_ARITHi(XOg_ADD), r, ofs);
}
}
/* op rm/mrm, i */
static void emit_gmrmi(ASMState *as, x86Group xg, Reg rb, int32_t i)
{
x86Op xo;
if (checki8(i)) {
emit_i8(as, i);
xo = XG_TOXOi8(xg);
} else {
emit_i32(as, i);
xo = XG_TOXOi(xg);
}
emit_mrm(as, xo, (Reg)(xg & 7) | (rb & REX_64), (rb & ~REX_64));
}
2009-12-08 10:46:35 -08:00
/* -- Emit moves ---------------------------------------------------------- */
/* mov [base+ofs], i */
static void emit_movmroi(ASMState *as, Reg base, int32_t ofs, int32_t i)
{
emit_i32(as, i);
emit_rmro(as, XO_MOVmi, 0, base, ofs);
}
/* mov [base+ofs], r */
#define emit_movtomro(as, r, base, ofs) \
emit_rmro(as, XO_MOVto, (r), (base), (ofs))
/* Get/set global_State fields. */
#define emit_opgl(as, xo, r, field) \
emit_rma(as, (xo), (r), (void *)&J2G(as->J)->field)
#define emit_getgl(as, r, field) emit_opgl(as, XO_MOV, (r), field)
#define emit_setgl(as, r, field) emit_opgl(as, XO_MOVto, (r), field)
#define emit_setgli(as, field, i) \
(emit_i32(as, i), emit_opgl(as, XO_MOVmi, 0, field))
/* mov r, i / xor r, r */
static void emit_loadi(ASMState *as, Reg r, int32_t i)
{
/* XOR r,r is shorter, but modifies the flags. This is bad for HIOP. */
if (i == 0 && !(LJ_32 && (IR(as->curins)->o == IR_HIOP ||
(as->curins+1 < as->T->nins &&
IR(as->curins+1)->o == IR_HIOP)))) {
2009-12-08 10:46:35 -08:00
emit_rr(as, XO_ARITH(XOg_XOR), r, r);
} else {
MCode *p = as->mcp;
*(int32_t *)(p-4) = i;
p[-5] = (MCode)(XI_MOVri+(r&7));
p -= 5;
REXRB(p, 0, r);
as->mcp = p;
}
}
/* mov r, addr */
#define emit_loada(as, r, addr) \
emit_loadi(as, (r), ptr2addr((addr)))
#if LJ_64
2010-12-05 12:50:52 -08:00
/* mov r, imm64 or shorter 32 bit extended load. */
static void emit_loadu64(ASMState *as, Reg r, uint64_t u64)
{
2010-12-05 12:50:52 -08:00
if (checku32(u64)) { /* 32 bit load clears upper 32 bits. */
emit_loadi(as, r, (int32_t)u64);
} else if (checki32((int64_t)u64)) { /* Sign-extended 32 bit load. */
MCode *p = as->mcp;
*(int32_t *)(p-4) = (int32_t)u64;
as->mcp = emit_opm(XO_MOVmi, XM_REG, REX_64, r, p, -4);
} else { /* Full-size 64 bit load. */
MCode *p = as->mcp;
*(uint64_t *)(p-8) = u64;
p[-9] = (MCode)(XI_MOVri+(r&7));
p[-10] = 0x48 + ((r>>3)&1);
p -= 10;
as->mcp = p;
}
}
#endif
2009-12-08 10:46:35 -08:00
/* movsd r, [&tv->n] / xorps r, r */
static void emit_loadn(ASMState *as, Reg r, cTValue *tv)
{
if (tvispzero(tv)) /* Use xor only for +0. */
emit_rr(as, XO_XORPS, r, r);
else
emit_rma(as, XMM_MOVRM(as), r, &tv->n);
}
/* -- Emit branches ------------------------------------------------------- */
/* Label for short jumps. */
typedef MCode *MCLabel;
#if LJ_32 && LJ_HASFFI
/* jmp short target */
static void emit_sjmp(ASMState *as, MCLabel target)
{
MCode *p = as->mcp;
ptrdiff_t delta = target - p;
lua_assert(delta == (int8_t)delta);
p[-1] = (MCode)(int8_t)delta;
p[-2] = XI_JMPs;
as->mcp = p - 2;
}
#endif
2009-12-08 10:46:35 -08:00
/* jcc short target */
static void emit_sjcc(ASMState *as, int cc, MCLabel target)
{
MCode *p = as->mcp;
2010-02-23 16:29:11 -08:00
ptrdiff_t delta = target - p;
lua_assert(delta == (int8_t)delta);
p[-1] = (MCode)(int8_t)delta;
2009-12-08 10:46:35 -08:00
p[-2] = (MCode)(XI_JCCs+(cc&15));
as->mcp = p - 2;
}
/* jcc short (pending target) */
static MCLabel emit_sjcc_label(ASMState *as, int cc)
{
MCode *p = as->mcp;
p[-1] = 0;
p[-2] = (MCode)(XI_JCCs+(cc&15));
as->mcp = p - 2;
return p;
}
/* Fixup jcc short target. */
static void emit_sfixup(ASMState *as, MCLabel source)
{
source[-1] = (MCode)(as->mcp-source);
}
/* Return label pointing to current PC. */
#define emit_label(as) ((as)->mcp)
2010-02-23 16:29:11 -08:00
/* Compute relative 32 bit offset for jump and call instructions. */
static LJ_AINLINE int32_t jmprel(MCode *p, MCode *target)
{
ptrdiff_t delta = target - p;
lua_assert(delta == (int32_t)delta);
return (int32_t)delta;
}
2009-12-08 10:46:35 -08:00
/* jcc target */
static void emit_jcc(ASMState *as, int cc, MCode *target)
{
MCode *p = as->mcp;
2010-02-23 16:29:11 -08:00
*(int32_t *)(p-4) = jmprel(p, target);
2009-12-08 10:46:35 -08:00
p[-5] = (MCode)(XI_JCCn+(cc&15));
p[-6] = 0x0f;
as->mcp = p - 6;
}
/* call target */
static void emit_call_(ASMState *as, MCode *target)
{
MCode *p = as->mcp;
#if LJ_64
if (target-p != (int32_t)(target-p)) {
/* Assumes RID_RET is never an argument to calls and always clobbered. */
emit_rr(as, XO_GROUP5, XOg_CALL, RID_RET);
emit_loadu64(as, RID_RET, (uint64_t)target);
return;
}
#endif
2010-02-23 16:29:11 -08:00
*(int32_t *)(p-4) = jmprel(p, target);
2009-12-08 10:46:35 -08:00
p[-5] = XI_CALL;
as->mcp = p - 5;
}
#define emit_call(as, f) emit_call_(as, (MCode *)(void *)(f))
/* -- Register allocator debugging ---------------------------------------- */
/* #define LUAJIT_DEBUG_RA */
#ifdef LUAJIT_DEBUG_RA
#include <stdio.h>
#include <stdarg.h>
#define RIDNAME(name) #name,
static const char *const ra_regname[] = {
GPRDEF(RIDNAME)
FPRDEF(RIDNAME)
"mrm",
NULL
};
#undef RIDNAME
static char ra_dbg_buf[65536];
static char *ra_dbg_p;
static char *ra_dbg_merge;
static MCode *ra_dbg_mcp;
static void ra_dstart(void)
{
ra_dbg_p = ra_dbg_buf;
ra_dbg_merge = NULL;
ra_dbg_mcp = NULL;
}
static void ra_dflush(void)
{
fwrite(ra_dbg_buf, 1, (size_t)(ra_dbg_p-ra_dbg_buf), stdout);
ra_dstart();
}
static void ra_dprintf(ASMState *as, const char *fmt, ...)
{
char *p;
va_list argp;
va_start(argp, fmt);
p = ra_dbg_mcp == as->mcp ? ra_dbg_merge : ra_dbg_p;
ra_dbg_mcp = NULL;
p += sprintf(p, "%08x \e[36m%04d ", (uintptr_t)as->mcp, as->curins-REF_BIAS);
for (;;) {
const char *e = strchr(fmt, '$');
if (e == NULL) break;
memcpy(p, fmt, (size_t)(e-fmt));
p += e-fmt;
if (e[1] == 'r') {
Reg r = va_arg(argp, Reg) & RID_MASK;
if (r <= RID_MAX) {
const char *q;
for (q = ra_regname[r]; *q; q++)
*p++ = *q >= 'A' && *q <= 'Z' ? *q + 0x20 : *q;
} else {
*p++ = '?';
lua_assert(0);
}
} else if (e[1] == 'f' || e[1] == 'i') {
IRRef ref;
if (e[1] == 'f')
ref = va_arg(argp, IRRef);
else
ref = va_arg(argp, IRIns *) - as->ir;
if (ref >= REF_BIAS)
p += sprintf(p, "%04d", ref - REF_BIAS);
else
p += sprintf(p, "K%03d", REF_BIAS - ref);
} else if (e[1] == 's') {
uint32_t slot = va_arg(argp, uint32_t);
p += sprintf(p, "[esp+0x%x]", sps_scale(slot));
} else {
lua_assert(0);
}
fmt = e+2;
}
va_end(argp);
while (*fmt)
*p++ = *fmt++;
*p++ = '\e'; *p++ = '['; *p++ = 'm'; *p++ = '\n';
if (p > ra_dbg_buf+sizeof(ra_dbg_buf)-256) {
fwrite(ra_dbg_buf, 1, (size_t)(p-ra_dbg_buf), stdout);
p = ra_dbg_buf;
}
ra_dbg_p = p;
}
#define RA_DBG_START() ra_dstart()
#define RA_DBG_FLUSH() ra_dflush()
#define RA_DBG_REF() \
do { char *_p = ra_dbg_p; ra_dprintf(as, ""); \
ra_dbg_merge = _p; ra_dbg_mcp = as->mcp; } while (0)
#define RA_DBGX(x) ra_dprintf x
#else
#define RA_DBG_START() ((void)0)
#define RA_DBG_FLUSH() ((void)0)
#define RA_DBG_REF() ((void)0)
#define RA_DBGX(x) ((void)0)
#endif
/* -- Register allocator -------------------------------------------------- */
#define ra_free(as, r) rset_set(as->freeset, (r))
#define ra_modified(as, r) rset_set(as->modset, (r))
#define ra_weak(as, r) rset_set(as->weakset, (r))
#define ra_noweak(as, r) rset_clear(as->weakset, (r))
2009-12-08 10:46:35 -08:00
#define ra_used(ir) (ra_hasreg((ir)->r) || ra_hasspill((ir)->s))
/* Setup register allocator. */
static void ra_setup(ASMState *as)
{
/* Initially all regs (except the stack pointer) are free for use. */
as->freeset = RSET_ALL;
as->modset = RSET_EMPTY;
as->weakset = RSET_EMPTY;
2009-12-08 10:46:35 -08:00
as->phiset = RSET_EMPTY;
memset(as->phireg, 0, sizeof(as->phireg));
memset(as->cost, 0, sizeof(as->cost));
as->cost[RID_ESP] = REGCOST(~0u, 0u);
}
/* Rematerialize constants. */
static Reg ra_rematk(ASMState *as, IRIns *ir)
{
Reg r = ir->r;
lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s));
ra_free(as, r);
ra_modified(as, r);
ir->r = RID_INIT; /* Do not keep any hint. */
RA_DBGX((as, "remat $i $r", ir, r));
if (ir->o == IR_KNUM) {
emit_loadn(as, r, ir_knum(ir));
} else if (ir->o == IR_BASE) {
ra_sethint(ir->r, RID_BASE); /* Restore BASE register hint. */
emit_getgl(as, r, jit_base);
} else if (ir->o == IR_KPRI) { /* REF_NIL stores ASMREF_L register. */
lua_assert(irt_isnil(ir->t));
emit_getgl(as, r, jit_L);
#if LJ_64
2010-12-05 12:50:52 -08:00
} else if (ir->o == IR_KINT64) {
emit_loadu64(as, r, ir_kint64(ir)->u64);
#endif
2009-12-08 10:46:35 -08:00
} else {
lua_assert(ir->o == IR_KINT || ir->o == IR_KGC ||
ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL);
2009-12-08 10:46:35 -08:00
emit_loadi(as, r, ir->i);
}
return r;
}
/* Force a spill. Allocate a new spill slot if needed. */
static int32_t ra_spill(ASMState *as, IRIns *ir)
{
int32_t slot = ir->s;
if (!ra_hasspill(slot)) {
2010-12-05 10:49:29 -08:00
if (irt_is64(ir->t)) {
2009-12-08 10:46:35 -08:00
slot = as->evenspill;
as->evenspill += 2;
} else if (as->oddspill) {
slot = as->oddspill;
as->oddspill = 0;
} else {
slot = as->evenspill;
as->oddspill = slot+1;
as->evenspill += 2;
}
if (as->evenspill > 256)
lj_trace_err(as->J, LJ_TRERR_SPILLOV);
ir->s = (uint8_t)slot;
}
return sps_scale(slot);
}
/* Release the temporarily allocated register in ASMREF_TMP1/ASMREF_TMP2. */
static Reg ra_releasetmp(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
Reg r = ir->r;
lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s));
ra_free(as, r);
ra_modified(as, r);
ir->r = RID_INIT;
return r;
}
2010-12-05 10:49:29 -08:00
/* Use 64 bit operations to handle 64 bit IR types. */
#if LJ_64
#define REX_64IR(ir, r) ((r) + (irt_is64((ir)->t) ? REX_64 : 0))
#else
#define REX_64IR(ir, r) (r)
#endif
/* Generic move between two regs. */
static void ra_movrr(ASMState *as, IRIns *ir, Reg r1, Reg r2)
{
2010-12-05 16:59:07 -08:00
UNUSED(ir);
if (r1 < RID_MAX_GPR)
emit_rr(as, XO_MOV, REX_64IR(ir, r1), r2);
else
emit_rr(as, XMM_MOVRR(as), r1, r2);
}
2009-12-08 10:46:35 -08:00
/* Restore a register (marked as free). Rematerialize or force a spill. */
static Reg ra_restore(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
if (irref_isk(ref) || ref == REF_BASE) {
return ra_rematk(as, ir);
} else {
int32_t ofs = ra_spill(as, ir); /* Force a spill slot. */
2009-12-08 10:46:35 -08:00
Reg r = ir->r;
lua_assert(ra_hasreg(r));
ra_sethint(ir->r, r); /* Keep hint. */
ra_free(as, r);
if (!rset_test(as->weakset, r)) { /* Only restore non-weak references. */
ra_modified(as, r);
RA_DBGX((as, "restore $i $r", ir, r));
if (r < RID_MAX_GPR)
emit_rmro(as, XO_MOV, REX_64IR(ir, r), RID_ESP, ofs);
else
emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
r, RID_ESP, ofs);
}
2009-12-08 10:46:35 -08:00
return r;
}
}
/* Save a register to a spill slot. */
static void ra_save(ASMState *as, IRIns *ir, Reg r)
2009-12-08 10:46:35 -08:00
{
RA_DBGX((as, "save $i $r", ir, r));
if (r < RID_MAX_GPR)
emit_rmro(as, XO_MOVto, REX_64IR(ir, r), RID_ESP, sps_scale(ir->s));
else
emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto,
r, RID_ESP, sps_scale(ir->s));
2009-12-08 10:46:35 -08:00
}
#define MINCOST(r) \
if (LJ_LIKELY(allow&RID2RSET(r)) && as->cost[r] < cost) \
cost = as->cost[r]
/* Evict the register with the lowest cost, forcing a restore. */
static Reg ra_evict(ASMState *as, RegSet allow)
{
IRRef ref;
2009-12-08 10:46:35 -08:00
RegCost cost = ~(RegCost)0;
lua_assert(allow != RSET_EMPTY);
2009-12-08 10:46:35 -08:00
if (allow < RID2RSET(RID_MAX_GPR)) {
MINCOST(RID_EAX);MINCOST(RID_ECX);MINCOST(RID_EDX);MINCOST(RID_EBX);
MINCOST(RID_EBP);MINCOST(RID_ESI);MINCOST(RID_EDI);
#if LJ_64
MINCOST(RID_R8D);MINCOST(RID_R9D);MINCOST(RID_R10D);MINCOST(RID_R11D);
MINCOST(RID_R12D);MINCOST(RID_R13D);MINCOST(RID_R14D);MINCOST(RID_R15D);
#endif
} else {
MINCOST(RID_XMM0);MINCOST(RID_XMM1);MINCOST(RID_XMM2);MINCOST(RID_XMM3);
MINCOST(RID_XMM4);MINCOST(RID_XMM5);MINCOST(RID_XMM6);MINCOST(RID_XMM7);
#if LJ_64
MINCOST(RID_XMM8);MINCOST(RID_XMM9);MINCOST(RID_XMM10);MINCOST(RID_XMM11);
MINCOST(RID_XMM12);MINCOST(RID_XMM13);MINCOST(RID_XMM14);MINCOST(RID_XMM15);
#endif
}
ref = regcost_ref(cost);
lua_assert(ref >= as->T->nk && ref < as->T->nins);
/* Preferably pick any weak ref instead of a non-weak, non-const ref. */
if (!irref_isk(ref) && (as->weakset & allow)) {
IRIns *ir = IR(ref);
if (!rset_test(as->weakset, ir->r))
ref = regcost_ref(as->cost[rset_pickbot((as->weakset & allow))]);
}
return ra_restore(as, ref);
2009-12-08 10:46:35 -08:00
}
/* Pick any register (marked as free). Evict on-demand. */
static Reg ra_pick(ASMState *as, RegSet allow)
2009-12-08 10:46:35 -08:00
{
RegSet pick = as->freeset & allow;
if (!pick)
return ra_evict(as, allow);
else
return rset_picktop(pick);
}
/* Get a scratch register (marked as free). */
static Reg ra_scratch(ASMState *as, RegSet allow)
2009-12-08 10:46:35 -08:00
{
Reg r = ra_pick(as, allow);
ra_modified(as, r);
RA_DBGX((as, "scratch $r", r));
return r;
}
/* Evict all registers from a set (if not free). */
static void ra_evictset(ASMState *as, RegSet drop)
{
as->modset |= drop;
drop &= ~as->freeset;
while (drop) {
Reg r = rset_picktop(drop);
ra_restore(as, regcost_ref(as->cost[r]));
rset_clear(drop, r);
checkmclim(as);
}
}
/* Evict (rematerialize) all registers allocated to constants. */
static void ra_evictk(ASMState *as)
{
RegSet work = ~as->freeset & RSET_ALL;
while (work) {
Reg r = rset_pickbot(work);
IRRef ref = regcost_ref(as->cost[r]);
if (irref_isk(ref)) {
ra_rematk(as, IR(ref));
checkmclim(as);
}
rset_clear(work, r);
}
}
2009-12-08 10:46:35 -08:00
/* Allocate a register for ref from the allowed set of registers.
** Note: this function assumes the ref does NOT have a register yet!
** Picks an optimal register, sets the cost and marks the register as non-free.
*/
static Reg ra_allocref(ASMState *as, IRRef ref, RegSet allow)
{
IRIns *ir = IR(ref);
RegSet pick = as->freeset & allow;
Reg r;
lua_assert(ra_noreg(ir->r));
if (pick) {
/* First check register hint from propagation or PHI. */
if (ra_hashint(ir->r)) {
r = ra_gethint(ir->r);
if (rset_test(pick, r)) /* Use hint register if possible. */
goto found;
/* Rematerialization is cheaper than missing a hint. */
if (rset_test(allow, r) && irref_isk(regcost_ref(as->cost[r]))) {
ra_rematk(as, IR(regcost_ref(as->cost[r])));
goto found;
}
RA_DBGX((as, "hintmiss $f $r", ref, r));
}
2009-12-08 10:49:20 -08:00
/* Invariants should preferably get unmodified registers. */
if (ref < as->loopref && !irt_isphi(ir->t)) {
if ((pick & ~as->modset))
pick &= ~as->modset;
r = rset_pickbot(pick); /* Reduce conflicts with inverse allocation. */
} else {
2010-03-02 14:34:13 -08:00
#if LJ_64
/* We've got plenty of regs, so get callee-save regs if possible. */
if ((pick & ~RSET_SCRATCH))
pick &= ~RSET_SCRATCH;
#endif
2009-12-08 10:46:35 -08:00
r = rset_picktop(pick);
2009-12-08 10:49:20 -08:00
}
2009-12-08 10:46:35 -08:00
} else {
r = ra_evict(as, allow);
}
found:
RA_DBGX((as, "alloc $f $r", ref, r));
ir->r = (uint8_t)r;
rset_clear(as->freeset, r);
ra_noweak(as, r);
2009-12-08 10:46:35 -08:00
as->cost[r] = REGCOST_REF_T(ref, irt_t(ir->t));
return r;
}
/* Allocate a register on-demand. */
static Reg ra_alloc1(ASMState *as, IRRef ref, RegSet allow)
2009-12-08 10:46:35 -08:00
{
Reg r = IR(ref)->r;
/* Note: allow is ignored if the register is already allocated. */
if (ra_noreg(r)) r = ra_allocref(as, ref, allow);
ra_noweak(as, r);
2009-12-08 10:46:35 -08:00
return r;
}
/* Rename register allocation and emit move. */
static void ra_rename(ASMState *as, Reg down, Reg up)
{
IRRef ren, ref = regcost_ref(as->cost[up] = as->cost[down]);
IRIns *ir = IR(ref);
ir->r = (uint8_t)up;
2009-12-08 10:46:35 -08:00
as->cost[down] = 0;
lua_assert((down < RID_MAX_GPR) == (up < RID_MAX_GPR));
lua_assert(!rset_test(as->freeset, down) && rset_test(as->freeset, up));
2010-02-23 08:22:12 -08:00
ra_free(as, down); /* 'down' is free ... */
ra_modified(as, down);
2009-12-08 10:46:35 -08:00
rset_clear(as->freeset, up); /* ... and 'up' is now allocated. */
ra_noweak(as, up);
2009-12-08 10:46:35 -08:00
RA_DBGX((as, "rename $f $r $r", regcost_ref(as->cost[up]), down, up));
ra_movrr(as, ir, down, up); /* Backwards codegen needs inverse move. */
2009-12-08 10:46:35 -08:00
if (!ra_hasspill(IR(ref)->s)) { /* Add the rename to the IR. */
lj_ir_set(as->J, IRT(IR_RENAME, IRT_NIL), ref, as->snapno);
ren = tref_ref(lj_ir_emit(as->J));
as->ir = as->T->ir; /* The IR may have been reallocated. */
IR(ren)->r = (uint8_t)down;
IR(ren)->s = SPS_NONE;
}
}
/* Pick a destination register (marked as free).
