minetest/src/voxelalgorithms.cpp
Dániel Juhász 3face01a20 Node definition manager refactor (#7016)
* Rename IWritableNodeDefManager to NodeDefManager
* Make INodeDefManager functions const
* Use "const *NodeDefManager" instead of "*INodeDefManager"
* Remove unused INodeDefManager class
* Merge NodeDefManager and CNodeDefManager
* Document NodeDefManager
2018-02-10 21:04:16 +01:00

1330 lines
42 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "voxelalgorithms.h"
#include "nodedef.h"
#include "mapblock.h"
#include "map.h"
namespace voxalgo
{
/*!
* A direction.
* 0=X+
* 1=Y+
* 2=Z+
* 3=Z-
* 4=Y-
* 5=X-
* 6=no direction
* Two directions are opposite only if their sum is 5.
*/
typedef u8 direction;
/*!
* Relative node position.
* This represents a node's position in its map block.
* All coordinates must be between 0 and 15.
*/
typedef v3s16 relative_v3;
/*!
* Position of a map block (block coordinates).
* One block_pos unit is as long as 16 node position units.
*/
typedef v3s16 mapblock_v3;
//! Contains information about a node whose light is about to change.
struct ChangingLight {
//! Relative position of the node in its map block.
relative_v3 rel_position;
//! Position of the node's block.
mapblock_v3 block_position;
//! Pointer to the node's block.
MapBlock *block = NULL;
/*!
* Direction from the node that caused this node's changing
* to this node.
*/
direction source_direction = 6;
ChangingLight() = default;
ChangingLight(const relative_v3 &rel_pos, const mapblock_v3 &block_pos,
MapBlock *b, direction source_dir) :
rel_position(rel_pos),
block_position(block_pos),
block(b),
source_direction(source_dir)
{}
};
/*!
* A fast, priority queue-like container to contain ChangingLights.
* The ChangingLights are ordered by the given light levels.
* The brightest ChangingLight is returned first.
*/
struct LightQueue {
//! For each light level there is a vector.
std::vector<ChangingLight> lights[LIGHT_SUN + 1];
//! Light of the brightest ChangingLight in the queue.
u8 max_light;
/*!
* Creates a LightQueue.
* \param reserve for each light level that many slots are reserved.
*/
LightQueue(size_t reserve)
{
max_light = LIGHT_SUN;
for (u8 i = 0; i <= LIGHT_SUN; i++) {
lights[i].reserve(reserve);
}
}
/*!
* Returns the next brightest ChangingLight and
* removes it from the queue.
* If there were no elements in the queue, the given parameters
* remain unmodified.
* \param light light level of the popped ChangingLight
* \param data the ChangingLight that was popped
* \returns true if there was a ChangingLight in the queue.
*/
bool next(u8 &light, ChangingLight &data)
{
while (lights[max_light].empty()) {
if (max_light == 0) {
return false;
}
max_light--;
}
light = max_light;
data = lights[max_light].back();
lights[max_light].pop_back();
return true;
}
/*!
* Adds an element to the queue.
* The parameters are the same as in ChangingLight's constructor.
* \param light light level of the ChangingLight
*/
inline void push(u8 light, const relative_v3 &rel_pos,
const mapblock_v3 &block_pos, MapBlock *block,
direction source_dir)
{
assert(light <= LIGHT_SUN);
lights[light].emplace_back(rel_pos, block_pos, block, source_dir);
}
};
/*!
* This type of light queue is for unlighting.
* A node can be pushed in it only if its raw light is zero.
* This prevents pushing nodes twice into this queue.
* The light of the pushed ChangingLight must be the
* light of the node before unlighting it.
*/
typedef LightQueue UnlightQueue;
/*!
* This type of light queue is for spreading lights.
* While spreading lights, all the nodes in it must
* have the same light as the light level the ChangingLights
* were pushed into this queue with. This prevents unnecessary
* re-pushing of the nodes into the queue.
* If a node doesn't let light trough but emits light, it can be added
* too.
*/
typedef LightQueue ReLightQueue;
/*!
* neighbor_dirs[i] points towards
* the direction i.
* See the definition of the type "direction"
*/
const static v3s16 neighbor_dirs[6] = {
v3s16(1, 0, 0), // right
v3s16(0, 1, 0), // top
v3s16(0, 0, 1), // back
v3s16(0, 0, -1), // front
v3s16(0, -1, 0), // bottom
v3s16(-1, 0, 0), // left
};
/*!
* Transforms the given map block offset by one node towards
* the specified direction.
