384 lines
11 KiB
C++
384 lines
11 KiB
C++
/*
|
|
Minetest
|
|
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "tool.h"
|
|
#include "itemdef.h"
|
|
#include "itemgroup.h"
|
|
#include "log.h"
|
|
#include "inventory.h"
|
|
#include "exceptions.h"
|
|
#include "convert_json.h"
|
|
#include "util/serialize.h"
|
|
#include "util/numeric.h"
|
|
|
|
void ToolGroupCap::toJson(Json::Value &object) const
|
|
{
|
|
object["maxlevel"] = maxlevel;
|
|
object["uses"] = uses;
|
|
|
|
Json::Value times_object;
|
|
for (auto time : times)
|
|
times_object[time.first] = time.second;
|
|
object["times"] = times_object;
|
|
}
|
|
|
|
void ToolGroupCap::fromJson(const Json::Value &json)
|
|
{
|
|
if (json.isObject()) {
|
|
if (json["maxlevel"].isInt())
|
|
maxlevel = json["maxlevel"].asInt();
|
|
if (json["uses"].isInt())
|
|
uses = json["uses"].asInt();
|
|
const Json::Value ×_object = json["times"];
|
|
if (times_object.isArray()) {
|
|
Json::ArrayIndex size = times_object.size();
|
|
for (Json::ArrayIndex i = 0; i < size; ++i)
|
|
if (times_object[i].isDouble())
|
|
times[i] = times_object[i].asFloat();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ToolCapabilities::serialize(std::ostream &os, u16 protocol_version) const
|
|
{
|
|
if (protocol_version >= 38)
|
|
writeU8(os, 5);
|
|
else
|
|
writeU8(os, 4); // proto == 37
|
|
writeF32(os, full_punch_interval);
|
|
writeS16(os, max_drop_level);
|
|
writeU32(os, groupcaps.size());
|
|
for (const auto &groupcap : groupcaps) {
|
|
const std::string *name = &groupcap.first;
|
|
const ToolGroupCap *cap = &groupcap.second;
|
|
os << serializeString16(*name);
|
|
writeS16(os, cap->uses);
|
|
writeS16(os, cap->maxlevel);
|
|
writeU32(os, cap->times.size());
|
|
for (const auto &time : cap->times) {
|
|
writeS16(os, time.first);
|
|
writeF32(os, time.second);
|
|
}
|
|
}
|
|
|
|
writeU32(os, damageGroups.size());
|
|
|
|
for (const auto &damageGroup : damageGroups) {
|
|
os << serializeString16(damageGroup.first);
|
|
writeS16(os, damageGroup.second);
|
|
}
|
|
|
|
if (protocol_version >= 38)
|
|
writeU16(os, rangelim(punch_attack_uses, 0, U16_MAX));
|
|
}
|
|
|
|
void ToolCapabilities::deSerialize(std::istream &is)
|
|
{
|
|
int version = readU8(is);
|
|
if (version < 4)
|
|
throw SerializationError("unsupported ToolCapabilities version");
|
|
|
|
full_punch_interval = readF32(is);
|
|
max_drop_level = readS16(is);
|
|
groupcaps.clear();
|
|
u32 groupcaps_size = readU32(is);
|
|
for (u32 i = 0; i < groupcaps_size; i++) {
|
|
std::string name = deSerializeString16(is);
|
|
ToolGroupCap cap;
|
|
cap.uses = readS16(is);
|
|
cap.maxlevel = readS16(is);
|
|
u32 times_size = readU32(is);
|
|
for(u32 i = 0; i < times_size; i++) {
|
|
int level = readS16(is);
|
|
float time = readF32(is);
|
|
cap.times[level] = time;
|
|
}
|
|
groupcaps[name] = cap;
|
|
}
|
|
|
|
u32 damage_groups_size = readU32(is);
|
|
for (u32 i = 0; i < damage_groups_size; i++) {
|
|
std::string name = deSerializeString16(is);
|
|
s16 rating = readS16(is);
|
|
damageGroups[name] = rating;
|
|
}
|
|
|
|
if (version >= 5)
|
|
punch_attack_uses = readU16(is);
|
|
}
|
|
|
|
void ToolCapabilities::serializeJson(std::ostream &os) const
|
|
{
|
|
Json::Value root;
|
|
root["full_punch_interval"] = full_punch_interval;
|
|
root["max_drop_level"] = max_drop_level;
|
|
root["punch_attack_uses"] = punch_attack_uses;
|
|
|
|
Json::Value groupcaps_object;
|
|
for (const auto &groupcap : groupcaps) {
|
|
groupcap.second.toJson(groupcaps_object[groupcap.first]);
|
|