** Caveat: allow is ignored if there's already a destination register.
** Use ra_destreg() to get a specific register.
*/
static Reg ra_dest(ASMState *as, IRIns *ir, RegSet allow)
{
Reg dest = ir->r;
if (ra_hasreg(dest)) {
ra_free(as, dest);
ra_modified(as, dest);
} else {
dest = ra_scratch(as, allow);
}
if (LJ_UNLIKELY(ra_hasspill(ir->s))) ra_save(as, ir, dest);
return dest;
}
/* Force a specific destination register (marked as free). */
static void ra_destreg(ASMState *as, IRIns *ir, Reg r)
{
Reg dest = ra_dest(as, ir, RID2RSET(r));
if (dest != r) {
ra_scratch(as, RID2RSET(r));
ra_movrr(as, ir, dest, r);
2009-12-08 10:46:35 -08:00
}
}
/* Propagate dest register to left reference. Emit moves as needed.
** This is a required fixup step for all 2-operand machine instructions.
*/
static void ra_left(ASMState *as, Reg dest, IRRef lref)
{
IRIns *ir = IR(lref);
Reg left = ir->r;
if (ra_noreg(left)) {
if (irref_isk(lref)) {
if (ir->o == IR_KNUM) {
cTValue *tv = ir_knum(ir);
/* FP remat needs a load except for +0. Still better than eviction. */
if (tvispzero(tv) || !(as->freeset & RSET_FPR)) {
emit_loadn(as, dest, tv);
return;
}
#if LJ_64
2010-12-05 12:50:52 -08:00
} else if (ir->o == IR_KINT64) {
emit_loadu64(as, dest, ir_kint64(ir)->u64);
return;
#endif
2009-12-08 10:46:35 -08:00
} else {
lua_assert(ir->o == IR_KINT || ir->o == IR_KGC ||
ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL);
2009-12-08 10:46:35 -08:00
emit_loadi(as, dest, ir->i);
return;
}
}
if (!ra_hashint(left) && !iscrossref(as, lref))
ra_sethint(ir->r, dest); /* Propagate register hint. */
left = ra_allocref(as, lref, dest < RID_MAX_GPR ? RSET_GPR : RSET_FPR);
}
ra_noweak(as, left);
2009-12-08 10:46:35 -08:00
/* Move needed for true 3-operand instruction: y=a+b ==> y=a; y+=b. */
if (dest != left) {
/* Use register renaming if dest is the PHI reg. */
if (irt_isphi(ir->t) && as->phireg[dest] == lref) {
ra_modified(as, left);
ra_rename(as, left, dest);
} else {
ra_movrr(as, ir, dest, left);
2009-12-08 10:46:35 -08:00
}
}
}
/* -- Exit stubs ---------------------------------------------------------- */
/* Generate an exit stub group at the bottom of the reserved MCode memory. */
static MCode *asm_exitstub_gen(ASMState *as, ExitNo group)
{
ExitNo i, groupofs = (group*EXITSTUBS_PER_GROUP) & 0xff;
MCode *mxp = as->mcbot;
MCode *mxpstart = mxp;
if (mxp + (2+2)*EXITSTUBS_PER_GROUP+8+5 >= as->mctop)
asm_mclimit(as);
/* Push low byte of exitno for each exit stub. */
*mxp++ = XI_PUSHi8; *mxp++ = (MCode)groupofs;
for (i = 1; i < EXITSTUBS_PER_GROUP; i++) {
*mxp++ = XI_JMPs; *mxp++ = (MCode)((2+2)*(EXITSTUBS_PER_GROUP - i) - 2);
*mxp++ = XI_PUSHi8; *mxp++ = (MCode)(groupofs + i);
}
/* Push the high byte of the exitno for each exit stub group. */
*mxp++ = XI_PUSHi8; *mxp++ = (MCode)((group*EXITSTUBS_PER_GROUP)>>8);
2010-08-03 13:09:12 -07:00
/* Store DISPATCH at original stack slot 0. Account for the two push ops. */
2009-12-08 10:46:35 -08:00
*mxp++ = XI_MOVmi;
*mxp++ = MODRM(XM_OFS8, 0, RID_ESP);
*mxp++ = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
*mxp++ = 2*sizeof(void *);
*(int32_t *)mxp = ptr2addr(J2GG(as->J)->dispatch); mxp += 4;
2009-12-08 10:46:35 -08:00
/* Jump to exit handler which fills in the ExitState. */
*mxp++ = XI_JMP; mxp += 4;
2010-02-23 16:29:11 -08:00
*((int32_t *)(mxp-4)) = jmprel(mxp, (MCode *)(void *)lj_vm_exit_handler);
2009-12-08 10:46:35 -08:00
/* Commit the code for this group (even if assembly fails later on). */
lj_mcode_commitbot(as->J, mxp);
as->mcbot = mxp;
as->mclim = as->mcbot + MCLIM_REDZONE;
return mxpstart;
}
/* Setup all needed exit stubs. */
static void asm_exitstub_setup(ASMState *as, ExitNo nexits)
{
ExitNo i;
if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR)
lj_trace_err(as->J, LJ_TRERR_SNAPOV);
for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++)
if (as->J->exitstubgroup[i] == NULL)
as->J->exitstubgroup[i] = asm_exitstub_gen(as, i);
}
/* -- Snapshot and guard handling ----------------------------------------- */
/* Can we rematerialize a KNUM instead of forcing a spill? */
static int asm_snap_canremat(ASMState *as)
{
Reg r;
for (r = RID_MIN_FPR; r < RID_MAX_FPR; r++)
if (irref_isk(regcost_ref(as->cost[r])))
return 1;
return 0;
}
/* Allocate registers or spill slots for refs escaping to a snapshot. */
static void asm_snap_alloc(ASMState *as)
{
SnapShot *snap = &as->T->snap[as->snapno];
SnapEntry *map = &as->T->snapmap[snap->mapofs];
MSize n, nent = snap->nent;
for (n = 0; n < nent; n++) {
IRRef ref = snap_ref(map[n]);
2009-12-08 10:46:35 -08:00
if (!irref_isk(ref)) {
IRIns *ir = IR(ref);
if (!ra_used(ir)) {
2009-12-08 10:46:35 -08:00
RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR;
/* Get a weak register if we have a free one or can rematerialize. */
if ((as->freeset & allow) ||
(allow == RSET_FPR && asm_snap_canremat(as))) {
Reg r = ra_allocref(as, ref, allow); /* Allocate a register. */
if (!irt_isphi(ir->t))
ra_weak(as, r); /* But mark it as weakly referenced. */
2009-12-08 10:46:35 -08:00
checkmclim(as);
RA_DBGX((as, "snapreg $f $r", ref, ir->r));
} else {
ra_spill(as, ir); /* Otherwise force a spill slot. */
RA_DBGX((as, "snapspill $f $s", ref, ir->s));
}
}
}
}
}
/* All guards for a snapshot use the same exitno. This is currently the
** same as the snapshot number. Since the exact origin of the exit cannot
** be determined, all guards for the same snapshot must exit with the same
** RegSP mapping.
** A renamed ref which has been used in a prior guard for the same snapshot
** would cause an inconsistency. The easy way out is to force a spill slot.
*/
static int asm_snap_checkrename(ASMState *as, IRRef ren)
{
SnapShot *snap = &as->T->snap[as->snapno];
SnapEntry *map = &as->T->snapmap[snap->mapofs];
MSize n, nent = snap->nent;
for (n = 0; n < nent; n++) {
IRRef ref = snap_ref(map[n]);
2009-12-08 10:46:35 -08:00
if (ref == ren) {
IRIns *ir = IR(ref);
ra_spill(as, ir); /* Register renamed, so force a spill slot. */
RA_DBGX((as, "snaprensp $f $s", ref, ir->s));
return 1; /* Found. */
}
}
return 0; /* Not found. */
}
/* Prepare snapshot for next guard instruction. */
static void asm_snap_prep(ASMState *as)
{
if (as->curins < as->snapref) {
do {
lua_assert(as->snapno != 0);
as->snapno--;
as->snapref = as->T->snap[as->snapno].ref;
} while (as->curins < as->snapref);
asm_snap_alloc(as);
as->snaprename = as->T->nins;
} else {
/* Process any renames above the highwater mark. */
for (; as->snaprename < as->T->nins; as->snaprename++) {
IRIns *ir = IR(as->snaprename);
if (asm_snap_checkrename(as, ir->op1))
ir->op2 = REF_BIAS-1; /* Kill rename. */
}
}
}
/* Emit conditional branch to exit for guard.
** It's important to emit this *after* all registers have been allocated,
** because rematerializations may invalidate the flags.
*/
static void asm_guardcc(ASMState *as, int cc)
{
MCode *target = exitstub_addr(as->J, as->snapno);
MCode *p = as->mcp;
if (LJ_UNLIKELY(p == as->invmcp)) {
as->loopinv = 1;
2010-02-24 11:02:20 -08:00
*(int32_t *)(p+1) = jmprel(p+5, target);
2009-12-08 10:46:35 -08:00
target = p;
cc ^= 1;
if (as->realign) {
emit_sjcc(as, cc, target);
return;
}
}
emit_jcc(as, cc, target);
}
/* -- Memory operand fusion ----------------------------------------------- */
/* Arch-specific field offsets. */
static const uint8_t field_ofs[IRFL__MAX+1] = {
#define FLOFS(name, ofs) (uint8_t)(ofs),
2009-12-08 10:46:35 -08:00
IRFLDEF(FLOFS)
#undef FLOFS
0
};
/* Limit linear search to this distance. Avoids O(n^2) behavior. */
2010-03-18 16:28:04 -07:00
#define CONFLICT_SEARCH_LIM 31
2009-12-08 10:46:35 -08:00
/* Check if a reference is a signed 32 bit constant. */
static int asm_isk32(ASMState *as, IRRef ref, int32_t *k)
{
if (irref_isk(ref)) {
IRIns *ir = IR(ref);
if (ir->o != IR_KINT64) {
*k = ir->i;
return 1;
} else if (checki32((int64_t)ir_kint64(ir)->u64)) {
*k = (int32_t)ir_kint64(ir)->u64;
return 1;
}
}
return 0;
}
/* Check if there's no conflicting instruction between curins and ref.
** Also avoid fusing loads if there are multiple references.
*/
static int noconflict(ASMState *as, IRRef ref, IROp conflict, int noload)
2009-12-08 10:46:35 -08:00
{
IRIns *ir = as->ir;
IRRef i = as->curins;
if (i > ref + CONFLICT_SEARCH_LIM)
return 0; /* Give up, ref is too far away. */
while (--i > ref) {
2009-12-08 10:46:35 -08:00
if (ir[i].o == conflict)
return 0; /* Conflict found. */
else if (!noload && (ir[i].op1 == ref || ir[i].op2 == ref))
return 0;
}
2009-12-08 10:46:35 -08:00
return 1; /* Ok, no conflict. */
}
/* Fuse array base into memory operand. */
static IRRef asm_fuseabase(ASMState *as, IRRef ref)
{
IRIns *irb = IR(ref);
as->mrm.ofs = 0;
if (irb->o == IR_FLOAD) {
IRIns *ira = IR(irb->op1);
lua_assert(irb->op2 == IRFL_TAB_ARRAY);
/* We can avoid the FLOAD of t->array for colocated arrays. */
if (ira->o == IR_TNEW && ira->op1 <= LJ_MAX_COLOSIZE &&
noconflict(as, irb->op1, IR_NEWREF, 1)) {
as->mrm.ofs = (int32_t)sizeof(GCtab); /* Ofs to colocated array. */
return irb->op1; /* Table obj. */
}
} else if (irb->o == IR_ADD && irref_isk(irb->op2)) {
/* Fuse base offset (vararg load). */
as->mrm.ofs = IR(irb->op2)->i;
return irb->op1;
}
return ref; /* Otherwise use the given array base. */
}
2009-12-08 10:46:35 -08:00
/* Fuse array reference into memory operand. */
static void asm_fusearef(ASMState *as, IRIns *ir, RegSet allow)
{
IRIns *irx;
2009-12-08 10:46:35 -08:00
lua_assert(ir->o == IR_AREF);
as->mrm.base = (uint8_t)ra_alloc1(as, asm_fuseabase(as, ir->op1), allow);
2009-12-08 10:46:35 -08:00
irx = IR(ir->op2);
if (irref_isk(ir->op2)) {
as->mrm.ofs += 8*irx->i;
as->mrm.idx = RID_NONE;
} else {
rset_clear(allow, as->mrm.base);
as->mrm.scale = XM_SCALE8;
/* Fuse a constant ADD (e.g. t[i+1]) into the offset.
** Doesn't help much without ABCelim, but reduces register pressure.
*/
if (!LJ_64 && /* Has bad effects with negative index on x64. */
mayfuse(as, ir->op2) && ra_noreg(irx->r) &&
2009-12-08 10:46:35 -08:00
irx->o == IR_ADD && irref_isk(irx->op2)) {
as->mrm.ofs += 8*IR(irx->op2)->i;
as->mrm.idx = (uint8_t)ra_alloc1(as, irx->op1, allow);
} else {
as->mrm.idx = (uint8_t)ra_alloc1(as, ir->op2, allow);
}
}
}
/* Fuse array/hash/upvalue reference into memory operand.
** Caveat: this may allocate GPRs for the base/idx registers. Be sure to
** pass the final allow mask, excluding any GPRs used for other inputs.
** In particular: 2-operand GPR instructions need to call ra_dest() first!
*/
static void asm_fuseahuref(ASMState *as, IRRef ref, RegSet allow)
{
IRIns *ir = IR(ref);
if (ra_noreg(ir->r)) {
switch ((IROp)ir->o) {
case IR_AREF:
if (mayfuse(as, ref)) {
asm_fusearef(as, ir, allow);
return;
}
break;
case IR_HREFK:
if (mayfuse(as, ref)) {
as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
as->mrm.ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
as->mrm.idx = RID_NONE;
return;
}
break;
case IR_UREFC:
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv;
2009-12-08 10:46:35 -08:00
as->mrm.ofs = ptr2addr(&uv->tv);
as->mrm.base = as->mrm.idx = RID_NONE;
return;
}
break;
default:
lua_assert(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_UREFO);
break;
}
}
as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
as->mrm.ofs = 0;
as->mrm.idx = RID_NONE;
}
/* Fuse FLOAD/FREF reference into memory operand. */
static void asm_fusefref(ASMState *as, IRIns *ir, RegSet allow)
{
lua_assert(ir->o == IR_FLOAD || ir->o == IR_FREF);
as->mrm.ofs = field_ofs[ir->op2];
as->mrm.idx = RID_NONE;
if (irref_isk(ir->op1)) {
as->mrm.ofs += IR(ir->op1)->i;
as->mrm.base = RID_NONE;
} else {
as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
}
}
/* Fuse string reference into memory operand. */
static void asm_fusestrref(ASMState *as, IRIns *ir, RegSet allow)
{
IRIns *irr;
lua_assert(ir->o == IR_STRREF);
as->mrm.base = as->mrm.idx = RID_NONE;
2009-12-08 10:46:35 -08:00
as->mrm.scale = XM_SCALE1;
as->mrm.ofs = sizeof(GCstr);
if (irref_isk(ir->op1)) {
as->mrm.ofs += IR(ir->op1)->i;
} else {
Reg r = ra_alloc1(as, ir->op1, allow);
rset_clear(allow, r);
as->mrm.base = (uint8_t)r;
}
irr = IR(ir->op2);
if (irref_isk(ir->op2)) {
as->mrm.ofs += irr->i;
} else {
Reg r;
/* Fuse a constant add into the offset, e.g. string.sub(s, i+10). */
if (!LJ_64 && /* Has bad effects with negative index on x64. */
mayfuse(as, ir->op2) && irr->o == IR_ADD && irref_isk(irr->op2)) {
2009-12-08 10:46:35 -08:00
as->mrm.ofs += IR(irr->op2)->i;
r = ra_alloc1(as, irr->op1, allow);
} else {
r = ra_alloc1(as, ir->op2, allow);
}
if (as->mrm.base == RID_NONE)
as->mrm.base = (uint8_t)r;
else
as->mrm.idx = (uint8_t)r;
}
}
static void asm_fusexref(ASMState *as, IRRef ref, RegSet allow)
{
IRIns *ir = IR(ref);
2010-12-06 04:15:53 -08:00
as->mrm.idx = RID_NONE;
if (ir->o == IR_KPTR || ir->o == IR_KKPTR) {
as->mrm.ofs = ir->i;
2010-12-06 04:15:53 -08:00
as->mrm.base = RID_NONE;
} else if (ir->o == IR_STRREF) {
asm_fusestrref(as, ir, allow);
} else {
2010-12-06 04:15:53 -08:00
as->mrm.ofs = 0;
if (mayfuse(as, ref) && ir->o == IR_ADD && ra_noreg(ir->r)) {
/* Gather (base+idx*sz)+ofs as emitted by cdata ptr/array indexing. */
IRIns *irx;
IRRef idx;
Reg r;
if (asm_isk32(as, ir->op2, &as->mrm.ofs)) { /* Recognize x+ofs. */
ref = ir->op1;
ir = IR(ref);
if (!(ir->o == IR_ADD && mayfuse(as, ref) && ra_noreg(ir->r)))
goto noadd;
}
as->mrm.scale = XM_SCALE1;
idx = ir->op1;
ref = ir->op2;
irx = IR(idx);
if (!(irx->o == IR_BSHL || irx->o == IR_ADD)) { /* Try other operand. */
idx = ir->op2;
ref = ir->op1;
irx = IR(idx);
}
if (mayfuse(as, idx) && ra_noreg(irx->r)) {
if (irx->o == IR_BSHL && irref_isk(irx->op2) && IR(irx->op2)->i <= 3) {
/* Recognize idx<<b with b = 0-3, corresponding to sz = (1),2,4,8. */
idx = irx->op1;
as->mrm.scale = (uint8_t)(IR(irx->op2)->i << 6);
} else if (irx->o == IR_ADD && irx->op1 == irx->op2) {
/* FOLD does idx*2 ==> idx<<1 ==> idx+idx. */
idx = irx->op1;
as->mrm.scale = XM_SCALE2;
}
}
r = ra_alloc1(as, idx, allow);
rset_clear(allow, r);
as->mrm.idx = (uint8_t)r;
}
noadd:
as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
}
}
2009-12-08 10:46:35 -08:00
/* Fuse load into memory operand. */
static Reg asm_fuseload(ASMState *as, IRRef ref, RegSet allow)
{
IRIns *ir = IR(ref);
if (ra_hasreg(ir->r)) {
if (allow != RSET_EMPTY) { /* Fast path. */
ra_noweak(as, ir->r);
return ir->r;
}
2009-12-08 10:46:35 -08:00
fusespill:
/* Force a spill if only memory operands are allowed (asm_x87load). */
as->mrm.base = RID_ESP;
as->mrm.ofs = ra_spill(as, ir);
as->mrm.idx = RID_NONE;
return RID_MRM;
}
if (ir->o == IR_KNUM) {
RegSet avail = as->freeset & ~as->modset & RSET_FPR;
2009-12-08 10:46:35 -08:00
lua_assert(allow != RSET_EMPTY);
if (!(avail & (avail-1))) { /* Fuse if less than two regs available. */
2009-12-08 10:46:35 -08:00
as->mrm.ofs = ptr2addr(ir_knum(ir));
as->mrm.base = as->mrm.idx = RID_NONE;
return RID_MRM;
}
} else if (mayfuse(as, ref)) {
RegSet xallow = (allow & RSET_GPR) ? allow : RSET_GPR;
if (ir->o == IR_SLOAD) {
if (!(ir->op2 & (IRSLOAD_PARENT|IRSLOAD_CONVERT)) &&
noconflict(as, ref, IR_RETF, 0)) {
2009-12-08 10:46:35 -08:00
as->mrm.base = (uint8_t)ra_alloc1(as, REF_BASE, xallow);
as->mrm.ofs = 8*((int32_t)ir->op1-1) + ((ir->op2&IRSLOAD_FRAME)?4:0);
2009-12-08 10:46:35 -08:00
as->mrm.idx = RID_NONE;
return RID_MRM;
}
} else if (ir->o == IR_FLOAD) {
/* Generic fusion is only ok for 32 bit operand (but see asm_comp). */
if ((irt_isint(ir->t) || irt_isaddr(ir->t)) &&
noconflict(as, ref, IR_FSTORE, 0)) {
2009-12-08 10:46:35 -08:00
asm_fusefref(as, ir, xallow);
return RID_MRM;
}
} else if (ir->o == IR_ALOAD || ir->o == IR_HLOAD || ir->o == IR_ULOAD) {
if (noconflict(as, ref, ir->o + IRDELTA_L2S, 0)) {
2009-12-08 10:46:35 -08:00
asm_fuseahuref(as, ir->op1, xallow);
return RID_MRM;
}
} else if (ir->o == IR_XLOAD) {
2010-12-06 10:28:51 -08:00
/* Generic fusion is not ok for 8/16 bit operands (but see asm_comp).