}
|
|
root["groupcaps"] = groupcaps_object;
|
|
|
|
Json::Value damage_groups_object;
|
|
DamageGroup::const_iterator dgiter;
|
|
for (dgiter = damageGroups.begin(); dgiter != damageGroups.end(); ++dgiter) {
|
|
damage_groups_object[dgiter->first] = dgiter->second;
|
|
}
|
|
root["damage_groups"] = damage_groups_object;
|
|
|
|
fastWriteJson(root, os);
|
|
}
|
|
|
|
void ToolCapabilities::deserializeJson(std::istream &is)
|
|
{
|
|
Json::Value root;
|
|
is >> root;
|
|
if (root.isObject()) {
|
|
if (root["full_punch_interval"].isDouble())
|
|
full_punch_interval = root["full_punch_interval"].asFloat();
|
|
if (root["max_drop_level"].isInt())
|
|
max_drop_level = root["max_drop_level"].asInt();
|
|
if (root["punch_attack_uses"].isInt())
|
|
punch_attack_uses = root["punch_attack_uses"].asInt();
|
|
|
|
Json::Value &groupcaps_object = root["groupcaps"];
|
|
if (groupcaps_object.isObject()) {
|
|
Json::ValueIterator gciter;
|
|
for (gciter = groupcaps_object.begin();
|
|
gciter != groupcaps_object.end(); ++gciter) {
|
|
ToolGroupCap groupcap;
|
|
groupcap.fromJson(*gciter);
|
|
groupcaps[gciter.key().asString()] = groupcap;
|
|
}
|
|
}
|
|
|
|
Json::Value &damage_groups_object = root["damage_groups"];
|
|
if (damage_groups_object.isObject()) {
|
|
Json::ValueIterator dgiter;
|
|
for (dgiter = damage_groups_object.begin();
|
|
dgiter != damage_groups_object.end(); ++dgiter) {
|
|
Json::Value &value = *dgiter;
|
|
if (value.isInt())
|
|
damageGroups[dgiter.key().asString()] =
|
|
value.asInt();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
u32 calculateResultWear(const u32 uses, const u16 initial_wear)
|
|
{
|
|
if (uses == 0) {
|
|
// Trivial case: Infinite uses
|
|
return 0;
|
|
}
|
|
/* Finite uses. This is not trivial,
|
|
as the maximum wear is not neatly evenly divisible by
|
|
most possible uses numbers. For example, for 128
|
|
uses, the calculation of wear is trivial, as
|
|
65536 / 128 uses = 512 wear,
|
|
so the tool will get 512 wear 128 times in its lifetime.
|
|
But for a number like 130, this does not work:
|
|
65536 / 130 uses = 504.123... wear.
|
|
Since wear must be an integer, we will get
|
|
504*130 = 65520, which would lead to the wrong number
|
|
of uses.
|
|
|
|
Instead, we partition the "wear range" into blocks:
|
|
A block represents a single use and can be
|
|
of two possible sizes: normal and oversized.
|
|
A normal block is equal to floor(65536 / uses).
|
|
An oversized block is a normal block plus 1.
|
|
Then we determine how many oversized and normal
|
|
blocks we need and finally, whether we add
|
|
the normal wear or the oversized wear.
|
|
|
|
Example for 130 uses:
|
|
* Normal wear = 504
|
|
* Number of normal blocks = 114
|
|
* Oversized wear = 505
|
|
* Number of oversized blocks = 16
|
|
|
|
If we add everything together, we get:
|
|
114*504 + 16*505 = 65536
|
|
*/
|
|
u32 result_wear;
|
|
u32 wear_normal = ((U16_MAX+1) / uses);
|
|
// Will be non-zero if its not evenly divisible
|
|
u16 blocks_oversize = (U16_MAX+1) % uses;
|
|
// Whether to add one extra wear point in case
|
|
// of oversized wear.
|
|
u16 wear_extra = 0;
|
|
if (blocks_oversize > 0) {
|
|
u16 blocks_normal = uses - blocks_oversize;
|
|
/* When the wear has reached this value, we
|
|
know that wear_normal has been applied
|
|
for blocks_normal times, therefore,
|
|
only oversized blocks remain.
|
|
This also implies the raw tool wear number
|
|
increases a bit faster after this point,
|
|
but this should be barely noticable by the
|
|
player.