2009-12-08 10:46:35 -08:00
** Fusing unaligned memory operands is ok on x86 (except for SIMD types).
*/
2010-12-06 10:28:51 -08:00
if ((!irt_typerange(ir->t, IRT_I8, IRT_U16)) &&
noconflict(as, ref, IR_XSTORE, 0)) {
asm_fusexref(as, ir->op1, xallow);
2009-12-08 10:46:35 -08:00
return RID_MRM;
}
} else if (ir->o == IR_VLOAD) {
asm_fuseahuref(as, ir->op1, xallow);
return RID_MRM;
2009-12-08 10:46:35 -08:00
}
}
if (!(as->freeset & allow) &&
(allow == RSET_EMPTY || ra_hasspill(ir->s) || iscrossref(as, ref)))
2009-12-08 10:46:35 -08:00
goto fusespill;
return ra_allocref(as, ref, allow);
}
/* -- Calls --------------------------------------------------------------- */
/* Generate a call to a C function. */
static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
{
uint32_t n, nargs = CCI_NARGS(ci);
int32_t ofs = STACKARG_OFS;
uint32_t gprs = REGARG_GPRS;
#if LJ_64
Reg fpr = REGARG_FIRSTFPR;
#endif
lua_assert(!(nargs > 2 && (ci->flags&CCI_FASTCALL))); /* Avoid stack adj. */
if ((void *)ci->func)
emit_call(as, ci->func);
for (n = 0; n < nargs; n++) { /* Setup args. */
2010-12-05 12:50:52 -08:00
IRRef ref = args[n];
IRIns *ir = IR(ref);
Reg r;
#if LJ_64 && LJ_ABI_WIN
/* Windows/x64 argument registers are strictly positional. */
r = irt_isfp(ir->t) ? (fpr <= REGARG_LASTFPR ? fpr : 0) : (gprs & 31);
fpr++; gprs >>= 5;
#elif LJ_64
/* POSIX/x64 argument registers are used in order of appearance. */
if (irt_isfp(ir->t)) {
r = fpr <= REGARG_LASTFPR ? fpr : 0; fpr++;
} else {
r = gprs & 31; gprs >>= 5;
}
#else
if (irt_isfp(ir->t) || !(ci->flags & CCI_FASTCALL)) {
r = 0;
} else {
r = gprs & 31; gprs >>= 5;
}
#endif
if (r) { /* Argument is in a register. */
2010-12-05 12:50:52 -08:00
if (r < RID_MAX_GPR && ref < ASMREF_TMP1) {
#if LJ_64
2010-12-05 12:50:52 -08:00
if (ir->o == IR_KINT64)
emit_loadu64(as, r, ir_kint64(ir)->u64);
else
#endif
emit_loadi(as, r, ir->i);
} else {
lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */
if (ra_hasreg(ir->r)) {
ra_noweak(as, ir->r);
ra_movrr(as, ir, r, ir->r);
} else {
2010-12-05 12:50:52 -08:00
ra_allocref(as, ref, RID2RSET(r));
}
}
} else if (irt_isfp(ir->t)) { /* FP argument is on stack. */
lua_assert(!(irt_isfloat(ir->t) && irref_isk(ref))); /* No float k. */
2010-12-05 12:50:52 -08:00
if (LJ_32 && (ofs & 4) && irref_isk(ref)) {
/* Split stores for unaligned FP consts. */
emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo);
emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi);
} else {
r = ra_alloc1(as, ref, RSET_FPR);
emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto,
r, RID_ESP, ofs);
}
ofs += (LJ_32 && irt_isfloat(ir->t)) ? 4 : 8;
} else { /* Non-FP argument is on stack. */
2010-12-05 12:50:52 -08:00
if (LJ_32 && ref < ASMREF_TMP1) {
emit_movmroi(as, RID_ESP, ofs, ir->i);
} else {
r = ra_alloc1(as, ref, RSET_GPR);
2010-12-05 10:49:29 -08:00
emit_movtomro(as, REX_64IR(ir, r), RID_ESP, ofs);
}
ofs += sizeof(intptr_t);
}
}
}
/* Setup result reg/sp for call. Evict scratch regs. */
static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
RegSet drop = RSET_SCRATCH;
if ((ci->flags & CCI_NOFPRCLOBBER))
drop &= ~RSET_FPR;
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
ra_evictset(as, drop); /* Evictions must be performed first. */
if (ra_used(ir)) {
if (irt_isfp(ir->t)) {
int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
#if LJ_64
if ((ci->flags & CCI_CASTU64)) {
Reg dest = ir->r;
if (ra_hasreg(dest)) {
ra_free(as, dest);
ra_modified(as, dest);
emit_rr(as, XO_MOVD, dest|REX_64, RID_RET); /* Really MOVQ. */
} else {
emit_movtomro(as, RID_RET|REX_64, RID_ESP, ofs);
}
} else {
ra_destreg(as, ir, RID_FPRET);
}
#else
/* Number result is in x87 st0 for x86 calling convention. */
Reg dest = ir->r;
if (ra_hasreg(dest)) {
ra_free(as, dest);
ra_modified(as, dest);
emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
dest, RID_ESP, ofs);
}
if ((ci->flags & CCI_CASTU64)) {
emit_movtomro(as, RID_RET, RID_ESP, ofs);
emit_movtomro(as, RID_RETHI, RID_ESP, ofs+4);
} else {
emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
}
#endif
} else {
lua_assert(!irt_ispri(ir->t));
ra_destreg(as, ir, RID_RET);
}
}
}
/* Collect arguments from CALL* and CARG instructions. */
static void asm_collectargs(ASMState *as, IRIns *ir,
const CCallInfo *ci, IRRef *args)
{
uint32_t n = CCI_NARGS(ci);
lua_assert(n <= CCI_NARGS_MAX);
if ((ci->flags & CCI_L)) { *args++ = ASMREF_L; n--; }
while (n-- > 1) {
ir = IR(ir->op1);
lua_assert(ir->o == IR_CARG);
args[n] = ir->op2;
}
args[0] = ir->op1;
lua_assert(IR(ir->op1)->o != IR_CARG);
}
static void asm_call(ASMState *as, IRIns *ir)
{
IRRef args[CCI_NARGS_MAX];
const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
asm_collectargs(as, ir, ci, args);
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
/* Reconstruct CCallInfo flags for CALLX*. */
static uint32_t asm_callx_flags(ASMState *as, IRIns *ir)
{
uint32_t nargs = 0;
if (ir->op1 != REF_NIL) { /* Count number of arguments first. */
IRIns *ira = IR(ir->op1);
nargs++;
while (ira->o == IR_CARG) { nargs++; ira = IR(ira->op1); }
}
/* NYI: fastcall etc. */
return (nargs | (ir->t.irt << CCI_OTSHIFT));
}
static void asm_callx(ASMState *as, IRIns *ir)
{
IRRef args[CCI_NARGS_MAX];
CCallInfo ci;
IRIns *irf;
ci.flags = asm_callx_flags(as, ir);
asm_collectargs(as, ir, &ci, args);
asm_setupresult(as, ir, &ci);
irf = IR(ir->op2);
if (LJ_32 && irref_isk(ir->op2)) { /* Call to constant address on x86. */
ci.func = (ASMFunction)(void *)(uintptr_t)(uint32_t)irf->i;
} else {
/* Prefer a non-argument register or RID_RET for indirect calls. */
RegSet allow = (RSET_GPR & ~RSET_SCRATCH)|RID2RSET(RID_RET);
Reg r = ra_alloc1(as, ir->op2, allow);
emit_rr(as, XO_GROUP5, XOg_CALL, r);
ci.func = (ASMFunction)(void *)0;
}
asm_gencall(as, &ci, args);
}
/* -- Returns ------------------------------------------------------------- */
/* Return to lower frame. Guard that it goes to the right spot. */
static void asm_retf(ASMState *as, IRIns *ir)
{
Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
void *pc = ir_kptr(IR(ir->op2));
int32_t delta = 1+bc_a(*((const BCIns *)pc - 1));
as->topslot -= (BCReg)delta;
if ((int32_t)as->topslot < 0) as->topslot = 0;
emit_setgl(as, base, jit_base);
emit_addptr(as, base, -8*delta);
asm_guardcc(as, CC_NE);
emit_gmroi(as, XG_ARITHi(XOg_CMP), base, -4, ptr2addr(pc));
}
2009-12-08 10:46:35 -08:00
/* -- Type conversions ---------------------------------------------------- */
static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
{
Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
Reg dest = ra_dest(as, ir, RSET_GPR);
asm_guardcc(as, CC_P);
asm_guardcc(as, CC_NE);
emit_rr(as, XO_UCOMISD, left, tmp);
emit_rr(as, XO_CVTSI2SD, tmp, dest);
if (!(as->flags & JIT_F_SPLIT_XMM))
emit_rr(as, XO_XORPS, tmp, tmp); /* Avoid partial register stall. */
emit_rr(as, XO_CVTTSD2SI, dest, left);
/* Can't fuse since left is needed twice. */
}
static void asm_tobit(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg tmp = ra_noreg(IR(ir->op1)->r) ?
ra_alloc1(as, ir->op1, RSET_FPR) :
ra_scratch(as, RSET_FPR);
Reg right = asm_fuseload(as, ir->op2, rset_exclude(RSET_FPR, tmp));
emit_rr(as, XO_MOVDto, tmp, dest);
emit_mrm(as, XO_ADDSD, tmp, right);
ra_left(as, tmp, ir->op1);
}
static void asm_conv(ASMState *as, IRIns *ir)
{
IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
int st64 = (st == IRT_I64 || st == IRT_U64 || (LJ_64 && st == IRT_P64));
int stfp = (st == IRT_NUM || st == IRT_FLOAT);
IRRef lref = ir->op1;
lua_assert(irt_type(ir->t) != st);
lua_assert(!(LJ_32 && (irt_isint64(ir->t) || st64))); /* Handled by SPLIT. */
if (irt_isfp(ir->t)) {
Reg dest = ra_dest(as, ir, RSET_FPR);
if (stfp) { /* FP to FP conversion. */
Reg left = asm_fuseload(as, lref, RSET_FPR);
emit_mrm(as, st == IRT_NUM ? XO_CVTSD2SS : XO_CVTSS2SD, dest, left);
if (left == dest) return; /* Avoid the XO_XORPS. */
} else if (LJ_32 && st == IRT_U32) { /* U32 to FP conversion on x86. */
/* number = (2^52+2^51 .. u32) - (2^52+2^51) */
cTValue *k = lj_ir_k64_find(as->J, U64x(43380000,00000000));
Reg bias = ra_scratch(as, rset_exclude(RSET_FPR, dest));
if (irt_isfloat(ir->t))
emit_rr(as, XO_CVTSD2SS, dest, dest);
emit_rr(as, XO_SUBSD, dest, bias); /* Subtract 2^52+2^51 bias. */
emit_rr(as, XO_XORPS, dest, bias); /* Merge bias and integer. */
emit_loadn(as, bias, k);
emit_mrm(as, XO_MOVD, dest, asm_fuseload(as, lref, RSET_GPR));
return;
} else { /* Integer to FP conversion. */
Reg left = (LJ_64 && (st == IRT_U32 || st == IRT_U64)) ?
ra_alloc1(as, lref, RSET_GPR) :
asm_fuseload(as, lref, RSET_GPR);
if (LJ_64 && st == IRT_U64) {
MCLabel l_end = emit_label(as);
const void *k = lj_ir_k64_find(as->J, U64x(43f00000,00000000));
emit_rma(as, XO_ADDSD, dest, k); /* Add 2^64 to compensate. */
emit_sjcc(as, CC_NS, l_end);
emit_rr(as, XO_TEST, left|REX_64, left); /* Check if u64 >= 2^63. */
}
emit_mrm(as, irt_isnum(ir->t) ? XO_CVTSI2SD : XO_CVTSI2SS,
dest|((LJ_64 && (st64 || st == IRT_U32)) ? REX_64 : 0), left);
}
if (!(as->flags & JIT_F_SPLIT_XMM))
emit_rr(as, XO_XORPS, dest, dest); /* Avoid partial register stall. */
} else if (stfp) { /* FP to integer conversion. */
if (irt_isguard(ir->t)) {
/* Checked conversions are only supported from number to int. */
lua_assert(irt_isint(ir->t) && st == IRT_NUM);
asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
x86Op op = st == IRT_NUM ?
((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSD2SI : XO_CVTSD2SI) :
((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSS2SI : XO_CVTSS2SI);
if (LJ_32 && irt_isu32(ir->t)) { /* FP to U32 conversion on x86. */
/* u32 = (int32_t)(number - 2^31) + 2^31 */
Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) :
ra_scratch(as, RSET_FPR);
emit_gri(as, XG_ARITHi(XOg_ADD), dest, (int32_t)0x80000000);
emit_rr(as, op, dest, tmp);
if (st == IRT_NUM)
emit_rma(as, XO_ADDSD, tmp,
lj_ir_k64_find(as->J, U64x(c1e00000,00000000)));
else
emit_rma(as, XO_ADDSS, tmp,
lj_ir_k64_find(as->J, U64x(00000000,cf000000)));
ra_left(as, tmp, lref);
} else if (LJ_64 && irt_isu64(ir->t)) {
/* For inputs in [2^63,2^64-1] add -2^64 and convert again. */
Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) :
ra_scratch(as, RSET_FPR);
MCLabel l_end = emit_label(as);
emit_rr(as, op, dest|REX_64, tmp);
if (st == IRT_NUM)
emit_rma(as, XO_ADDSD, tmp,
lj_ir_k64_find(as->J, U64x(c3f00000,00000000)));
else
emit_rma(as, XO_ADDSS, tmp,
lj_ir_k64_find(as->J, U64x(00000000,df800000)));
emit_sjcc(as, CC_NS, l_end);
emit_rr(as, XO_TEST, dest|REX_64, dest); /* Check if dest < 2^63. */
emit_rr(as, op, dest|REX_64, tmp);
ra_left(as, tmp, lref);
} else {
Reg left = asm_fuseload(as, lref, RSET_FPR);
if (LJ_64 && irt_isu32(ir->t))
emit_rr(as, XO_MOV, dest, dest); /* Zero hiword. */
emit_mrm(as, op,
dest|((LJ_64 &&
(irt_is64(ir->t) || irt_isu32(ir->t))) ? REX_64 : 0),
left);
}
}
} else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
Reg left, dest = ra_dest(as, ir, RSET_GPR);
RegSet allow = RSET_GPR;
x86Op op;
lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
if (st == IRT_I8) {
op = XO_MOVSXb; allow = RSET_GPR8; dest |= FORCE_REX;
} else if (st == IRT_U8) {
op = XO_MOVZXb; allow = RSET_GPR8; dest |= FORCE_REX;
} else if (st == IRT_I16) {
op = XO_MOVSXw;
} else {
op = XO_MOVZXw;
}
left = asm_fuseload(as, lref, allow);
/* Add extra MOV if source is already in wrong register. */
if (!LJ_64 && left != RID_MRM && !rset_test(allow, left)) {
Reg tmp = ra_scratch(as, allow);
emit_rr(as, op, dest, tmp);
emit_rr(as, XO_MOV, tmp, left);
} else {
emit_mrm(as, op, dest, left);
}
} else { /* 32/64 bit integer conversions. */
if (LJ_32) { /* Only need to handle 32/32 bit no-op (cast) on x86. */
Reg dest = ra_dest(as, ir, RSET_GPR);
ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
} else if (irt_is64(ir->t)) {
Reg dest = ra_dest(as, ir, RSET_GPR);
if (st64 || !(ir->op2 & IRCONV_SEXT)) {
/* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */
ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
} else { /* 32 to 64 bit sign extension. */
Reg left = asm_fuseload(as, lref, RSET_GPR);
emit_mrm(as, XO_MOVSXd, dest|REX_64, left);
}
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
if (st64) {
Reg left = asm_fuseload(as, lref, RSET_GPR);
/* This is either a 32 bit reg/reg mov which zeroes the hiword
** or a load of the loword from a 64 bit address.
*/
emit_mrm(as, XO_MOV, dest, left);
} else { /* 32/32 bit no-op (cast). */
ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
}
}
}
}
#if LJ_32 && LJ_HASFFI
/* No SSE conversions to/from 64 bit on x86, so resort to ugly x87 code. */
/* 64 bit integer to FP conversion in 32 bit mode. */
static void asm_conv_fp_int64(ASMState *as, IRIns *ir)
{
Reg hi = ra_alloc1(as, ir->op1, RSET_GPR);
Reg lo = ra_alloc1(as, (ir-1)->op1, rset_exclude(RSET_GPR, hi));
int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
Reg dest = ir->r;
if (ra_hasreg(dest)) {
ra_free(as, dest);
ra_modified(as, dest);
emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
dest, RID_ESP, ofs);
}
emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
if (((ir-1)->op2 & IRCONV_SRCMASK) == IRT_U64) {
/* For inputs in [2^63,2^64-1] add 2^64 to compensate. */
MCLabel l_end = emit_label(as);
emit_rma(as, XO_FADDq, XOg_FADDq,
lj_ir_k64_find(as->J, U64x(43f00000,00000000)));
emit_sjcc(as, CC_NS, l_end);
emit_rr(as, XO_TEST, hi, hi); /* Check if u64 >= 2^63. */
} else {
lua_assert(((ir-1)->op2 & IRCONV_SRCMASK) == IRT_I64);
}
emit_rmro(as, XO_FILDq, XOg_FILDq, RID_ESP, 0);
/* NYI: Avoid narrow-to-wide store-to-load forwarding stall. */
emit_rmro(as, XO_MOVto, hi, RID_ESP, 4);
emit_rmro(as, XO_MOVto, lo, RID_ESP, 0);
}
/* FP to 64 bit integer conversion in 32 bit mode. */
static void asm_conv_int64_fp(ASMState *as, IRIns *ir)
{
IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK);
IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH);
Reg lo, hi;
lua_assert(st == IRT_NUM || st == IRT_FLOAT);
lua_assert(dt == IRT_I64 || dt == IRT_U64);
lua_assert(((ir-1)->op2 & IRCONV_TRUNC));
hi = ra_dest(as, ir, RSET_GPR);
lo = ra_dest(as, ir-1, rset_exclude(RSET_GPR, hi));
if (ra_used(ir-1)) emit_rmro(as, XO_MOV, lo, RID_ESP, 0);
/* NYI: Avoid wide-to-narrow store-to-load forwarding stall. */
if (!(as->flags & JIT_F_SSE3)) { /* Set FPU rounding mode to default. */
emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 4);
emit_rmro(as, XO_MOVto, lo, RID_ESP, 4);
emit_gri(as, XG_ARITHi(XOg_AND), lo, 0xf3ff);
}
if (dt == IRT_U64) {
/* For inputs in [2^63,2^64-1] add -2^64 and convert again. */
MCLabel l_pop, l_end = emit_label(as);
emit_x87op(as, XI_FPOP);
l_pop = emit_label(as);
emit_sjmp(as, l_end);
emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
if ((as->flags & JIT_F_SSE3))
emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
else
emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
emit_rma(as, XO_FADDq, XOg_FADDq,
lj_ir_k64_find(as->J, U64x(c3f00000,00000000)));
emit_sjcc(as, CC_NS, l_pop);
emit_rr(as, XO_TEST, hi, hi); /* Check if out-of-range (2^63). */
}
emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
if ((as->flags & JIT_F_SSE3)) { /* Truncation is easy with SSE3. */
emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
} else { /* Otherwise set FPU rounding mode to truncate before the store. */
emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 0);
emit_rmro(as, XO_MOVtow, lo, RID_ESP, 0);
emit_rmro(as, XO_ARITHw(XOg_OR), lo, RID_ESP, 0);
emit_loadi(as, lo, 0xc00);
emit_rmro(as, XO_FNSTCW, XOg_FNSTCW, RID_ESP, 0);
}
if (dt == IRT_U64)
emit_x87op(as, XI_FDUP);
emit_mrm(as, st == IRT_NUM ? XO_FLDq : XO_FLDd,
st == IRT_NUM ? XOg_FLDq: XOg_FLDd,
asm_fuseload(as, ir->op1, RSET_EMPTY));
}
#endif
2009-12-08 10:46:35 -08:00
static void asm_strto(ASMState *as, IRIns *ir)
{
/* Force a spill slot for the destination register (if any). */
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_tonum];
IRRef args[2];
RegSet drop = RSET_SCRATCH;
2009-12-08 10:46:35 -08:00
if ((drop & RSET_FPR) != RSET_FPR && ra_hasreg(ir->r))
rset_set(drop, ir->r); /* WIN64 doesn't spill all FPRs. */
ra_evictset(as, drop);
asm_guardcc(as, CC_E);
emit_rr(as, XO_TEST, RID_RET, RID_RET); /* Test return status. */
args[0] = ir->op1; /* GCstr *str */
args[1] = ASMREF_TMP1; /* TValue *n */
asm_gencall(as, ci, args);
/* Store the result to the spill slot or temp slots. */
emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
RID_ESP, sps_scale(ir->s));
2009-12-08 10:46:35 -08:00
}
static void asm_tostr(ASMState *as, IRIns *ir)
{
IRIns *irl = IR(ir->op1);
IRRef args[2];
args[0] = ASMREF_L;
2009-12-08 10:46:35 -08:00
as->gcsteps++;
if (irt_isnum(irl->t)) {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum];
args[1] = ASMREF_TMP1; /* const lua_Number * */
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
RID_ESP, ra_spill(as, irl));
2009-12-08 10:46:35 -08:00
} else {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint];
args[1] = ir->op1; /* int32_t k */
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
2009-12-08 10:46:35 -08:00
}
}
/* -- Memory references --------------------------------------------------- */
static void asm_aref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
asm_fusearef(as, ir, RSET_GPR);
if (!(as->mrm.idx == RID_NONE && as->mrm.ofs == 0))
emit_mrm(as, XO_LEA, dest, RID_MRM);
else if (as->mrm.base != dest)
emit_rr(as, XO_MOV, dest, as->mrm.base);
}
/* Must match with hash*() in lj_tab.c. */
2009-12-08 10:46:35 -08:00
static uint32_t ir_khash(IRIns *ir)
{
uint32_t lo, hi;
if (irt_isstr(ir->t)) {
return ir_kstr(ir)->hash;
} else if (irt_isnum(ir->t)) {
lo = ir_knum(ir)->u32.lo;
hi = ir_knum(ir)->u32.hi << 1;
2009-12-08 10:46:35 -08:00
} else if (irt_ispri(ir->t)) {
lua_assert(!irt_isnil(ir->t));
return irt_type(ir->t)-IRT_FALSE;
} else {
lua_assert(irt_isgcv(ir->t));
2009-12-08 10:46:35 -08:00
lo = u32ptr(ir_kgc(ir));
hi = lo + HASH_BIAS;
2009-12-08 10:46:35 -08:00
}
return hashrot(lo, hi);
2009-12-08 10:46:35 -08:00
}
/* Merge NE(HREF, niltv) check. */
static MCode *merge_href_niltv(ASMState *as, IRIns *ir)
{
/* Assumes nothing else generates NE of HREF. */
2010-03-27 21:47:04 -07:00
if ((ir[1].o == IR_NE || ir[1].o == IR_EQ) && ir[1].op1 == as->curins &&
ra_hasreg(ir->r)) {
MCode *p = as->mcp;
p += (LJ_64 && *p != XI_ARITHi) ? 7+6 : 6+6;
/* Ensure no loop branch inversion happened. */
if (p[-6] == 0x0f && p[-5] == XI_JCCn+(CC_NE^(ir[1].o & 1))) {
as->mcp = p; /* Kill cmp reg, imm32 + jz exit. */
return p + *(int32_t *)(p-4); /* Return exit address. */
}
2009-12-08 10:46:35 -08:00
}
return NULL;
}
/* Inlined hash lookup. Specialized for key type and for const keys.