|
|
*/
|
|
u16 wear_extra_at = blocks_normal * wear_normal;
|
|
if (initial_wear >= wear_extra_at) {
|
|
wear_extra = 1;
|
|
}
|
|
}
|
|
result_wear = wear_normal + wear_extra;
|
|
return result_wear;
|
|
}
|
|
|
|
DigParams getDigParams(const ItemGroupList &groups,
|
|
const ToolCapabilities *tp,
|
|
const u16 initial_wear)
|
|
{
|
|
|
|
// Group dig_immediate defaults to fixed time and no wear
|
|
if (tp->groupcaps.find("dig_immediate") == tp->groupcaps.cend()) {
|
|
switch (itemgroup_get(groups, "dig_immediate")) {
|
|
case 2:
|
|
return DigParams(true, 0.5, 0, "dig_immediate");
|
|
case 3:
|
|
return DigParams(true, 0, 0, "dig_immediate");
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Values to be returned (with a bit of conversion)
|
|
bool result_diggable = false;
|
|
float result_time = 0.0;
|
|
u32 result_wear = 0;
|
|
std::string result_main_group;
|
|
|
|
int level = itemgroup_get(groups, "level");
|
|
for (const auto &groupcap : tp->groupcaps) {
|
|
const ToolGroupCap &cap = groupcap.second;
|
|
|
|
int leveldiff = cap.maxlevel - level;
|
|
if (leveldiff < 0)
|
|
continue;
|
|
|
|
const std::string &groupname = groupcap.first;
|
|
float time = 0;
|
|
int rating = itemgroup_get(groups, groupname);
|
|
bool time_exists = cap.getTime(rating, &time);
|
|
if (!time_exists)
|
|
continue;
|
|
|
|
if (leveldiff > 1)
|
|
time /= leveldiff;
|
|
if (!result_diggable || time < result_time) {
|
|
result_time = time;
|
|
result_diggable = true;
|
|
// The actual number of uses increases
|
|
// exponentially with leveldiff.
|
|
// If the levels are equal, real_uses equals cap.uses.
|
|
u32 real_uses = cap.uses * pow(3.0, leveldiff);
|
|
real_uses = MYMIN(real_uses, U16_MAX);
|
|
result_wear = calculateResultWear(real_uses, initial_wear);
|
|
result_main_group = groupname;
|
|
}
|
|
}
|
|
|
|
return DigParams(result_diggable, result_time, result_wear, result_main_group);
|
|
}
|
|
|
|
HitParams getHitParams(const ItemGroupList &armor_groups,
|
|
const ToolCapabilities *tp, float time_from_last_punch,
|
|
u16 initial_wear)
|
|
{
|
|
s32 damage = 0;
|
|
float result_wear = 0.0f;
|
|
float punch_interval_multiplier =
|
|
rangelim(time_from_last_punch / tp->full_punch_interval, 0.0f, 1.0f);
|
|
|
|
for (const auto &damageGroup : tp->damageGroups) {
|
|
s16 armor = itemgroup_get(armor_groups, damageGroup.first);
|
|
damage += damageGroup.second * punch_interval_multiplier * armor / 100.0;
|
|
}
|
|
|
|
if (tp->punch_attack_uses > 0) {
|
|
result_wear = calculateResultWear(tp->punch_attack_uses, initial_wear);
|
|
result_wear *= punch_interval_multiplier;
|
|
}
|
|
// Keep damage in sane bounds for simplicity
|
|
damage = rangelim(damage, -U16_MAX, U16_MAX);
|
|
|
|
u32 wear_i = (u32) result_wear;
|
|
return {damage, wear_i};
|
|
}
|
|
|
|
HitParams getHitParams(const ItemGroupList &armor_groups,
|
|
const ToolCapabilities *tp)
|
|
{
|
|
return getHitParams(armor_groups, tp, 1000000);
|
|
}
|
|
|
|
PunchDamageResult getPunchDamage(
|
|
const ItemGroupList &armor_groups,
|
|
const ToolCapabilities *toolcap,
|
|
const ItemStack *punchitem,
|
|
float time_from_last_punch,
|
|
u16 initial_wear
|
|
){
|
|
bool do_hit = true;
|
|
{
|
|
if (do_hit && punchitem) {
|
|
if (itemgroup_get(armor_groups, "punch_operable") &&
|
|
(toolcap == NULL || punchitem->name.empty()))
|
|
do_hit = false;
|
|
}
|
|
|
|
if (do_hit) {
|
|
if(itemgroup_get(armor_groups, "immortal"))
|
|
do_hit = false;
|
|
}
|
|
}
|
|
|
|
PunchDamageResult result;
|
|
if(do_hit)
|
|
{
|
|
HitParams hitparams = getHitParams(armor_groups, toolcap,
|
|
time_from_last_punch,
|
|
punchitem->wear);
|
|
result.did_punch = true;
|
|
result.wear = hitparams.wear;
|
|
result.damage = hitparams.hp;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
f32 getToolRange(const ItemDefinition &def_selected, const ItemDefinition &def_hand)
|
|
{
|
|
float max_d = def_selected.range;
|
|
float max_d_hand = def_hand.range;
|
|
|
|
if (max_d < 0 && max_d_hand >= 0)
|
|
max_d = max_d_hand;
|
|
else if (max_d < 0)
|
|
max_d = 4.0f;
|
|
|
|
return max_d;
|
|
}
|
|
|