** The equivalent C code is:
** Node *n = hashkey(t, key);
** do {
** if (lj_obj_equal(&n->key, key)) return &n->val;
** } while ((n = nextnode(n)));
** return niltv(L);
*/
static void asm_href(ASMState *as, IRIns *ir)
{
MCode *nilexit = merge_href_niltv(as, ir); /* Do this before any restores. */
RegSet allow = RSET_GPR;
Reg dest = ra_dest(as, ir, allow);
Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
Reg key = RID_NONE, tmp = RID_NONE;
IRIns *irkey = IR(ir->op2);
int isk = irref_isk(ir->op2);
IRType1 kt = irkey->t;
uint32_t khash;
MCLabel l_end, l_loop, l_next;
if (!isk) {
rset_clear(allow, tab);
key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow);
if (!irt_isstr(kt))
tmp = ra_scratch(as, rset_exclude(allow, key));
}
/* Key not found in chain: jump to exit (if merged with NE) or load niltv. */
l_end = emit_label(as);
2010-03-27 21:47:04 -07:00
if (nilexit && ir[1].o == IR_NE) {
2009-12-08 10:46:35 -08:00
emit_jcc(as, CC_E, nilexit); /* XI_JMP is not found by lj_asm_patchexit. */
2010-03-27 21:47:04 -07:00
nilexit = NULL;
} else {
2009-12-08 10:46:35 -08:00
emit_loada(as, dest, niltvg(J2G(as->J)));
2010-03-27 21:47:04 -07:00
}
2009-12-08 10:46:35 -08:00
/* Follow hash chain until the end. */
l_loop = emit_sjcc_label(as, CC_NZ);
emit_rr(as, XO_TEST, dest, dest);
emit_rmro(as, XO_MOV, dest, dest, offsetof(Node, next));
l_next = emit_label(as);
/* Type and value comparison. */
2010-03-27 21:47:04 -07:00
if (nilexit)
emit_jcc(as, CC_E, nilexit);
else
emit_sjcc(as, CC_E, l_end);
2009-12-08 10:46:35 -08:00
if (irt_isnum(kt)) {
if (isk) {
/* Assumes -0.0 is already canonicalized to +0.0. */
emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo),
(int32_t)ir_knum(irkey)->u32.lo);
emit_sjcc(as, CC_NE, l_next);
emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi),
(int32_t)ir_knum(irkey)->u32.hi);
} else {
emit_sjcc(as, CC_P, l_next);
emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n));
emit_sjcc(as, CC_AE, l_next);
2009-12-08 10:46:35 -08:00
/* The type check avoids NaN penalties and complaints from Valgrind. */
#if LJ_64
emit_u32(as, LJ_TISNUM);
emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it));
#else
emit_i8(as, LJ_TISNUM);
2009-12-08 10:46:35 -08:00
emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
#endif
2009-12-08 10:46:35 -08:00
}
#if LJ_64
} else if (irt_islightud(kt)) {
emit_rmro(as, XO_CMP, key|REX_64, dest, offsetof(Node, key.u64));
#endif
2009-12-08 10:46:35 -08:00
} else {
if (!irt_ispri(kt)) {
lua_assert(irt_isaddr(kt));
if (isk)
emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.gcr),
ptr2addr(ir_kgc(irkey)));
else
emit_rmro(as, XO_CMP, key, dest, offsetof(Node, key.gcr));
emit_sjcc(as, CC_NE, l_next);
}
lua_assert(!irt_isnil(kt));
emit_i8(as, irt_toitype(kt));
2009-12-08 10:46:35 -08:00
emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
}
emit_sfixup(as, l_loop);
checkmclim(as);
/* Load main position relative to tab->node into dest. */
khash = isk ? ir_khash(irkey) : 1;
if (khash == 0) {
emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, node));
} else {
emit_rmro(as, XO_ARITH(XOg_ADD), dest, tab, offsetof(GCtab, node));
if ((as->flags & JIT_F_PREFER_IMUL)) {
emit_i8(as, sizeof(Node));
emit_rr(as, XO_IMULi8, dest, dest);
} else {
emit_shifti(as, XOg_SHL, dest, 3);
emit_rmrxo(as, XO_LEA, dest, dest, dest, XM_SCALE2, 0);
}
if (isk) {
emit_gri(as, XG_ARITHi(XOg_AND), dest, (int32_t)khash);
emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
} else if (irt_isstr(kt)) {
emit_rmro(as, XO_ARITH(XOg_AND), dest, key, offsetof(GCstr, hash));
emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
} else { /* Must match with hashrot() in lj_tab.c. */
emit_rmro(as, XO_ARITH(XOg_AND), dest, tab, offsetof(GCtab, hmask));
emit_rr(as, XO_ARITH(XOg_SUB), dest, tmp);
emit_shifti(as, XOg_ROL, tmp, HASH_ROT3);
2009-12-08 10:46:35 -08:00
emit_rr(as, XO_ARITH(XOg_XOR), dest, tmp);
emit_shifti(as, XOg_ROL, dest, HASH_ROT2);
2009-12-08 10:46:35 -08:00
emit_rr(as, XO_ARITH(XOg_SUB), tmp, dest);
emit_shifti(as, XOg_ROL, dest, HASH_ROT1);
2009-12-08 10:46:35 -08:00
emit_rr(as, XO_ARITH(XOg_XOR), tmp, dest);
if (irt_isnum(kt)) {
emit_rr(as, XO_ARITH(XOg_ADD), dest, dest);
#if LJ_64
emit_shifti(as, XOg_SHR|REX_64, dest, 32);
emit_rr(as, XO_MOV, tmp, dest);
emit_rr(as, XO_MOVDto, key|REX_64, dest);
#else
emit_rmro(as, XO_MOV, dest, RID_ESP, ra_spill(as, irkey)+4);
2009-12-08 10:46:35 -08:00
emit_rr(as, XO_MOVDto, key, tmp);
#endif
2009-12-08 10:46:35 -08:00
} else {
emit_rr(as, XO_MOV, tmp, key);
emit_rmro(as, XO_LEA, dest, key, HASH_BIAS);
2009-12-08 10:46:35 -08:00
}
}
}
}
static void asm_hrefk(ASMState *as, IRIns *ir)
{
IRIns *kslot = IR(ir->op2);
IRIns *irkey = IR(kslot->op1);
int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
Reg dest = ra_used(ir) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
Reg node = ra_alloc1(as, ir->op1, RSET_GPR);
#if !LJ_64
2009-12-08 10:46:35 -08:00
MCLabel l_exit;
#endif
2009-12-08 10:46:35 -08:00
lua_assert(ofs % sizeof(Node) == 0);
if (ra_hasreg(dest)) {
if (ofs != 0) {
if (dest == node && !(as->flags & JIT_F_LEA_AGU))
emit_gri(as, XG_ARITHi(XOg_ADD), dest, ofs);
else
emit_rmro(as, XO_LEA, dest, node, ofs);
} else if (dest != node) {
emit_rr(as, XO_MOV, dest, node);
}
}
asm_guardcc(as, CC_NE);
#if LJ_64
if (!irt_ispri(irkey->t)) {
Reg key = ra_scratch(as, rset_exclude(RSET_GPR, node));
emit_rmro(as, XO_CMP, key|REX_64, node,
ofs + (int32_t)offsetof(Node, key.u64));
lua_assert(irt_isnum(irkey->t) || irt_isgcv(irkey->t));
/* Assumes -0.0 is already canonicalized to +0.0. */
emit_loadu64(as, key, irt_isnum(irkey->t) ? ir_knum(irkey)->u64 :
((uint64_t)irt_toitype(irkey->t) << 32) |
(uint64_t)(uint32_t)ptr2addr(ir_kgc(irkey)));
} else {
lua_assert(!irt_isnil(irkey->t));
emit_i8(as, irt_toitype(irkey->t));
emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
ofs + (int32_t)offsetof(Node, key.it));
}
#else
2009-12-08 10:46:35 -08:00
l_exit = emit_label(as);
if (irt_isnum(irkey->t)) {
/* Assumes -0.0 is already canonicalized to +0.0. */
emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
ofs + (int32_t)offsetof(Node, key.u32.lo),
(int32_t)ir_knum(irkey)->u32.lo);
emit_sjcc(as, CC_NE, l_exit);
emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
ofs + (int32_t)offsetof(Node, key.u32.hi),
(int32_t)ir_knum(irkey)->u32.hi);
} else {
if (!irt_ispri(irkey->t)) {
lua_assert(irt_isgcv(irkey->t));
emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
ofs + (int32_t)offsetof(Node, key.gcr),
ptr2addr(ir_kgc(irkey)));
emit_sjcc(as, CC_NE, l_exit);
}
lua_assert(!irt_isnil(irkey->t));
emit_i8(as, irt_toitype(irkey->t));
2009-12-08 10:46:35 -08:00
emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
ofs + (int32_t)offsetof(Node, key.it));
}
#endif
2009-12-08 10:46:35 -08:00
}
static void asm_newref(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey];
IRRef args[3];
IRIns *irkey;
Reg tmp;
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ir->op1; /* GCtab *t */
args[2] = ASMREF_TMP1; /* cTValue *key */
asm_setupresult(as, ir, ci); /* TValue * */
asm_gencall(as, ci, args);
tmp = ra_releasetmp(as, ASMREF_TMP1);
irkey = IR(ir->op2);
2009-12-08 10:46:35 -08:00
if (irt_isnum(irkey->t)) {
/* For numbers use the constant itself or a spill slot as a TValue. */
if (irref_isk(ir->op2))
emit_loada(as, tmp, ir_knum(irkey));
else
emit_rmro(as, XO_LEA, tmp|REX_64, RID_ESP, ra_spill(as, irkey));
2009-12-08 10:46:35 -08:00
} else {
/* Otherwise use g->tmptv to hold the TValue. */
if (!irref_isk(ir->op2)) {
Reg src = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, tmp));
2010-12-05 10:49:29 -08:00
emit_movtomro(as, REX_64IR(irkey, src), tmp, 0);
2009-12-08 10:46:35 -08:00
} else if (!irt_ispri(irkey->t)) {
emit_movmroi(as, tmp, 0, irkey->i);
}
if (!(LJ_64 && irt_islightud(irkey->t)))
emit_movmroi(as, tmp, 4, irt_toitype(irkey->t));
2009-12-08 10:46:35 -08:00
emit_loada(as, tmp, &J2G(as->J)->tmptv);
}
}
static void asm_uref(ASMState *as, IRIns *ir)
{
/* NYI: Check that UREFO is still open and not aliasing a slot. */
Reg dest = ra_dest(as, ir, RSET_GPR);
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
emit_rma(as, XO_MOV, dest, v);
} else {
Reg uv = ra_scratch(as, RSET_GPR);
Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
if (ir->o == IR_UREFC) {
emit_rmro(as, XO_LEA, dest, uv, offsetof(GCupval, tv));
asm_guardcc(as, CC_NE);
emit_i8(as, 1);
emit_rmro(as, XO_ARITHib, XOg_CMP, uv, offsetof(GCupval, closed));
2009-12-08 10:46:35 -08:00
} else {
emit_rmro(as, XO_MOV, dest, uv, offsetof(GCupval, v));
2009-12-08 10:46:35 -08:00
}
emit_rmro(as, XO_MOV, uv, func,
(int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8));
2009-12-08 10:46:35 -08:00
}
}
static void asm_fref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
asm_fusefref(as, ir, RSET_GPR);
emit_mrm(as, XO_LEA, dest, RID_MRM);
}
static void asm_strref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
asm_fusestrref(as, ir, RSET_GPR);
if (as->mrm.base == RID_NONE)
emit_loadi(as, dest, as->mrm.ofs);
else if (as->mrm.base == dest && as->mrm.idx == RID_NONE)
emit_gri(as, XG_ARITHi(XOg_ADD), dest, as->mrm.ofs);
else
emit_mrm(as, XO_LEA, dest, RID_MRM);
}
/* -- Loads and stores ---------------------------------------------------- */
static void asm_fxload(ASMState *as, IRIns *ir)
2009-12-08 10:46:35 -08:00
{
2010-12-07 18:24:35 -08:00
Reg dest = ra_dest(as, ir, irt_isnum(ir->t) ? RSET_FPR : RSET_GPR);
2009-12-08 10:46:35 -08:00
x86Op xo;
if (ir->o == IR_FLOAD)
asm_fusefref(as, ir, RSET_GPR);
else
asm_fusexref(as, ir->op1, RSET_GPR);
/* ir->op2 is ignored -- unaligned loads are ok on x86. */
2009-12-08 10:46:35 -08:00
switch (irt_type(ir->t)) {
case IRT_I8: xo = XO_MOVSXb; break;
case IRT_U8: xo = XO_MOVZXb; break;
case IRT_I16: xo = XO_MOVSXw; break;
case IRT_U16: xo = XO_MOVZXw; break;
2010-12-06 10:28:51 -08:00
case IRT_NUM: xo = XMM_MOVRM(as); break;
case IRT_FLOAT: xo = XO_MOVSS; break;
2009-12-08 10:46:35 -08:00
default:
2010-12-05 10:49:29 -08:00
if (LJ_64 && irt_is64(ir->t))
dest |= REX_64;
else
lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
2009-12-08 10:46:35 -08:00
xo = XO_MOV;
break;
}
emit_mrm(as, xo, dest, RID_MRM);
}
2010-12-05 16:48:19 -08:00
static void asm_fxstore(ASMState *as, IRIns *ir)
2009-12-08 10:46:35 -08:00
{
RegSet allow = RSET_GPR;
Reg src = RID_NONE, osrc = RID_NONE;
int32_t k = 0;
2009-12-08 10:46:35 -08:00
/* The IRT_I16/IRT_U16 stores should never be simplified for constant
** values since mov word [mem], imm16 has a length-changing prefix.
*/
if (irt_isi16(ir->t) || irt_isu16(ir->t) || irt_isfp(ir->t) ||
2010-12-20 10:34:15 -08:00
!asm_isk32(as, ir->op2, &k)) {
RegSet allow8 = irt_isfp(ir->t) ? RSET_FPR :
2010-12-07 18:24:35 -08:00
(irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR;
src = osrc = ra_alloc1(as, ir->op2, allow8);
if (!LJ_64 && !rset_test(allow8, src)) { /* Already in wrong register. */
rset_clear(allow, osrc);
src = ra_scratch(as, allow8);
}
2009-12-08 10:46:35 -08:00
rset_clear(allow, src);
}
2010-12-05 16:48:19 -08:00
if (ir->o == IR_FSTORE)
asm_fusefref(as, IR(ir->op1), allow);
else
asm_fusexref(as, ir->op1, allow);
2010-12-05 16:48:19 -08:00
/* ir->op2 is ignored -- unaligned stores are ok on x86. */
2009-12-08 10:46:35 -08:00
if (ra_hasreg(src)) {
x86Op xo;
switch (irt_type(ir->t)) {
case IRT_I8: case IRT_U8: xo = XO_MOVtob; src |= FORCE_REX; break;
case IRT_I16: case IRT_U16: xo = XO_MOVtow; break;
2010-12-06 10:28:51 -08:00
case IRT_NUM: xo = XO_MOVSDto; break;
case IRT_FLOAT: xo = XO_MOVSSto; break;
#if LJ_64
case IRT_LIGHTUD: lua_assert(0); /* NYI: mask 64 bit lightuserdata. */
#endif
2009-12-08 10:46:35 -08:00
default:
2010-12-05 10:49:29 -08:00
if (LJ_64 && irt_is64(ir->t))
src |= REX_64;
else
lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
2009-12-08 10:46:35 -08:00
xo = XO_MOVto;
break;
}
emit_mrm(as, xo, src, RID_MRM);
if (!LJ_64 && src != osrc) {
ra_noweak(as, osrc);
emit_rr(as, XO_MOV, src, osrc);
}
2009-12-08 10:46:35 -08:00
} else {
if (irt_isi8(ir->t) || irt_isu8(ir->t)) {
emit_i8(as, k);
2009-12-08 10:46:35 -08:00
emit_mrm(as, XO_MOVmib, 0, RID_MRM);
} else {
lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) ||
irt_isaddr(ir->t));
emit_i32(as, k);
emit_mrm(as, XO_MOVmi, REX_64IR(ir, 0), RID_MRM);
2009-12-08 10:46:35 -08:00
}
}
}
#if LJ_64
static Reg asm_load_lightud64(ASMState *as, IRIns *ir, int typecheck)
{
if (ra_used(ir) || typecheck) {
Reg dest = ra_dest(as, ir, RSET_GPR);
if (typecheck) {
Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, dest));
asm_guardcc(as, CC_NE);
emit_i8(as, -2);
emit_rr(as, XO_ARITHi8, XOg_CMP, tmp);
emit_shifti(as, XOg_SAR|REX_64, tmp, 47);
emit_rr(as, XO_MOV, tmp|REX_64, dest);
}
return dest;
} else {
return RID_NONE;
}
}
#endif
static void asm_ahuvload(ASMState *as, IRIns *ir)
2009-12-08 10:46:35 -08:00
{
lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) ||
(LJ_DUALNUM && irt_isint(ir->t)));
#if LJ_64
if (irt_islightud(ir->t)) {
Reg dest = asm_load_lightud64(as, ir, 1);
if (ra_hasreg(dest)) {
asm_fuseahuref(as, ir->op1, RSET_GPR);
emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM);
}
return;
} else
#endif
2009-12-08 10:46:35 -08:00
if (ra_used(ir)) {
RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR;
2009-12-08 10:46:35 -08:00
Reg dest = ra_dest(as, ir, allow);
asm_fuseahuref(as, ir->op1, RSET_GPR);
emit_mrm(as, dest < RID_MAX_GPR ? XO_MOV : XMM_MOVRM(as), dest, RID_MRM);
} else {
asm_fuseahuref(as, ir->op1, RSET_GPR);
}
/* Always do the type check, even if the load result is unused. */
as->mrm.ofs += 4;
asm_guardcc(as, irt_isnum(ir->t) ? CC_AE : CC_NE);
if (LJ_64 && irt_type(ir->t) >= IRT_NUM) {
lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t));
emit_u32(as, LJ_TISNUM);
emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM);
} else {
emit_i8(as, irt_toitype(ir->t));
emit_mrm(as, XO_ARITHi8, XOg_CMP, RID_MRM);
}
2009-12-08 10:46:35 -08:00
}
static void asm_ahustore(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
Reg src = ra_alloc1(as, ir->op2, RSET_FPR);
asm_fuseahuref(as, ir->op1, RSET_GPR);
emit_mrm(as, XO_MOVSDto, src, RID_MRM);
#if LJ_64
} else if (irt_islightud(ir->t)) {
Reg src = ra_alloc1(as, ir->op2, RSET_GPR);
asm_fuseahuref(as, ir->op1, rset_exclude(RSET_GPR, src));
emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM);
#endif
2009-12-08 10:46:35 -08:00
} else {
IRIns *irr = IR(ir->op2);
RegSet allow = RSET_GPR;
Reg src = RID_NONE;
if (!irref_isk(ir->op2)) {
src = ra_alloc1(as, ir->op2, allow);
rset_clear(allow, src);
}
asm_fuseahuref(as, ir->op1, allow);
if (ra_hasreg(src)) {
emit_mrm(as, XO_MOVto, src, RID_MRM);
} else if (!irt_ispri(irr->t)) {
lua_assert(irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t)));
2009-12-08 10:46:35 -08:00
emit_i32(as, irr->i);
emit_mrm(as, XO_MOVmi, 0, RID_MRM);
}
as->mrm.ofs += 4;
emit_i32(as, (int32_t)irt_toitype(ir->t));
2009-12-08 10:46:35 -08:00
emit_mrm(as, XO_MOVmi, 0, RID_MRM);
}
}
static void asm_sload(ASMState *as, IRIns *ir)
{
int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0);
2009-12-08 10:46:35 -08:00
IRType1 t = ir->t;
Reg base;
lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
lua_assert(LJ_DUALNUM ||
!irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
2009-12-08 10:46:35 -08:00
Reg left = ra_scratch(as, RSET_FPR);
asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */
base = ra_alloc1(as, REF_BASE, RSET_GPR);
emit_rmro(as, XMM_MOVRM(as), left, base, ofs);
t.irt = IRT_NUM; /* Continue with a regular number type check. */
#if LJ_64
} else if (irt_islightud(t)) {
Reg dest = asm_load_lightud64(as, ir, (ir->op2 & IRSLOAD_TYPECHECK));
if (ra_hasreg(dest)) {
base = ra_alloc1(as, REF_BASE, RSET_GPR);
emit_rmro(as, XO_MOV, dest|REX_64, base, ofs);
}
return;
#endif
2009-12-08 10:46:35 -08:00
} else if (ra_used(ir)) {
RegSet allow = irt_isnum(t) ? RSET_FPR : RSET_GPR;
2009-12-08 10:46:35 -08:00
Reg dest = ra_dest(as, ir, allow);
base = ra_alloc1(as, REF_BASE, RSET_GPR);
lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
if ((ir->op2 & IRSLOAD_CONVERT)) {
t.irt = irt_isint(t) ? IRT_NUM : IRT_INT; /* Check for original type. */
emit_rmro(as, irt_isint(t) ? XO_CVTSI2SD : XO_CVTSD2SI, dest, base, ofs);
} else if (irt_isnum(t)) {
emit_rmro(as, XMM_MOVRM(as), dest, base, ofs);
} else {
emit_rmro(as, XO_MOV, dest, base, ofs);
}
2009-12-08 10:46:35 -08:00
} else {
if (!(ir->op2 & IRSLOAD_TYPECHECK))
2009-12-08 10:46:35 -08:00
return; /* No type check: avoid base alloc. */
base = ra_alloc1(as, REF_BASE, RSET_GPR);
}
if ((ir->op2 & IRSLOAD_TYPECHECK)) {
2009-12-08 10:46:35 -08:00
/* Need type check, even if the load result is unused. */
asm_guardcc(as, irt_isnum(t) ? CC_AE : CC_NE);
if (LJ_64 && irt_type(t) >= IRT_NUM) {
lua_assert(irt_isinteger(t) || irt_isnum(t));
emit_u32(as, LJ_TISNUM);
emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4);
} else {
emit_i8(as, irt_toitype(t));
emit_rmro(as, XO_ARITHi8, XOg_CMP, base, ofs+4);
}
2009-12-08 10:46:35 -08:00
}
}
/* -- Allocations --------------------------------------------------------- */
2009-12-08 10:46:35 -08:00
static void asm_snew(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_new];
IRRef args[3];
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ir->op1; /* const char *str */
args[2] = ir->op2; /* size_t len */
2009-12-08 10:46:35 -08:00
as->gcsteps++;
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
2009-12-08 10:46:35 -08:00
}
static void asm_tnew(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_new1];
IRRef args[2];
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ASMREF_TMP1; /* uint32_t ahsize */
2009-12-08 10:46:35 -08:00
as->gcsteps++;
asm_setupresult(as, ir, ci); /* GCtab * */
asm_gencall(as, ci, args);
emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), ir->op1 | (ir->op2 << 24));
2009-12-08 10:46:35 -08:00
}
static void asm_tdup(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_dup];
IRRef args[2];
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ir->op1; /* const GCtab *kt */
2009-12-08 10:46:35 -08:00
as->gcsteps++;
asm_setupresult(as, ir, ci); /* GCtab * */
asm_gencall(as, ci, args);
2009-12-08 10:46:35 -08:00
}
#if LJ_HASFFI
static void asm_cnew(ASMState *as, IRIns *ir)
{
CTState *cts = ctype_ctsG(J2G(as->J));
CTypeID typeid = (CTypeID)IR(ir->op1)->i;
CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ?
lj_ctype_size(cts, typeid) : (CTSize)IR(ir->op2)->i;
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
IRRef args[2];
lua_assert(sz != CTSIZE_INVALID);
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ASMREF_TMP1; /* MSize size */
as->gcsteps++;
asm_setupresult(as, ir, ci); /* GCcdata * */
/* Initialize immutable cdata object. */
if (ir->o == IR_CNEWI) {
RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
#if LJ_64
Reg r64 = sz == 8 ? REX_64 : 0;
if (irref_isk(ir->op2)) {
IRIns *irk = IR(ir->op2);
uint64_t k = irk->o == IR_KINT64 ? ir_k64(irk)->u64 :
(uint64_t)(uint32_t)irk->i;
if (sz == 4 || checki32((int64_t)k)) {
emit_i32(as, (int32_t)k);
emit_rmro(as, XO_MOVmi, r64, RID_RET, sizeof(GCcdata));
} else {
emit_movtomro(as, RID_ECX + r64, RID_RET, sizeof(GCcdata));
emit_loadu64(as, RID_ECX, k);
}
} else {
Reg r = ra_alloc1(as, ir->op2, allow);
emit_movtomro(as, r + r64, RID_RET, sizeof(GCcdata));
}
#else
int32_t ofs = sizeof(GCcdata);
if (LJ_HASFFI && sz == 8) {
ofs += 4; ir++;
lua_assert(ir->o == IR_HIOP);
}
do {
if (irref_isk(ir->op2)) {
emit_movmroi(as, RID_RET, ofs, IR(ir->op2)->i);
} else {
Reg r = ra_alloc1(as, ir->op2, allow);
emit_movtomro(as, r, RID_RET, ofs);
rset_clear(allow, r);
}
if (!LJ_HASFFI || ofs == sizeof(GCcdata)) break;
ofs -= 4; ir--;
} while (1);
#endif
lua_assert(sz == 4 || (sz == 8 && (LJ_64 || LJ_HASFFI)));
}
/* Combine initialization of marked, gct and typeid. */
emit_movtomro(as, RID_ECX, RID_RET, offsetof(GCcdata, marked));
emit_gri(as, XG_ARITHi(XOg_OR), RID_ECX,
(int32_t)((~LJ_TCDATA<<8)+(typeid<<16)));
emit_gri(as, XG_ARITHi(XOg_AND), RID_ECX, LJ_GC_WHITES);
emit_opgl(as, XO_MOVZXb, RID_ECX, gc.currentwhite);
asm_gencall(as, ci, args);
emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)(sz+sizeof(GCcdata)));
}
#else
#define asm_cnew(as, ir) ((void)0)
#endif
/* -- Write barriers ------------------------------------------------------ */
2009-12-08 10:46:35 -08:00
static void asm_tbar(ASMState *as, IRIns *ir)
{
Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, tab));
MCLabel l_end = emit_label(as);
emit_movtomro(as, tmp, tab, offsetof(GCtab, gclist));
emit_setgl(as, tab, gc.grayagain);
emit_getgl(as, tmp, gc.grayagain);
emit_i8(as, ~LJ_GC_BLACK);
emit_rmro(as, XO_ARITHib, XOg_AND, tab, offsetof(GCtab, marked));
emit_sjcc(as, CC_Z, l_end);
emit_i8(as, LJ_GC_BLACK);
emit_rmro(as, XO_GROUP3b, XOg_TEST, tab, offsetof(GCtab, marked));
}
static void asm_obar(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
IRRef args[2];
2009-12-08 10:46:35 -08:00
MCLabel l_end;
Reg obj;
2009-12-08 10:46:35 -08:00
/* No need for other object barriers (yet). */
lua_assert(IR(ir->op1)->o == IR_UREFC);
2010-01-25 17:56:00 -08:00
ra_evictset(as, RSET_SCRATCH);
l_end = emit_label(as);
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ir->op1; /* TValue *tv */
asm_gencall(as, ci, args);
emit_loada(as, ra_releasetmp(as, ASMREF_TMP1), J2G(as->J));
obj = IR(ir->op1)->r;
2009-12-08 10:46:35 -08:00
emit_sjcc(as, CC_Z, l_end);
emit_i8(as, LJ_GC_WHITES);
if (irref_isk(ir->op2)) {
GCobj *vp = ir_kgc(IR(ir->op2));
emit_rma(as, XO_GROUP3b, XOg_TEST, &vp->gch.marked);
} else {
Reg val = ra_alloc1(as, ir->op2, rset_exclude(RSET_SCRATCH&RSET_GPR, obj));
2009-12-08 10:46:35 -08:00
emit_rmro(as, XO_GROUP3b, XOg_TEST, val, (int32_t)offsetof(GChead, marked));
}
2009-12-08 10:46:35 -08:00
emit_sjcc(as, CC_Z, l_end);
emit_i8(as, LJ_GC_BLACK);
emit_rmro(as, XO_GROUP3b, XOg_TEST, obj,
(int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
2009-12-08 10:46:35 -08:00
}
/* -- FP/int arithmetic and logic operations ------------------------------ */
/* Load reference onto x87 stack. Force a spill to memory if needed. */
static void asm_x87load(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
if (ir->o == IR_KNUM) {
cTValue *tv = ir_knum(ir);
if (tvispzero(tv)) /* Use fldz only for +0. */
emit_x87op(as, XI_FLDZ);
else if (tvispone(tv))
emit_x87op(as, XI_FLD1);
else
emit_rma(as, XO_FLDq, XOg_FLDq, tv);
} else if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && !ra_used(ir) &&
2009-12-08 10:46:35 -08:00
!irref_isk(ir->op1) && mayfuse(as, ir->op1)) {
IRIns *iri = IR(ir->op1);
emit_rmro(as, XO_FILDd, XOg_FILDd, RID_ESP, ra_spill(as, iri));
} else {
emit_mrm(as, XO_FLDq, XOg_FLDq, asm_fuseload(as, ref, RSET_EMPTY));
}
}
/* Try to rejoin pow from EXP2, MUL and LOG2 (if still unsplit). */
static int fpmjoin_pow(ASMState *as, IRIns *ir)
{
IRIns *irp = IR(ir->op1);
if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) {
IRIns *irpp = IR(irp->op1);
if (irpp == ir-2 && irpp->o == IR_FPMATH &&
irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) {
/* The modified regs must match with the *.dasc implementation. */
RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX);
IRIns *irx;
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
ra_evictset(as, drop);
ra_destreg(as, ir, RID_XMM0);
emit_call(as, lj_vm_pow_sse);
irx = IR(irpp->op1);
if (ra_noreg(irx->r) && ra_gethint(irx->r) == RID_XMM1)
irx->r = RID_INIT; /* Avoid allocating xmm1 for x. */
ra_left(as, RID_XMM0, irpp->op1);
ra_left(as, RID_XMM1, irp->op2);
2009-12-08 10:46:35 -08:00
return 1;
}
}
return 0;
}
static void asm_fpmath(ASMState *as, IRIns *ir)
{
IRFPMathOp fpm = ir->o == IR_FPMATH ? (IRFPMathOp)ir->op2 : IRFPM_OTHER;
if (fpm == IRFPM_SQRT) {
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
emit_mrm(as, XO_SQRTSD, dest, left);
} else if (fpm <= IRFPM_TRUNC) {
if (as->flags & JIT_F_SSE4_1) { /* SSE4.1 has a rounding instruction. */
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
/* ROUNDSD has a 4-byte opcode which doesn't fit in x86Op.
** Let's pretend it's a 3-byte opcode, and compensate afterwards.
** This is atrocious, but the alternatives are much worse.
*/
/* Round down/up/trunc == 1001/1010/1011. */
emit_i8(as, 0x09 + fpm);
emit_mrm(as, XO_ROUNDSD, dest, left);
if (LJ_64 && as->mcp[1] != (MCode)(XO_ROUNDSD >> 16)) {
as->mcp[0] = as->mcp[1]; as->mcp[1] = 0x0f; /* Swap 0F and REX. */
}
*--as->mcp = 0x66; /* 1st byte of ROUNDSD opcode. */
} else { /* Call helper functions for SSE2 variant. */
/* The modified regs must match with the *.dasc implementation. */
RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX);
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
ra_evictset(as, drop);
ra_destreg(as, ir, RID_XMM0);
emit_call(as, fpm == IRFPM_FLOOR ? lj_vm_floor_sse :
fpm == IRFPM_CEIL ? lj_vm_ceil_sse : lj_vm_trunc_sse);
ra_left(as, RID_XMM0, ir->op1);
}
} else if (fpm == IRFPM_EXP2 && fpmjoin_pow(as, ir)) {
/* Rejoined to pow(). */
} else { /* Handle x87 ops. */
int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
2009-12-08 10:46:35 -08:00
Reg dest = ir->r;
if (ra_hasreg(dest)) {
ra_free(as, dest);
ra_modified(as, dest);
emit_rmro(as, XMM_MOVRM(as), dest, RID_ESP, ofs);
}
emit_rmro(as, XO_FSTPq, XOg_FSTPq, RID_ESP, ofs);
switch (fpm) { /* st0 = lj_vm_*(st0) */
case IRFPM_EXP: emit_call(as, lj_vm_exp); break;
case IRFPM_EXP2: emit_call(as, lj_vm_exp2); break;
2009-12-08 10:46:35 -08:00
case IRFPM_SIN: emit_x87op(as, XI_FSIN); break;
case IRFPM_COS: emit_x87op(as, XI_FCOS); break;
case IRFPM_TAN: emit_x87op(as, XI_FPOP); emit_x87op(as, XI_FPTAN); break;
case IRFPM_LOG: case IRFPM_LOG2: case IRFPM_LOG10:
/* Note: the use of fyl2xp1 would be pointless here. When computing
** log(1.0+eps) the precision is already lost after 1.0 is added.
** Subtracting 1.0 won't recover it. OTOH math.log1p would make sense.
*/
emit_x87op(as, XI_FYL2X); break;
case IRFPM_OTHER:
switch (ir->o) {
case IR_ATAN2:
emit_x87op(as, XI_FPATAN); asm_x87load(as, ir->op2); break;
case IR_LDEXP:
emit_x87op(as, XI_FPOP1); emit_x87op(as, XI_FSCALE); break;
default: lua_assert(0); break;
}
break;
default: lua_assert(0); break;
}
asm_x87load(as, ir->op1);
switch (fpm) {
case IRFPM_LOG: emit_x87op(as, XI_FLDLN2); break;
case IRFPM_LOG2: emit_x87op(as, XI_FLD1); break;
case IRFPM_LOG10: emit_x87op(as, XI_FLDLG2); break;
case IRFPM_OTHER:
if (ir->o == IR_LDEXP) asm_x87load(as, ir->op2);
break;
default: break;
}
}
}
2011-02-02 12:33:11 -08:00
static void asm_fppowi(ASMState *as, IRIns *ir)
{
/* The modified regs must match with the *.dasc implementation. */
RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX);
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
ra_evictset(as, drop);
ra_destreg(as, ir, RID_XMM0);
emit_call(as, lj_vm_powi_sse);
ra_left(as, RID_XMM0, ir->op1);
ra_left(as, RID_EAX, ir->op2);
}
#if LJ_64 && LJ_HASFFI
static void asm_arith64(ASMState *as, IRIns *ir, IRCallID id)
{
const CCallInfo *ci = &lj_ir_callinfo[id];
IRRef args[2];
args[0] = ir->op1;
args[1] = ir->op2;
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
#endif
2009-12-08 10:46:35 -08:00
/* Find out whether swapping operands might be beneficial. */
static int swapops(ASMState *as, IRIns *ir)
{
IRIns *irl = IR(ir->op1);
IRIns *irr = IR(ir->op2);
lua_assert(ra_noreg(irr->r));
if (!irm_iscomm(lj_ir_mode[ir->o]))
return 0; /* Can't swap non-commutative operations. */
if (irref_isk(ir->op2))
return 0; /* Don't swap constants to the left. */
if (ra_hasreg(irl->r))
return 1; /* Swap if left already has a register. */
if (ra_samehint(ir->r, irr->r))
return 1; /* Swap if dest and right have matching hints. */
if (as->curins > as->loopref) { /* In variant part? */
if (ir->op2 < as->loopref && !irt_isphi(irr->t))
return 0; /* Keep invariants on the right. */
if (ir->op1 < as->loopref && !irt_isphi(irl->t))
return 1; /* Swap invariants to the right. */
}
2009-12-08 10:46:35 -08:00
if (opisfusableload(irl->o))
return 1; /* Swap fusable loads to the right. */
return 0; /* Otherwise don't swap. */
}
static void asm_fparith(ASMState *as, IRIns *ir, x86Op xo)
{
IRRef lref = ir->op1;
IRRef rref = ir->op2;
RegSet allow = RSET_FPR;
Reg dest;
Reg right = IR(rref)->r;
if (ra_hasreg(right)) {
2009-12-08 10:46:35 -08:00
rset_clear(allow, right);
ra_noweak(as, right);
}
2009-12-08 10:46:35 -08:00
dest = ra_dest(as, ir, allow);
if (lref == rref) {
right = dest;
} else if (ra_noreg(right)) {
if (swapops(as, ir)) {
IRRef tmp = lref; lref = rref; rref = tmp;
}
right = asm_fuseload(as, rref, rset_clear(allow, dest));
}
emit_mrm(as, xo, dest, right);
ra_left(as, dest, lref);
}
static void asm_intarith(ASMState *as, IRIns *ir, x86Arith xa)
{
IRRef lref = ir->op1;
IRRef rref = ir->op2;
RegSet allow = RSET_GPR;
Reg dest, right;
int32_t k = 0;
2009-12-08 10:46:35 -08:00
if (as->testmcp == as->mcp) { /* Drop test r,r instruction. */
as->testmcp = NULL;
as->mcp += (LJ_64 && *as->mcp != XI_TEST) ? 3 : 2;
}
right = IR(rref)->r;
if (ra_hasreg(right)) {
2009-12-08 10:46:35 -08:00
rset_clear(allow, right);
ra_noweak(as, right);
}
2009-12-08 10:46:35 -08:00
dest = ra_dest(as, ir, allow);
if (lref == rref) {
right = dest;
} else if (ra_noreg(right) && !asm_isk32(as, rref, &k)) {
2009-12-08 10:46:35 -08:00
if (swapops(as, ir)) {
IRRef tmp = lref; lref = rref; rref = tmp;
}
right = asm_fuseload(as, rref, rset_clear(allow, dest));
}
if (irt_isguard(ir->t)) /* For IR_ADDOV etc. */
asm_guardcc(as, CC_O);
if (xa != XOg_X_IMUL) {
if (ra_hasreg(right))
emit_mrm(as, XO_ARITH(xa), REX_64IR(ir, dest), right);
else
emit_gri(as, XG_ARITHi(xa), REX_64IR(ir, dest), k);
} else if (ra_hasreg(right)) { /* IMUL r, mrm. */
emit_mrm(as, XO_IMUL, REX_64IR(ir, dest), right);
} else { /* IMUL r, r, k. */
2010-12-06 03:54:00 -08:00
/* NYI: use lea/shl/add/sub (FOLD only does 2^k) depending on CPU. */
Reg left = asm_fuseload(as, lref, RSET_GPR);
x86Op xo;
if (checki8(k)) { emit_i8(as, k); xo = XO_IMULi8;
} else { emit_i32(as, k); xo = XO_IMULi; }
emit_mrm(as, xo, REX_64IR(ir, dest), left);
return;
2010-12-06 03:54:00 -08:00
}
ra_left(as, dest, lref);
2010-12-06 03:54:00 -08:00
}
2009-12-08 10:46:35 -08:00
/* LEA is really a 4-operand ADD with an independent destination register,
** up to two source registers and an immediate. One register can be scaled
** by 1, 2, 4 or 8. This can be used to avoid moves or to fuse several
** instructions.
**
** Currently only a few common cases are supported:
** - 3-operand ADD: y = a+b; y = a+k with a and b already allocated
** - Left ADD fusion: y = (a+b)+k; y = (a+k)+b
** - Right ADD fusion: y = a+(b+k)
** The ommited variants have already been reduced by FOLD.
**
** There are more fusion opportunities, like gathering shifts or joining
** common references. But these are probably not worth the trouble, since
** array indexing is not decomposed and already makes use of all fields
** of the ModRM operand.
*/
static int asm_lea(ASMState *as, IRIns *ir)
{
IRIns *irl = IR(ir->op1);
IRIns *irr = IR(ir->op2);
RegSet allow = RSET_GPR;
Reg dest;
as->mrm.base = as->mrm.idx = RID_NONE;
as->mrm.scale = XM_SCALE1;
as->mrm.ofs = 0;
if (ra_hasreg(irl->r)) {
rset_clear(allow, irl->r);
ra_noweak(as, irl->r);
2009-12-08 10:46:35 -08:00
as->mrm.base = irl->r;
if (irref_isk(ir->op2) || ra_hasreg(irr->r)) {
/* The PHI renaming logic does a better job in some cases. */
if (ra_hasreg(ir->r) &&
((irt_isphi(irl->t) && as->phireg[ir->r] == ir->op1) ||
(irt_isphi(irr->t) && as->phireg[ir->r] == ir->op2)))
return 0;
if (irref_isk(ir->op2)) {
as->mrm.ofs = irr->i;
} else {
rset_clear(allow, irr->r);
ra_noweak(as, irr->r);
2009-12-08 10:46:35 -08:00
as->mrm.idx = irr->r;
}
} else if (irr->o == IR_ADD && mayfuse(as, ir->op2) &&
irref_isk(irr->op2)) {
Reg idx = ra_alloc1(as, irr->op1, allow);
rset_clear(allow, idx);
as->mrm.idx = (uint8_t)idx;
as->mrm.ofs = IR(irr->op2)->i;
} else {
return 0;
}
} else if (ir->op1 != ir->op2 && irl->o == IR_ADD && mayfuse(as, ir->op1) &&
(irref_isk(ir->op2) || irref_isk(irl->op2))) {
Reg idx, base = ra_alloc1(as, irl->op1, allow);
rset_clear(allow, base);
as->mrm.base = (uint8_t)base;
if (irref_isk(ir->op2)) {
as->mrm.ofs = irr->i;
idx = ra_alloc1(as, irl->op2, allow);
} else {
as->mrm.ofs = IR(irl->op2)->i;
idx = ra_alloc1(as, ir->op2, allow);
}
rset_clear(allow, idx);
as->mrm.idx = (uint8_t)idx;
} else {
return 0;
}
dest = ra_dest(as, ir, allow);
emit_mrm(as, XO_LEA, dest, RID_MRM);
return 1; /* Success. */
}
static void asm_add(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t))
asm_fparith(as, ir, XO_ADDSD);
else if ((as->flags & JIT_F_LEA_AGU) || as->testmcp == as->mcp ||
2010-12-05 12:50:52 -08:00
irt_is64(ir->t) || !asm_lea(as, ir))
2009-12-08 10:46:35 -08:00
asm_intarith(as, ir, XOg_ADD);
}
static void asm_neg_not(ASMState *as, IRIns *ir, x86Group3 xg)
2009-12-08 10:46:35 -08:00
{
Reg dest = ra_dest(as, ir, RSET_GPR);
emit_rr(as, XO_GROUP3, REX_64IR(ir, xg), dest);
2009-12-08 10:46:35 -08:00
ra_left(as, dest, ir->op1);
}
static void asm_min_max(ASMState *as, IRIns *ir, int cc)
{
Reg right, dest = ra_dest(as, ir, RSET_GPR);
IRRef lref = ir->op1, rref = ir->op2;
if (irref_isk(rref)) { lref = rref; rref = ir->op1; }
right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, dest));
emit_rr(as, XO_CMOV + (cc<<24), REX_64IR(ir, dest), right);
emit_rr(as, XO_CMP, REX_64IR(ir, dest), right);
ra_left(as, dest, lref);
}
2009-12-08 10:46:35 -08:00
static void asm_bitswap(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
as->mcp = emit_op(XO_BSWAP + ((dest&7) << 24),
REX_64IR(ir, dest), 0, 0, as->mcp, 1);
2009-12-08 10:46:35 -08:00
ra_left(as, dest, ir->op1);
}
static void asm_bitshift(ASMState *as, IRIns *ir, x86Shift xs)
{
IRRef rref = ir->op2;
IRIns *irr = IR(rref);
Reg dest;
if (irref_isk(rref)) { /* Constant shifts. */
int shift;
dest = ra_dest(as, ir, RSET_GPR);
shift = irr->i & (irt_is64(ir->t) ? 63 : 31);
2009-12-08 10:46:35 -08:00
switch (shift) {
case 0: break;
case 1: emit_rr(as, XO_SHIFT1, REX_64IR(ir, xs), dest); break;
default: emit_shifti(as, REX_64IR(ir, xs), dest, shift); break;
2009-12-08 10:46:35 -08:00
}
} else { /* Variable shifts implicitly use register cl (i.e. ecx). */
RegSet allow = rset_exclude(RSET_GPR, RID_ECX);
Reg right = irr->r;
if (ra_noreg(right)) {
right = ra_allocref(as, rref, RID2RSET(RID_ECX));
} else if (right != RID_ECX) {
rset_clear(allow, right);
ra_scratch(as, RID2RSET(RID_ECX));
}
dest = ra_dest(as, ir, allow);
emit_rr(as, XO_SHIFTcl, REX_64IR(ir, xs), dest);
if (right != RID_ECX) {
ra_noweak(as, right);
2009-12-08 10:46:35 -08:00
emit_rr(as, XO_MOV, RID_ECX, right);
}
2009-12-08 10:46:35 -08:00
}
ra_left(as, dest, ir->op1);
/*
** Note: avoid using the flags resulting from a shift or rotate!
** All of them cause a partial flag stall, except for r,1 shifts
** (but not rotates). And a shift count of 0 leaves the flags unmodified.
*/
}
/* -- Comparisons --------------------------------------------------------- */
/* Virtual flags for unordered FP comparisons. */
#define VCC_U 0x1000 /* Unordered. */
#define VCC_P 0x2000 /* Needs extra CC_P branch. */
#define VCC_S 0x4000 /* Swap avoids CC_P branch. */
2009-12-08 10:46:35 -08:00
#define VCC_PS (VCC_P|VCC_S)
/* Map of comparisons to flags. ORDER IR. */
#define COMPFLAGS(ci, cin, cu, cf) ((ci)+((cu)<<4)+((cin)<<8)+(cf))
static const uint16_t asm_compmap[IR_ABC+1] = {
/* signed non-eq unsigned flags */
/* LT */ COMPFLAGS(CC_GE, CC_G, CC_AE, VCC_PS),
/* GE */ COMPFLAGS(CC_L, CC_L, CC_B, 0),
/* LE */ COMPFLAGS(CC_G, CC_G, CC_A, VCC_PS),
/* GT */ COMPFLAGS(CC_LE, CC_L, CC_BE, 0),
/* ULT */ COMPFLAGS(CC_AE, CC_A, CC_AE, VCC_U),
/* UGE */ COMPFLAGS(CC_B, CC_B, CC_B, VCC_U|VCC_PS),
/* ULE */ COMPFLAGS(CC_A, CC_A, CC_A, VCC_U),
/* UGT */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS),
/* EQ */ COMPFLAGS(CC_NE, CC_NE, CC_NE, VCC_P),
/* NE */ COMPFLAGS(CC_E, CC_E, CC_E, VCC_U|VCC_P),
/* ABC */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS) /* Same as UGT. */
};
/* FP and integer comparisons. */
static void asm_comp(ASMState *as, IRIns *ir, uint32_t cc)
2009-12-08 10:46:35 -08:00
{
if (irt_isnum(ir->t)) {
IRRef lref = ir->op1;
IRRef rref = ir->op2;
Reg left, right;
MCLabel l_around;
/*
** An extra CC_P branch is required to preserve ordered/unordered
** semantics for FP comparisons. This can be avoided by swapping
** the operands and inverting the condition (except for EQ and UNE).
** So always try to swap if possible.
**
** Another option would be to swap operands to achieve better memory
** operand fusion. But it's unlikely that this outweighs the cost
** of the extra branches.
*/
if (cc & VCC_S) { /* Swap? */
IRRef tmp = lref; lref = rref; rref = tmp;
cc ^= (VCC_PS|(5<<4)); /* A <-> B, AE <-> BE, PS <-> none */
}
left = ra_alloc1(as, lref, RSET_FPR);
right = asm_fuseload(as, rref, rset_exclude(RSET_FPR, left));
l_around = emit_label(as);
asm_guardcc(as, cc >> 4);
if (cc & VCC_P) { /* Extra CC_P branch required? */
if (!(cc & VCC_U)) {
asm_guardcc(as, CC_P); /* Branch to exit for ordered comparisons. */
} else if (l_around != as->invmcp) {
emit_sjcc(as, CC_P, l_around); /* Branch around for unordered. */
} else {
/* Patched to mcloop by asm_loop_fixup. */
as->loopinv = 2;
if (as->realign)
emit_sjcc(as, CC_P, as->mcp);
else
emit_jcc(as, CC_P, as->mcp);
}
}
emit_mrm(as, XO_UCOMISD, left, right);
} else {
2009-12-08 10:46:35 -08:00
IRRef lref = ir->op1, rref = ir->op2;
IROp leftop = (IROp)(IR(lref)->o);
Reg r64 = REX_64IR(ir, 0);
int32_t imm = 0;
lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isaddr(ir->t));
2009-12-08 10:46:35 -08:00
/* Swap constants (only for ABC) and fusable loads to the right. */
if (irref_isk(lref) || (!irref_isk(rref) && opisfusableload(leftop))) {
if ((cc & 0xc) == 0xc) cc ^= 3; /* L <-> G, LE <-> GE */
else if ((cc & 0xa) == 0x2) cc ^= 5; /* A <-> B, AE <-> BE */
lref = ir->op2; rref = ir->op1;
}
if (asm_isk32(as, rref, &imm)) {
2009-12-08 10:46:35 -08:00
IRIns *irl = IR(lref);
/* Check wether we can use test ins. Not for unsigned, since CF=0. */
int usetest = (imm == 0 && (cc & 0xa) != 0x2);
if (usetest && irl->o == IR_BAND && irl+1 == ir && !ra_used(irl)) {
/* Combine comp(BAND(ref, r/imm), 0) into test mrm, r/imm. */
Reg right, left = RID_NONE;
RegSet allow = RSET_GPR;
if (!asm_isk32(as, irl->op2, &imm)) {
2009-12-08 10:46:35 -08:00
left = ra_alloc1(as, irl->op2, allow);
rset_clear(allow, left);
} else { /* Try to Fuse IRT_I8/IRT_U8 loads, too. See below. */
IRIns *irll = IR(irl->op1);
if (opisfusableload((IROp)irll->o) &&
(irt_isi8(irll->t) || irt_isu8(irll->t))) {
IRType1 origt = irll->t; /* Temporarily flip types. */
irll->t.irt = (irll->t.irt & ~IRT_TYPE) | IRT_INT;
as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
right = asm_fuseload(as, irl->op1, RSET_GPR);
as->curins++;
irll->t = origt;
if (right != RID_MRM) goto test_nofuse;
/* Fusion succeeded, emit test byte mrm, imm8. */
asm_guardcc(as, cc);
emit_i8(as, (imm & 0xff));
emit_mrm(as, XO_GROUP3b, XOg_TEST, RID_MRM);
return;
}
2009-12-08 10:46:35 -08:00
}
as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
2009-12-08 10:46:35 -08:00
right = asm_fuseload(as, irl->op1, allow);
as->curins++; /* Undo the above. */
test_nofuse:
2009-12-08 10:46:35 -08:00
asm_guardcc(as, cc);
if (ra_noreg(left)) {
emit_i32(as, imm);
emit_mrm(as, XO_GROUP3, r64 + XOg_TEST, right);
2009-12-08 10:46:35 -08:00
} else {
emit_mrm(as, XO_TEST, r64 + left, right);
2009-12-08 10:46:35 -08:00
}
} else {
Reg left;
if (opisfusableload((IROp)irl->o) &&
((irt_isu8(irl->t) && checku8(imm)) ||
((irt_isi8(irl->t) || irt_isi16(irl->t)) && checki8(imm)) ||
(irt_isu16(irl->t) && checku16(imm) && checki8((int16_t)imm)))) {
/* Only the IRT_INT case is fused by asm_fuseload.
** The IRT_I8/IRT_U8 loads and some IRT_I16/IRT_U16 loads
** are handled here.
** Note that cmp word [mem], imm16 should not be generated,
** since it has a length-changing prefix. Compares of a word
** against a sign-extended imm8 are ok, however.
2009-12-08 10:46:35 -08:00
*/
IRType1 origt = irl->t; /* Temporarily flip types. */
irl->t.irt = (irl->t.irt & ~IRT_TYPE) | IRT_INT;
left = asm_fuseload(as, lref, RSET_GPR);
irl->t = origt;
if (left == RID_MRM) { /* Fusion succeeded? */
asm_guardcc(as, cc);
emit_i8(as, imm);
emit_mrm(as, (irt_isi8(origt) || irt_isu8(origt)) ?
XO_ARITHib : XO_ARITHiw8, r64 + XOg_CMP, RID_MRM);
2009-12-08 10:46:35 -08:00
return;
} /* Otherwise handle register case as usual. */
} else {
left = asm_fuseload(as, lref, RSET_GPR);
}
asm_guardcc(as, cc);
if (usetest && left != RID_MRM) {
/* Use test r,r instead of cmp r,0. */
emit_rr(as, XO_TEST, r64 + left, left);
2009-12-08 10:46:35 -08:00
if (irl+1 == ir) /* Referencing previous ins? */
as->testmcp = as->mcp; /* Set flag to drop test r,r if possible. */
} else {
emit_gmrmi(as, XG_ARITHi(XOg_CMP), r64 + left, imm);
2009-12-08 10:46:35 -08:00
}
}
} else {
Reg left = ra_alloc1(as, lref, RSET_GPR);
Reg right = asm_fuseload(as, rref, rset_exclude(RSET_GPR, left));
asm_guardcc(as, cc);
emit_mrm(as, XO_CMP, r64 + left, right);
2009-12-08 10:46:35 -08:00
}
}
}
#if LJ_32 && LJ_HASFFI
/* 64 bit integer comparisons in 32 bit mode. */
static void asm_comp_int64(ASMState *as, IRIns *ir)
{
uint32_t cc = asm_compmap[(ir-1)->o];
RegSet allow = RSET_GPR;
Reg lefthi = RID_NONE, leftlo = RID_NONE;
Reg righthi = RID_NONE, rightlo = RID_NONE;
MCLabel l_around;
x86ModRM mrm;
as->curins--; /* Skip loword ins. Avoids failing in noconflict(), too. */
/* Allocate/fuse hiword operands. */
if (irref_isk(ir->op2)) {
lefthi = asm_fuseload(as, ir->op1, allow);
} else {
lefthi = ra_alloc1(as, ir->op1, allow);
righthi = asm_fuseload(as, ir->op2, allow);
if (righthi == RID_MRM) {
if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
} else {
rset_clear(allow, righthi);
}
}
mrm = as->mrm; /* Save state for hiword instruction. */
/* Allocate/fuse loword operands. */
if (irref_isk((ir-1)->op2)) {
leftlo = asm_fuseload(as, (ir-1)->op1, allow);
} else {
leftlo = ra_alloc1(as, (ir-1)->op1, allow);
rightlo = asm_fuseload(as, (ir-1)->op2, allow);
if (rightlo == RID_MRM) {
if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
} else {
rset_clear(allow, rightlo);
}
}
/* All register allocations must be performed _before_ this point. */
l_around = emit_label(as);
as->invmcp = as->testmcp = NULL; /* Cannot use these optimizations. */
/* Loword comparison and branch. */
asm_guardcc(as, cc >> 4); /* Always use unsigned compare for loword. */
if (ra_noreg(rightlo)) {
int32_t imm = IR((ir-1)->op2)->i;
if (imm == 0 && ((cc >> 4) & 0xa) != 0x2 && leftlo != RID_MRM)
emit_rr(as, XO_TEST, leftlo, leftlo);
else
emit_gmrmi(as, XG_ARITHi(XOg_CMP), leftlo, imm);
} else {
emit_mrm(as, XO_CMP, leftlo, rightlo);
}
/* Hiword comparison and branches. */
if ((cc & 15) != CC_NE)
emit_sjcc(as, CC_NE, l_around); /* Hiword unequal: skip loword compare. */
if ((cc & 15) != CC_E)
asm_guardcc(as, cc >> 8); /* Hiword compare without equality check. */
as->mrm = mrm; /* Restore state. */
if (ra_noreg(righthi)) {
int32_t imm = IR(ir->op2)->i;
if (imm == 0 && (cc & 0xa) != 0x2 && lefthi != RID_MRM)
emit_rr(as, XO_TEST, lefthi, lefthi);
else
emit_gmrmi(as, XG_ARITHi(XOg_CMP), lefthi, imm);
} else {
emit_mrm(as, XO_CMP, lefthi, righthi);
}
}
#endif
/* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
/* Hiword op of a split 64 bit op. Previous op must be the loword op. */
static void asm_hiop(ASMState *as, IRIns *ir)
{
#if LJ_32 && LJ_HASFFI
/* HIOP is marked as a store because it needs its own DCE logic. */
int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */
if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1;
if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */
if (usehi || uselo) {
if (irt_isfp(ir->t))
asm_conv_fp_int64(as, ir);
else
asm_conv_int64_fp(as, ir);
}
as->curins--; /* Always skip the CONV. */
return;
} else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */
asm_comp_int64(as, ir);
return;
}
if (!usehi) return; /* Skip unused hiword op for all remaining ops. */
switch ((ir-1)->o) {
case IR_ADD:
asm_intarith(as, ir, uselo ? XOg_ADC : XOg_ADD);
break;
case IR_SUB:
asm_intarith(as, ir, uselo ? XOg_SBB : XOg_SUB);
break;
case IR_NEG: {
Reg dest = ra_dest(as, ir, RSET_GPR);
emit_rr(as, XO_GROUP3, XOg_NEG, dest);
if (uselo) {
emit_i8(as, 0);
emit_rr(as, XO_ARITHi8, XOg_ADC, dest);
}
ra_left(as, dest, ir->op1);
break;
}
case IR_CALLN:
ra_destreg(as, ir, RID_RETHI);
if (!uselo)
ra_allocref(as, ir->op1, RID2RSET(RID_RET)); /* Mark call as used. */
break;
case IR_CNEWI:
/* Nothing to do here. Handled by CNEWI itself. */
break;
default: lua_assert(0); break;
}
#else
UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on x64 or without FFI. */
#endif
}
2009-12-08 10:46:35 -08:00
/* -- Stack handling ------------------------------------------------------ */
/* Get extent of the stack for a snapshot. */
static BCReg asm_stack_extent(ASMState *as, SnapShot *snap, BCReg *ptopslot)
{
SnapEntry *map = &as->T->snapmap[snap->mapofs];
MSize n, nent = snap->nent;
BCReg baseslot = 0, topslot = 0;
/* Must check all frames to find topslot (outer can be larger than inner). */
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
if ((sn & SNAP_FRAME)) {
IRIns *ir = IR(snap_ref(sn));
GCfunc *fn = ir_kfunc(ir);
if (isluafunc(fn)) {
BCReg s = snap_slot(sn);
BCReg fs = s + funcproto(fn)->framesize;
if (fs > topslot) topslot = fs;
baseslot = s;
}
}
}
*ptopslot = topslot;
return baseslot;
}
/* Check Lua stack size for overflow. Use exit handler as fallback. */
static void asm_stack_check(ASMState *as, BCReg topslot,
Reg pbase, RegSet allow, ExitNo exitno)
{
/* Try to get an unused temp. register, otherwise spill/restore eax. */
Reg r = allow ? rset_pickbot(allow) : RID_EAX;
emit_jcc(as, CC_B, exitstub_addr(as->J, exitno));
if (allow == RSET_EMPTY) /* Restore temp. register. */
emit_rmro(as, XO_MOV, r|REX_64, RID_ESP, 0);
else
ra_modified(as, r);
emit_gri(as, XG_ARITHi(XOg_CMP), r, (int32_t)(8*topslot));
if (ra_hasreg(pbase) && pbase != r)
emit_rr(as, XO_ARITH(XOg_SUB), r, pbase);
else
emit_rmro(as, XO_ARITH(XOg_SUB), r, RID_NONE,
ptr2addr(&J2G(as->J)->jit_base));
emit_rmro(as, XO_MOV, r, r, offsetof(lua_State, maxstack));
emit_getgl(as, r, jit_L);
if (allow == RSET_EMPTY) /* Spill temp. register. */
emit_rmro(as, XO_MOVto, r|REX_64, RID_ESP, 0);
}
/* Restore Lua stack from on-trace state. */
static void asm_stack_restore(ASMState *as, SnapShot *snap)
{
SnapEntry *map = &as->T->snapmap[snap->mapofs];
MSize n, nent = snap->nent;
SnapEntry *flinks = map + nent + snap->depth;
/* Store the value of all modified slots to the Lua stack. */
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
BCReg s = snap_slot(sn);
int32_t ofs = 8*((int32_t)s-1);
IRRef ref = snap_ref(sn);
IRIns *ir = IR(ref);
if ((sn & SNAP_NORESTORE))
continue;
if (irt_isnum(ir->t)) {
Reg src = ra_alloc1(as, ref, RSET_FPR);
emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs);
} else {
lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) ||
(LJ_DUALNUM && irt_isinteger(ir->t)));
if (!irref_isk(ref)) {
Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE));
2010-12-05 10:49:29 -08:00
emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs);
} else if (!irt_ispri(ir->t)) {
emit_movmroi(as, RID_BASE, ofs, ir->i);
}
if ((sn & (SNAP_CONT|SNAP_FRAME))) {
if (s != 0) /* Do not overwrite link to previous frame. */
emit_movmroi(as, RID_BASE, ofs+4, (int32_t)(*flinks--));
} else {
if (!(LJ_64 && irt_islightud(ir->t)))
emit_movmroi(as, RID_BASE, ofs+4, irt_toitype(ir->t));
}
}
checkmclim(as);
}
lua_assert(map + nent == flinks);
}
2009-12-08 10:46:35 -08:00
/* -- GC handling --------------------------------------------------------- */
/* Check GC threshold and do one or more GC steps. */
static void asm_gc_check(ASMState *as)
2009-12-08 10:46:35 -08:00
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
IRRef args[2];
2009-12-08 10:46:35 -08:00
MCLabel l_end;
Reg tmp;
ra_evictset(as, RSET_SCRATCH);
2009-12-08 10:46:35 -08:00
l_end = emit_label(as);
/* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */
emit_rr(as, XO_TEST, RID_RET, RID_RET);
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ASMREF_TMP2; /* MSize steps */
asm_gencall(as, ci, args);
tmp = ra_releasetmp(as, ASMREF_TMP1);
emit_loada(as, tmp, J2G(as->J));
emit_loadi(as, ra_releasetmp(as, ASMREF_TMP2), (int32_t)as->gcsteps);
2009-12-08 10:46:35 -08:00
/* Jump around GC step if GC total < GC threshold. */
emit_sjcc(as, CC_B, l_end);
emit_opgl(as, XO_ARITH(XOg_CMP), tmp, gc.threshold);
emit_getgl(as, tmp, gc.total);
as->gcsteps = 0;
checkmclim(as);
}
/* -- PHI and loop handling ----------------------------------------------- */
/* Break a PHI cycle by renaming to a free register (evict if needed). */
static void asm_phi_break(ASMState *as, RegSet blocked, RegSet blockedby,
RegSet allow)
{
RegSet candidates = blocked & allow;
if (candidates) { /* If this register file has candidates. */
/* Note: the set for ra_pick cannot be empty, since each register file
** has some registers never allocated to PHIs.
*/
Reg down, up = ra_pick(as, ~blocked & allow); /* Get a free register. */
if (candidates & ~blockedby) /* Optimize shifts, else it's a cycle. */
candidates = candidates & ~blockedby;
down = rset_picktop(candidates); /* Pick candidate PHI register. */
ra_rename(as, down, up); /* And rename it to the free register. */
}
}
/* PHI register shuffling.
**
** The allocator tries hard to preserve PHI register assignments across
** the loop body. Most of the time this loop does nothing, since there
** are no register mismatches.
**
** If a register mismatch is detected and ...
** - the register is currently free: rename it.
** - the register is blocked by an invariant: restore/remat and rename it.
** - Otherwise the register is used by another PHI, so mark it as blocked.
**
** The renames are order-sensitive, so just retry the loop if a register
** is marked as blocked, but has been freed in the meantime. A cycle is
** detected if all of the blocked registers are allocated. To break the
** cycle rename one of them to a free register and retry.
**
** Note that PHI spill slots are kept in sync and don't need to be shuffled.
*/
static void asm_phi_shuffle(ASMState *as)
{
RegSet work;
/* Find and resolve PHI register mismatches. */
for (;;) {
RegSet blocked = RSET_EMPTY;
RegSet blockedby = RSET_EMPTY;
RegSet phiset = as->phiset;
while (phiset) { /* Check all left PHI operand registers. */
Reg r = rset_picktop(phiset);
IRIns *irl = IR(as->phireg[r]);
Reg left = irl->r;
if (r != left) { /* Mismatch? */
if (!rset_test(as->freeset, r)) { /* PHI register blocked? */
IRRef ref = regcost_ref(as->cost[r]);
if (irt_ismarked(IR(ref)->t)) { /* Blocked by other PHI (w/reg)? */
rset_set(blocked, r);
if (ra_hasreg(left))
rset_set(blockedby, left);
left = RID_NONE;
} else { /* Otherwise grab register from invariant. */
ra_restore(as, ref);
checkmclim(as);
}
}
if (ra_hasreg(left)) {
ra_rename(as, left, r);
checkmclim(as);
}
}
rset_clear(phiset, r);
}
if (!blocked) break; /* Finished. */
if (!(as->freeset & blocked)) { /* Break cycles if none are free. */
asm_phi_break(as, blocked, blockedby, RSET_GPR);
asm_phi_break(as, blocked, blockedby, RSET_FPR);
checkmclim(as);
} /* Else retry some more renames. */
}
/* Restore/remat invariants whose registers are modified inside the loop. */
work = as->modset & ~(as->freeset | as->phiset);
while (work) {
Reg r = rset_picktop(work);
ra_restore(as, regcost_ref(as->cost[r]));
rset_clear(work, r);
checkmclim(as);
}
/* Allocate and save all unsaved PHI regs and clear marks. */
work = as->phiset;
while (work) {
Reg r = rset_picktop(work);
IRRef lref = as->phireg[r];
IRIns *ir = IR(lref);
if (ra_hasspill(ir->s)) { /* Left PHI gained a spill slot? */
irt_clearmark(ir->t); /* Handled here, so clear marker now. */
ra_alloc1(as, lref, RID2RSET(r));
ra_save(as, ir, r); /* Save to spill slot inside the loop. */
checkmclim(as);
}
rset_clear(work, r);
}
}
/* Emit renames for left PHIs which are only spilled outside the loop. */
static void asm_phi_fixup(ASMState *as)
{
RegSet work = as->phiset;
while (work) {
Reg r = rset_picktop(work);
IRRef lref = as->phireg[r];
IRIns *ir = IR(lref);
/* Left PHI gained a spill slot before the loop? */
if (irt_ismarked(ir->t) && ra_hasspill(ir->s)) {
IRRef ren;
lj_ir_set(as->J, IRT(IR_RENAME, IRT_NIL), lref, as->loopsnapno);
ren = tref_ref(lj_ir_emit(as->J));
as->ir = as->T->ir; /* The IR may have been reallocated. */
IR(ren)->r = (uint8_t)r;
IR(ren)->s = SPS_NONE;
}
irt_clearmark(ir->t); /* Always clear marker. */
rset_clear(work, r);
}
}
/* Setup right PHI reference. */
static void asm_phi(ASMState *as, IRIns *ir)
{
RegSet allow = (irt_isfp(ir->t) ? RSET_FPR : RSET_GPR) & ~as->phiset;
2009-12-08 10:46:35 -08:00
RegSet afree = (as->freeset & allow);
IRIns *irl = IR(ir->op1);
IRIns *irr = IR(ir->op2);
/* Spill slot shuffling is not implemented yet (but rarely needed). */
if (ra_hasspill(irl->s) || ra_hasspill(irr->s))
lj_trace_err(as->J, LJ_TRERR_NYIPHI);
/* Leave at least one register free for non-PHIs (and PHI cycle breaking). */
if ((afree & (afree-1))) { /* Two or more free registers? */
Reg r;
if (ra_noreg(irr->r)) { /* Get a register for the right PHI. */
r = ra_allocref(as, ir->op2, allow);
} else { /* Duplicate right PHI, need a copy (rare). */
r = ra_scratch(as, allow);
ra_movrr(as, irr, r, irr->r);
2009-12-08 10:46:35 -08:00
}
ir->r = (uint8_t)r;
rset_set(as->phiset, r);
as->phireg[r] = (IRRef1)ir->op1;
irt_setmark(irl->t); /* Marks left PHIs _with_ register. */
if (ra_noreg(irl->r))
ra_sethint(irl->r, r); /* Set register hint for left PHI. */
} else { /* Otherwise allocate a spill slot. */
/* This is overly restrictive, but it triggers only on synthetic code. */
if (ra_hasreg(irl->r) || ra_hasreg(irr->r))
lj_trace_err(as->J, LJ_TRERR_NYIPHI);
ra_spill(as, ir);
irl->s = irr->s = ir->s; /* Sync left/right PHI spill slots. */
}
}
/* Fixup the loop branch. */
static void asm_loop_fixup(ASMState *as)
{
MCode *p = as->mctop;
MCode *target = as->mcp;
if (as->realign) { /* Realigned loops use short jumps. */
as->realign = NULL; /* Stop another retry. */
lua_assert(((intptr_t)target & 15) == 0);
if (as->loopinv) { /* Inverted loop branch? */
p -= 5;
p[0] = XI_JMP;
lua_assert(target - p >= -128);
p[-1] = (MCode)(target - p); /* Patch sjcc. */
if (as->loopinv == 2)
p[-3] = (MCode)(target - p + 2); /* Patch opt. short jp. */
} else {
lua_assert(target - p >= -128);
p[-1] = (MCode)(int8_t)(target - p); /* Patch short jmp. */
p[-2] = XI_JMPs;
}
} else {
MCode *newloop;
p[-5] = XI_JMP;
if (as->loopinv) { /* Inverted loop branch? */
/* asm_guardcc already inverted the jcc and patched the jmp. */
p -= 5;
newloop = target+4;
*(int32_t *)(p-4) = (int32_t)(target - p); /* Patch jcc. */
if (as->loopinv == 2) {
*(int32_t *)(p-10) = (int32_t)(target - p + 6); /* Patch opt. jp. */
newloop = target+8;
}
} else { /* Otherwise just patch jmp. */
*(int32_t *)(p-4) = (int32_t)(target - p);
newloop = target+3;
}
/* Realign small loops and shorten the loop branch. */
if (newloop >= p - 128) {
as->realign = newloop; /* Force a retry and remember alignment. */
as->curins = as->stopins; /* Abort asm_trace now. */
as->T->nins = as->orignins; /* Remove any added renames. */
}
}
}
/* Middle part of a loop. */
static void asm_loop(ASMState *as)
{
/* LOOP is a guard, so the snapno is up to date. */
as->loopsnapno = as->snapno;
if (as->gcsteps)
asm_gc_check(as);
2009-12-08 10:46:35 -08:00
/* LOOP marks the transition from the variant to the invariant part. */
as->testmcp = as->invmcp = NULL;
as->sectref = 0;
if (!neverfuse(as)) as->fuseref = 0;
asm_phi_shuffle(as);
asm_loop_fixup(as);
as->mcloop = as->mcp;
RA_DBGX((as, "===== LOOP ====="));
if (!as->realign) RA_DBG_FLUSH();
}
/* -- Head of trace ------------------------------------------------------- */
/* Calculate stack adjustment. */
static int32_t asm_stack_adjust(ASMState *as)
{
if (as->evenspill <= SPS_FIXED)
return 0;
return sps_scale((as->evenspill - SPS_FIXED + 3) & ~3);
}
/* Coalesce BASE register for a root trace. */
static void asm_head_root_base(ASMState *as)
{
IRIns *ir = IR(REF_BASE);
Reg r = ir->r;
if (ra_hasreg(r)) {
ra_free(as, r);
if (rset_test(as->modset, r))
ir->r = RID_INIT; /* No inheritance for modified BASE register. */
if (r != RID_BASE)
emit_rr(as, XO_MOV, r, RID_BASE);
}
}
2009-12-08 10:46:35 -08:00
/* Head of a root trace. */
static void asm_head_root(ASMState *as)
{
int32_t spadj;
asm_head_root_base(as);
emit_setgli(as, vmstate, (int32_t)as->T->traceno);
spadj = asm_stack_adjust(as);
2009-12-08 10:46:35 -08:00
as->T->spadjust = (uint16_t)spadj;
emit_addptr(as, RID_ESP|REX_64, -spadj);
/* Root traces assume a checked stack for the starting proto. */
as->T->topslot = gcref(as->T->startpt)->pt.framesize;
2009-12-08 10:46:35 -08:00
}
/* Coalesce or reload BASE register for a side trace. */
static RegSet asm_head_side_base(ASMState *as, Reg pbase, RegSet allow)
{
IRIns *ir = IR(REF_BASE);
Reg r = ir->r;
if (ra_hasreg(r)) {
ra_free(as, r);
if (rset_test(as->modset, r))
ir->r = RID_INIT; /* No inheritance for modified BASE register. */
if (pbase == r) {
rset_clear(allow, r); /* Mark same BASE register as coalesced. */
} else if (ra_hasreg(pbase) && rset_test(as->freeset, pbase)) {
rset_clear(allow, pbase);
emit_rr(as, XO_MOV, r, pbase); /* Move from coalesced parent register. */
} else {
emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */
}
}
return allow;
}
2009-12-08 10:46:35 -08:00
/* Head of a side trace.
**
** The current simplistic algorithm requires that all slots inherited
** from the parent are live in a register between pass 2 and pass 3. This
** avoids the complexity of stack slot shuffling. But of course this may
** overflow the register set in some cases and cause the dreaded error:
** "NYI: register coalescing too complex". A refined algorithm is needed.
*/
static void asm_head_side(ASMState *as)
{
IRRef1 sloadins[RID_MAX];
RegSet allow = RSET_ALL; /* Inverse of all coalesced registers. */
RegSet live = RSET_EMPTY; /* Live parent registers. */
Reg pbase = as->parent->ir[REF_BASE].r; /* Parent base register (if any). */
2009-12-08 10:46:35 -08:00
int32_t spadj, spdelta;
int pass2 = 0;
int pass3 = 0;
IRRef i;
allow = asm_head_side_base(as, pbase, allow);
2009-12-08 10:46:35 -08:00
/* Scan all parent SLOADs and collect register dependencies. */
for (i = as->stopins; i > REF_BASE; i--) {
2009-12-08 10:46:35 -08:00
IRIns *ir = IR(i);
RegSP rs;
lua_assert(ir->o == IR_SLOAD && (ir->op2 & IRSLOAD_PARENT));
rs = as->parentmap[ir->op1];
if (ra_hasreg(ir->r)) {
rset_clear(allow, ir->r);
if (ra_hasspill(ir->s))
ra_save(as, ir, ir->r);
} else if (ra_hasspill(ir->s)) {
irt_setmark(ir->t);
pass2 = 1;
}
if (ir->r == rs) { /* Coalesce matching registers right now. */
ra_free(as, ir->r);
} else if (ra_hasspill(regsp_spill(rs))) {
if (ra_hasreg(ir->r))
pass3 = 1;
} else if (ra_used(ir)) {
sloadins[rs] = (IRRef1)i;
rset_set(live, rs); /* Block live parent register. */
2009-12-08 10:46:35 -08:00
}
}
/* Calculate stack frame adjustment. */
spadj = asm_stack_adjust(as);
2009-12-08 10:46:35 -08:00
spdelta = spadj - (int32_t)as->parent->spadjust;
if (spdelta < 0) { /* Don't shrink the stack frame. */
spadj = (int32_t)as->parent->spadjust;
spdelta = 0;
}
as->T->spadjust = (uint16_t)spadj;
/* Reload spilled target registers. */
if (pass2) {
for (i = as->stopins; i > REF_BASE; i--) {
2009-12-08 10:46:35 -08:00
IRIns *ir = IR(i);
if (irt_ismarked(ir->t)) {
RegSet mask;
Reg r;
RegSP rs;
irt_clearmark(ir->t);
rs = as->parentmap[ir->op1];
if (!ra_hasspill(regsp_spill(rs)))
ra_sethint(ir->r, rs); /* Hint may be gone, set it again. */
else if (sps_scale(regsp_spill(rs))+spdelta == sps_scale(ir->s))
continue; /* Same spill slot, do nothing. */
mask = (irt_isnum(ir->t) ? RSET_FPR : RSET_GPR) & allow;
if (mask == RSET_EMPTY)
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
r = ra_allocref(as, i, mask);
ra_save(as, ir, r);
rset_clear(allow, r);
if (r == rs) { /* Coalesce matching registers right now. */
ra_free(as, r);
rset_clear(live, r);
} else if (ra_hasspill(regsp_spill(rs))) {
pass3 = 1;
}
checkmclim(as);
}
}
}
/* Store trace number and adjust stack frame relative to the parent. */
emit_setgli(as, vmstate, (int32_t)as->T->traceno);
emit_addptr(as, RID_ESP|REX_64, -spdelta);
2009-12-08 10:46:35 -08:00
/* Restore target registers from parent spill slots. */
if (pass3) {
RegSet work = ~as->freeset & RSET_ALL;
while (work) {
Reg r = rset_pickbot(work);
IRIns *ir = IR(regcost_ref(as->cost[r]));
RegSP rs = as->parentmap[ir->op1];
rset_clear(work, r);
if (ra_hasspill(regsp_spill(rs))) {
int32_t ofs = sps_scale(regsp_spill(rs));
ra_free(as, r);
if (r < RID_MAX_GPR)
emit_rmro(as, XO_MOV, REX_64IR(ir, r), RID_ESP, ofs);
else
emit_rmro(as, XMM_MOVRM(as), r, RID_ESP, ofs);
2009-12-08 10:46:35 -08:00
checkmclim(as);
}
}
}
/* Shuffle registers to match up target regs with parent regs. */
for (;;) {
RegSet work;
/* Repeatedly coalesce free live registers by moving to their target. */
while ((work = as->freeset & live) != RSET_EMPTY) {
Reg rp = rset_pickbot(work);
IRIns *ir = IR(sloadins[rp]);
rset_clear(live, rp);
rset_clear(allow, rp);
ra_free(as, ir->r);
ra_movrr(as, ir, ir->r, rp);
2009-12-08 10:46:35 -08:00
checkmclim(as);
}
/* We're done if no live registers remain. */
if (live == RSET_EMPTY)
break;
/* Break cycles by renaming one target to a temp. register. */
if (live & RSET_GPR) {
RegSet tmpset = as->freeset & ~live & allow & RSET_GPR;
if (tmpset == RSET_EMPTY)
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
ra_rename(as, rset_pickbot(live & RSET_GPR), rset_pickbot(tmpset));
}
if (live & RSET_FPR) {
RegSet tmpset = as->freeset & ~live & allow & RSET_FPR;
if (tmpset == RSET_EMPTY)
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
ra_rename(as, rset_pickbot(live & RSET_FPR), rset_pickbot(tmpset));
}
checkmclim(as);
/* Continue with coalescing to fix up the broken cycle(s). */
}
/* Inherit top stack slot already checked by parent trace. */
as->T->topslot = as->parent->topslot;
if (as->topslot > as->T->topslot) { /* Need to check for higher slot? */
as->T->topslot = (uint8_t)as->topslot; /* Remember for child traces. */
/* Reuse the parent exit in the context of the parent trace. */
asm_stack_check(as, as->topslot, pbase, allow & RSET_GPR, as->J->exitno);
}
2009-12-08 10:46:35 -08:00
}
/* -- Tail of trace ------------------------------------------------------- */
/* Link to another trace. */
static void asm_tail_link(ASMState *as)
2009-12-08 10:46:35 -08:00
{
SnapNo snapno = as->T->nsnap-1; /* Last snapshot. */
SnapShot *snap = &as->T->snap[snapno];
BCReg baseslot = asm_stack_extent(as, snap, &as->topslot);
2009-12-08 10:46:35 -08:00
checkmclim(as);
ra_allocref(as, REF_BASE, RID2RSET(RID_BASE));
if (as->T->link == TRACE_INTERP) {
/* Setup fixed registers for exit to interpreter. */
2010-02-28 21:45:30 -08:00
const BCIns *pc = snap_pc(as->T->snapmap[snap->mapofs + snap->nent]);
int32_t mres;
2010-02-28 21:45:30 -08:00
if (bc_op(*pc) == BC_JLOOP) { /* NYI: find a better way to do this. */
BCIns *retpc = &traceref(as->J, bc_d(*pc))->startins;
2010-02-28 21:45:30 -08:00
if (bc_isret(bc_op(*retpc)))
pc = retpc;
}
emit_loada(as, RID_DISPATCH, J2GG(as->J)->dispatch);
2010-02-28 21:45:30 -08:00
emit_loada(as, RID_PC, pc);
mres = (int32_t)(snap->nslots - baseslot);
switch (bc_op(*pc)) {
case BC_CALLM: case BC_CALLMT:
mres -= (int32_t)(1 + bc_a(*pc) + bc_c(*pc)); break;
case BC_RETM: mres -= (int32_t)(bc_a(*pc) + bc_d(*pc)); break;
case BC_TSETM: mres -= (int32_t)bc_a(*pc); break;
default: if (bc_op(*pc) < BC_FUNCF) mres = 0; break;
}
emit_loadi(as, RID_RET, mres); /* Return MULTRES or 0. */
} else if (baseslot) {
2009-12-08 10:46:35 -08:00
/* Save modified BASE for linking to trace with higher start frame. */
emit_setgl(as, RID_BASE, jit_base);
}
emit_addptr(as, RID_BASE, 8*(int32_t)baseslot);
2009-12-08 10:46:35 -08:00
/* Sync the interpreter state with the on-trace state. */
asm_stack_restore(as, snap);
/* Root traces that grow the stack need to check the stack at the end. */
if (!as->parent && as->topslot)
asm_stack_check(as, as->topslot, RID_BASE, as->freeset & RSET_GPR, snapno);
2009-12-08 10:46:35 -08:00
}
/* Fixup the tail code. */
static void asm_tail_fixup(ASMState *as, TraceNo lnk)
{
/* Note: don't use as->mcp swap + emit_*: emit_op overwrites more bytes. */
MCode *p = as->mctop;
MCode *target, *q;
int32_t spadj = as->T->spadjust;
if (spadj == 0) {
p -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0);
2009-12-08 10:46:35 -08:00
} else {
MCode *p1;
/* Patch stack adjustment. */
if (checki8(spadj)) {
p -= 3;
p1 = p-6;
*p1 = (MCode)spadj;
} else {
p1 = p-9;
*(int32_t *)p1 = spadj;
}
if ((as->flags & JIT_F_LEA_AGU)) {
#if LJ_64
p1[-4] = 0x48;
#endif
2009-12-08 10:46:35 -08:00
p1[-3] = (MCode)XI_LEA;
p1[-2] = MODRM(checki8(spadj) ? XM_OFS8 : XM_OFS32, RID_ESP, RID_ESP);
p1[-1] = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
} else {
#if LJ_64
p1[-3] = 0x48;
#endif
2009-12-08 10:46:35 -08:00
p1[-2] = (MCode)(checki8(spadj) ? XI_ARITHi8 : XI_ARITHi);
p1[-1] = MODRM(XM_REG, XOg_ADD, RID_ESP);
}
}
/* Patch exit branch. */
target = lnk == TRACE_INTERP ? (MCode *)lj_vm_exit_interp :
traceref(as->J, lnk)->mcode;
2010-02-23 16:29:11 -08:00
*(int32_t *)(p-4) = jmprel(p, target);
2009-12-08 10:46:35 -08:00
p[-5] = XI_JMP;
/* Drop unused mcode tail. Fill with NOPs to make the prefetcher happy. */
for (q = as->mctop-1; q >= p; q--)
*q = XI_NOP;
as->mctop = p;
}
/* -- Instruction dispatch ------------------------------------------------ */
/* Assemble a single instruction. */
static void asm_ir(ASMState *as, IRIns *ir)
{
switch ((IROp)ir->o) {
/* Miscellaneous ops. */
case IR_LOOP: asm_loop(as); break;
case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break;
case IR_USE:
ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break;
2009-12-08 10:46:35 -08:00
case IR_PHI: asm_phi(as, ir); break;
case IR_HIOP: asm_hiop(as, ir); break;
2009-12-08 10:46:35 -08:00
/* Guarded assertions. */
case IR_LT: case IR_GE: case IR_LE: case IR_GT:
case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT:
case IR_EQ: case IR_NE: case IR_ABC:
asm_comp(as, ir, asm_compmap[ir->o]);
break;
2009-12-08 10:46:35 -08:00
case IR_RETF: asm_retf(as, ir); break;
2009-12-08 10:46:35 -08:00
/* Bit ops. */
2011-03-07 13:11:01 -08:00
case IR_BNOT: asm_neg_not(as, ir, XOg_NOT); break;
2009-12-08 10:46:35 -08:00
case IR_BSWAP: asm_bitswap(as, ir); break;
case IR_BAND: asm_intarith(as, ir, XOg_AND); break;
case IR_BOR: asm_intarith(as, ir, XOg_OR); break;
case IR_BXOR: asm_intarith(as, ir, XOg_XOR); break;
case IR_BSHL: asm_bitshift(as, ir, XOg_SHL); break;
case IR_BSHR: asm_bitshift(as, ir, XOg_SHR); break;
case IR_BSAR: asm_bitshift(as, ir, XOg_SAR); break;
case IR_BROL: asm_bitshift(as, ir, XOg_ROL); break;
case IR_BROR: asm_bitshift(as, ir, XOg_ROR); break;
/* Arithmetic ops. */
case IR_ADD: asm_add(as, ir); break;
case IR_SUB:
if (irt_isnum(ir->t))
asm_fparith(as, ir, XO_SUBSD);
else /* Note: no need for LEA trick here. i-k is encoded as i+(-k). */
asm_intarith(as, ir, XOg_SUB);
break;
2010-12-06 03:54:00 -08:00
case IR_MUL:
if (irt_isnum(ir->t))
asm_fparith(as, ir, XO_MULSD);
else
asm_intarith(as, ir, XOg_X_IMUL);
2010-12-06 03:54:00 -08:00
break;
case IR_DIV:
#if LJ_64 && LJ_HASFFI
if (!irt_isnum(ir->t))
asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
IRCALL_lj_carith_divu64);
else
#endif
asm_fparith(as, ir, XO_DIVSD);
break;
case IR_MOD:
#if LJ_64 && LJ_HASFFI
asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
IRCALL_lj_carith_modu64);
#else
lua_assert(0);
#endif
break;
2009-12-08 10:46:35 -08:00
case IR_NEG:
if (irt_isnum(ir->t))
asm_fparith(as, ir, XO_XORPS);
else
asm_neg_not(as, ir, XOg_NEG);
break;
2009-12-08 10:46:35 -08:00
case IR_ABS: asm_fparith(as, ir, XO_ANDPS); break;
case IR_MIN:
if (irt_isnum(ir->t))
asm_fparith(as, ir, XO_MINSD);
else
asm_min_max(as, ir, CC_G);
break;
case IR_MAX:
if (irt_isnum(ir->t))
asm_fparith(as, ir, XO_MAXSD);
else
asm_min_max(as, ir, CC_L);
break;
2009-12-08 10:46:35 -08:00
case IR_FPMATH: case IR_ATAN2: case IR_LDEXP:
2009-12-08 10:46:35 -08:00
asm_fpmath(as, ir);
break;
2011-02-02 12:33:11 -08:00
case IR_POW:
#if LJ_64 && LJ_HASFFI
if (!irt_isnum(ir->t))
asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
IRCALL_lj_carith_powu64);
else
#endif
2011-02-02 12:33:11 -08:00
asm_fppowi(as, ir);
break;
2009-12-08 10:46:35 -08:00
/* Overflow-checking arithmetic ops. Note: don't use LEA here! */
case IR_ADDOV: asm_intarith(as, ir, XOg_ADD); break;
case IR_SUBOV: asm_intarith(as, ir, XOg_SUB); break;
case IR_MULOV: asm_intarith(as, ir, XOg_X_IMUL); break;
2009-12-08 10:46:35 -08:00
/* Memory references. */
case IR_AREF: asm_aref(as, ir); break;
case IR_HREF: asm_href(as, ir); break;
case IR_HREFK: asm_hrefk(as, ir); break;
case IR_NEWREF: asm_newref(as, ir); break;
case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break;
case IR_FREF: asm_fref(as, ir); break;
case IR_STRREF: asm_strref(as, ir); break;
/* Loads and stores. */
case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
asm_ahuvload(as, ir);
break;
case IR_FLOAD: case IR_XLOAD: asm_fxload(as, ir); break;
2009-12-08 10:46:35 -08:00
case IR_SLOAD: asm_sload(as, ir); break;
case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break;
2010-12-05 16:48:19 -08:00
case IR_FSTORE: case IR_XSTORE: asm_fxstore(as, ir); break;
2009-12-08 10:46:35 -08:00
/* Allocations. */
case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break;
2009-12-08 10:46:35 -08:00
case IR_TNEW: asm_tnew(as, ir); break;
case IR_TDUP: asm_tdup(as, ir); break;
case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break;
/* Write barriers. */
2009-12-08 10:46:35 -08:00
case IR_TBAR: asm_tbar(as, ir); break;
case IR_OBAR: asm_obar(as, ir); break;
/* Type conversions. */
case IR_TOBIT: asm_tobit(as, ir); break;
case IR_CONV: asm_conv(as, ir); break;
2009-12-08 10:46:35 -08:00
case IR_TOSTR: asm_tostr(as, ir); break;
case IR_STRTO: asm_strto(as, ir); break;
/* Calls. */
case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break;
case IR_CALLXS: asm_callx(as, ir); break;
case IR_CARG: break;
2009-12-08 10:46:35 -08:00
default:
setintV(&as->J->errinfo, ir->o);
lj_trace_err_info(as->J, LJ_TRERR_NYIIR);
break;
}
}
/* Assemble a trace in linear backwards order. */
static void asm_trace(ASMState *as)
{
for (as->curins--; as->curins > as->stopins; as->curins--) {
IRIns *ir = IR(as->curins);
lua_assert(!(LJ_32 && irt_isint64(ir->t))); /* Handled by SPLIT. */
if (!ra_used(ir) && !ir_sideeff(ir) && (as->flags & JIT_F_OPT_DCE))
continue; /* Dead-code elimination can be soooo easy. */
2009-12-08 10:46:35 -08:00
if (irt_isguard(ir->t))
asm_snap_prep(as);
RA_DBG_REF();
checkmclim(as);
asm_ir(as, ir);
}
}
/* -- Trace setup --------------------------------------------------------- */
/* Ensure there are enough stack slots for call arguments. */
static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
IRRef args[CCI_NARGS_MAX];
uint32_t nargs = (int)CCI_NARGS(ci);
int nslots = 0;
asm_collectargs(as, ir, ci, args);
#if LJ_64
if (LJ_ABI_WIN) {
nslots = (int)(nargs*2); /* Only matters for more than four args. */
} else {
uint32_t i;
int ngpr = 6, nfpr = 8;
for (i = 0; i < nargs; i++)
if (irt_isfp(IR(args[i])->t)) {
if (nfpr > 0) nfpr--; else nslots += 2;
} else {
if (ngpr > 0) ngpr--; else nslots += 2;
}
}
if (nslots > as->evenspill) /* Leave room for args in stack slots. */
as->evenspill = nslots;
return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET);
#else
if ((ci->flags & CCI_FASTCALL)) {
lua_assert(nargs <= 2);
} else {
uint32_t i;
for (i = 0; i < nargs; i++)
nslots += irt_isnum(IR(args[i])->t) ? 2 : 1;
if (nslots > as->evenspill) /* Leave room for args. */
as->evenspill = nslots;
}
return irt_isfp(ir->t) ? REGSP_INIT : REGSP_HINT(RID_RET);
#endif
}
2009-12-08 10:46:35 -08:00
/* Clear reg/sp for all instructions and add register hints. */
static void asm_setup_regsp(ASMState *as, GCtrace *T)
2009-12-08 10:46:35 -08:00
{
IRRef i, nins;
int inloop;
ra_setup(as);
2009-12-08 10:46:35 -08:00
/* Clear reg/sp for constants. */
for (i = T->nk; i < REF_BIAS; i++)
IR(i)->prev = REGSP_INIT;
/* REF_BASE is used for implicit references to the BASE register. */
IR(REF_BASE)->prev = REGSP_HINT(RID_BASE);
nins = T->nins;
if (IR(nins-1)->o == IR_RENAME) {
do { nins--; } while (IR(nins-1)->o == IR_RENAME);
T->nins = nins; /* Remove any renames left over from ASM restart. */
}
as->snaprename = nins;
as->snapref = nins;
as->snapno = T->nsnap;
as->stopins = REF_BASE;
as->orignins = nins;
as->curins = nins;
inloop = 0;
as->evenspill = SPS_FIRST;
2009-12-08 10:46:35 -08:00
for (i = REF_FIRST; i < nins; i++) {
IRIns *ir = IR(i);
switch (ir->o) {
case IR_LOOP:
inloop = 1;
break;
/* Set hints for slot loads from a parent trace. */
case IR_SLOAD:
if ((ir->op2 & IRSLOAD_PARENT)) {
RegSP rs = as->parentmap[ir->op1];
lua_assert(regsp_used(rs));
as->stopins = i;
if (!ra_hasspill(regsp_spill(rs)) && ra_hasreg(regsp_reg(rs))) {
ir->prev = (uint16_t)REGSP_HINT(regsp_reg(rs));
continue;
}
}
break;
case IR_CALLXS: {
CCallInfo ci;
ci.flags = asm_callx_flags(as, ir);
ir->prev = asm_setup_call_slots(as, ir, &ci);
if (inloop)
as->modset |= RSET_SCRATCH;
continue;
}
case IR_CALLN: case IR_CALLL: case IR_CALLS: {
const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
ir->prev = asm_setup_call_slots(as, ir, ci);
if (inloop)
as->modset |= (ci->flags & CCI_NOFPRCLOBBER) ?
(RSET_SCRATCH & ~RSET_FPR) : RSET_SCRATCH;
continue;
}
#if LJ_32 && LJ_HASFFI
case IR_HIOP:
if ((ir-1)->o == IR_CALLN) {
ir->prev = REGSP_HINT(RID_RETHI);
continue;
}
break;
#endif
2009-12-08 10:46:35 -08:00
/* C calls evict all scratch regs and return results in RID_RET. */
case IR_SNEW: case IR_XSNEW: case IR_NEWREF:
#if !LJ_64
if (as->evenspill < 3) /* lj_str_new and lj_tab_newkey need 3 args. */
as->evenspill = 3;
#endif
case IR_TNEW: case IR_TDUP: case IR_CNEW: case IR_CNEWI: case IR_TOSTR:
2009-12-08 10:46:35 -08:00
ir->prev = REGSP_HINT(RID_RET);
if (inloop)
as->modset = RSET_SCRATCH;
continue;
case IR_STRTO: case IR_OBAR:
if (inloop)
as->modset = RSET_SCRATCH;
break;
2011-02-02 12:33:11 -08:00
case IR_POW:
if (irt_isnum(ir->t)) {
ir->prev = REGSP_HINT(RID_XMM0);
if (inloop)
as->modset |= RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX);
continue;
}
/* fallthrough */
case IR_DIV: case IR_MOD:
#if LJ_64 && LJ_HASFFI
if (!irt_isnum(ir->t)) {
ir->prev = REGSP_HINT(RID_RET);
if (inloop)
as->modset |= (RSET_SCRATCH & RSET_GPR);
continue;
}
#endif
break;
case IR_FPMATH:
if (ir->op2 == IRFPM_EXP2) { /* May be joined to lj_vm_pow_sse. */
ir->prev = REGSP_HINT(RID_XMM0);
#if !LJ_64
if (as->evenspill < 4) /* Leave room for 16 byte scratch area. */
as->evenspill = 4;
#endif
if (inloop)
as->modset |= RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX);
continue;
} else if (ir->op2 <= IRFPM_TRUNC && !(as->flags & JIT_F_SSE4_1)) {
ir->prev = REGSP_HINT(RID_XMM0);
if (inloop)
as->modset |= RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX);
continue;
}
break;
2009-12-08 10:46:35 -08:00
/* Non-constant shift counts need to be in RID_ECX. */
case IR_BSHL: case IR_BSHR: case IR_BSAR: case IR_BROL: case IR_BROR:
if (!irref_isk(ir->op2) && !ra_hashint(IR(ir->op2)->r)) {
2009-12-08 10:46:35 -08:00
IR(ir->op2)->r = REGSP_HINT(RID_ECX);
if (inloop)
rset_set(as->modset, RID_ECX);
}
2009-12-08 10:46:35 -08:00
break;
/* Do not propagate hints across type conversions. */
case IR_CONV: case IR_TOBIT:
2009-12-08 10:46:35 -08:00
break;
default:
/* Propagate hints across likely 'op reg, imm' or 'op reg'. */
if (irref_isk(ir->op2) && !irref_isk(ir->op1)) {
ir->prev = IR(ir->op1)->prev;
continue;
}
break;
}
ir->prev = REGSP_INIT;
}
if ((as->evenspill & 1))
as->oddspill = as->evenspill++;
else
as->oddspill = 0;
2009-12-08 10:46:35 -08:00
}
/* -- Assembler core ------------------------------------------------------ */
/* Define this if you want to run LuaJIT with Valgrind. */
#ifdef LUAJIT_USE_VALGRIND
#include <valgrind/valgrind.h>
#define VG_INVALIDATE(p, sz) VALGRIND_DISCARD_TRANSLATIONS(p, sz)
#else
#define VG_INVALIDATE(p, sz) ((void)0)
#endif
/* Assemble a trace. */
void lj_asm_trace(jit_State *J, GCtrace *T)
2009-12-08 10:46:35 -08:00
{
ASMState as_;
ASMState *as = &as_;
/* Setup initial state. Copy some fields to reduce indirections. */
as->J = J;
as->T = T;
as->ir = T->ir;
as->flags = J->flags;
as->loopref = J->loopref;
as->realign = NULL;
as->loopinv = 0;
if (J->parent) {
as->parent = traceref(J, J->parent);
2009-12-08 10:46:35 -08:00
lj_snap_regspmap(as->parentmap, as->parent, J->exitno);
} else {
as->parent = NULL;
}
as->mctop = lj_mcode_reserve(J, &as->mcbot); /* Reserve MCode memory. */
as->mcp = as->mctop;
as->mclim = as->mcbot + MCLIM_REDZONE;
asm_exitstub_setup(as, T->nsnap);
do {
as->mcp = as->mctop;
as->curins = T->nins;
RA_DBG_START();
RA_DBGX((as, "===== STOP ====="));
/* Realign and leave room for backwards loop branch or exit branch. */
if (as->realign) {
int i = ((int)(intptr_t)as->realign) & 15;
MCode *p = as->mctop;
/* Fill unused mcode tail with NOPs to make the prefetcher happy. */
while (i-- > 0)
*--p = XI_NOP;
as->mctop = p;
as->mcp = p - (as->loopinv ? 5 : 2); /* Space for short/near jmp. */
} else {
as->mcp = as->mctop - 5; /* Space for exit branch (near jmp). */
}
as->invmcp = as->mcp;
as->mcloop = NULL;
as->testmcp = NULL;
as->topslot = 0;
as->gcsteps = 0;
as->sectref = as->loopref;
as->fuseref = (as->flags & JIT_F_OPT_FUSE) ? as->loopref : FUSE_DISABLED;
/* Setup register allocation. */
asm_setup_regsp(as, T);
if (!as->loopref) {
/* Leave room for ESP adjustment: add esp, imm or lea esp, [esp+imm] */
as->mcp -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0);
2009-12-08 10:46:35 -08:00
as->invmcp = NULL;
asm_tail_link(as);
2009-12-08 10:46:35 -08:00
}
asm_trace(as);
} while (as->realign); /* Retry in case the MCode needs to be realigned. */
RA_DBG_REF();
checkmclim(as);
if (as->gcsteps) {
as->curins = as->T->snap[0].ref;
asm_snap_prep(as); /* The GC check is a guard. */
asm_gc_check(as);
}
ra_evictk(as);
if (as->parent)
2009-12-08 10:46:35 -08:00
asm_head_side(as);
else
asm_head_root(as);
asm_phi_fixup(as);
RA_DBGX((as, "===== START ===="));
RA_DBG_FLUSH();
if (as->freeset != RSET_ALL)
lj_trace_err(as->J, LJ_TRERR_BADRA); /* Ouch! Should never happen. */
/* Set trace entry point before fixing up tail to allow link to self. */
T->mcode = as->mcp;
T->mcloop = as->mcloop ? (MSize)(as->mcloop - as->mcp) : 0;
if (!as->loopref)
asm_tail_fixup(as, T->link); /* Note: this may change as->mctop! */
T->szmcode = (MSize)(as->mctop - as->mcp);
VG_INVALIDATE(T->mcode, T->szmcode);
}
/* Patch exit jumps of existing machine code to a new target. */
void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
2009-12-08 10:46:35 -08:00
{
MCode *p = T->mcode;
MCode *mcarea = lj_mcode_patch(J, p, 0);
MSize len = T->szmcode;
MCode *px = exitstub_addr(J, exitno) - 6;
MCode *pe = p+len-6;
uint32_t stateaddr = u32ptr(&J2G(J)->vmstate);
2009-12-08 10:46:35 -08:00
if (len > 5 && p[len-5] == XI_JMP && p+len-6 + *(int32_t *)(p+len-4) == px)
2010-02-23 16:29:11 -08:00
*(int32_t *)(p+len-4) = jmprel(p+len, target);
/* Do not patch parent exit for a stack check. Skip beyond vmstate update. */
for (; p < pe; p++)
if (*(uint32_t *)(p+(LJ_64 ? 3 : 2)) == stateaddr && p[0] == XI_MOVmi) {
p += LJ_64 ? 11 : 10;
break;
}
lua_assert(p < pe);
2009-12-08 10:46:35 -08:00
for (; p < pe; p++) {
if ((*(uint16_t *)p & 0xf0ff) == 0x800f && p + *(int32_t *)(p+2) == px) {
2010-02-23 16:29:11 -08:00
*(int32_t *)(p+2) = jmprel(p+6, target);
2009-12-08 10:46:35 -08:00
p += 5;
}
}
lj_mcode_patch(J, mcarea, 1);
VG_INVALIDATE(T->mcode, T->szmcode);
}
#undef IR
#endif