* \param dir the direction of the transformation
* \param rel_pos the node's relative position in its map block
* \param block_pos position of the node's block
*/
bool step_rel_block_pos(direction dir, relative_v3 &rel_pos,
mapblock_v3 &block_pos)
{
switch (dir) {
case 0:
if (rel_pos.X < MAP_BLOCKSIZE - 1) {
rel_pos.X++;
} else {
rel_pos.X = 0;
block_pos.X++;
return true;
}
break;
case 1:
if (rel_pos.Y < MAP_BLOCKSIZE - 1) {
rel_pos.Y++;
} else {
rel_pos.Y = 0;
block_pos.Y++;
return true;
}
break;
case 2:
if (rel_pos.Z < MAP_BLOCKSIZE - 1) {
rel_pos.Z++;
} else {
rel_pos.Z = 0;
block_pos.Z++;
return true;
}
break;
case 3:
if (rel_pos.Z > 0) {
rel_pos.Z--;
} else {
rel_pos.Z = MAP_BLOCKSIZE - 1;
block_pos.Z--;
return true;
}
break;
case 4:
if (rel_pos.Y > 0) {
rel_pos.Y--;
} else {
rel_pos.Y = MAP_BLOCKSIZE - 1;
block_pos.Y--;
return true;
}
break;
case 5:
if (rel_pos.X > 0) {
rel_pos.X--;
} else {
rel_pos.X = MAP_BLOCKSIZE - 1;
block_pos.X--;
return true;
}
break;
}
return false;
}
/*
* Removes all light that is potentially emitted by the specified
* light sources. These nodes will have zero light.
* Returns all nodes whose light became zero but should be re-lighted.
*
* \param bank the light bank in which the procedure operates
* \param from_nodes nodes whose light is removed
* \param light_sources nodes that should be re-lighted
* \param modified_blocks output, all modified map blocks are added to this
*/
void unspread_light(Map *map, const NodeDefManager *nodemgr, LightBank bank,
UnlightQueue &from_nodes, ReLightQueue &light_sources,
std::map<v3s16, MapBlock*> &modified_blocks)
{
// Stores data popped from from_nodes
u8 current_light;
ChangingLight current;
// Data of the current neighbor
mapblock_v3 neighbor_block_pos;
relative_v3 neighbor_rel_pos;
// A dummy boolean
bool is_valid_position;
// Direction of the brightest neighbor of the node
direction source_dir;
while (from_nodes.next(current_light, current)) {
// For all nodes that need unlighting
// There is no brightest neighbor
source_dir = 6;
// The current node
const MapNode &node = current.block->getNodeNoCheck(
current.rel_position, &is_valid_position);
const ContentFeatures &f = nodemgr->get(node);
// If the node emits light, it behaves like it had a
// brighter neighbor.
u8 brightest_neighbor_light = f.light_source + 1;
for (direction i = 0; i < 6; i++) {
//For each neighbor
// The node that changed this node has already zero light
// and it can't give light to this node
if (current.source_direction + i == 5) {
continue;
}
// Get the neighbor's position and block
neighbor_rel_pos = current.rel_position;
neighbor_block_pos = current.block_position;
MapBlock *neighbor_block;
if (step_rel_block_pos(i, neighbor_rel_pos, neighbor_block_pos)) {
neighbor_block = map->getBlockNoCreateNoEx(neighbor_block_pos);
if (neighbor_block == NULL) {
current.block->setLightingComplete(bank, i, false);
continue;
}
} else {
neighbor_block = current.block;
}
// Get the neighbor itself
MapNode neighbor = neighbor_block->getNodeNoCheck(neighbor_rel_pos,
&is_valid_position);
const ContentFeatures &neighbor_f = nodemgr->get(
neighbor.getContent());
u8 neighbor_light = neighbor.getLightRaw(bank, neighbor_f);
// If the neighbor has at least as much light as this node, then
// it won't lose its light, since it should have been added to
// from_nodes earlier, so its light would be zero.
if (neighbor_f.light_propagates && neighbor_light < current_light) {
// Unlight, but only if the node has light.
if (neighbor_light > 0) {
neighbor.setLight(bank, 0, neighbor_f);
neighbor_block->setNodeNoCheck(neighbor_rel_pos, neighbor);
from_nodes.push(neighbor_light, neighbor_rel_pos,
neighbor_block_pos, neighbor_block, i);
// The current node was modified earlier, so its block
// is in modified_blocks.
if (current.block != neighbor_block) {
modified_blocks[neighbor_block_pos] = neighbor_block;
}
}
} else {
// The neighbor can light up this node.
if (neighbor_light < neighbor_f.light_source) {
neighbor_light = neighbor_f.light_source;
}
if (brightest_neighbor_light < neighbor_light) {
brightest_neighbor_light = neighbor_light;
source_dir = i;
}
}
}
// If the brightest neighbor is able to light up this node,
// then add this node to the output nodes.
if (brightest_neighbor_light > 1 && f.light_propagates) {
brightest_neighbor_light--;
light_sources.push(brightest_neighbor_light, current.rel_position,
current.block_position, current.block,
(source_dir == 6) ? 6 : 5 - source_dir
/* with opposite direction*/);
}
}
}
/*
* Spreads light from the specified starting nodes.
*
* Before calling this procedure, make sure that all ChangingLights
* in light_sources have as much light on the map as they have in
* light_sources (if the queue contains a node multiple times, the brightest
* occurrence counts).
*
* \param bank the light bank in which the procedure operates
* \param light_sources starting nodes
* \param modified_blocks output, all modified map blocks are added to this
*/
void spread_light(Map *map, const NodeDefManager *nodemgr, LightBank bank,
LightQueue &light_sources,
std::map<v3s16, MapBlock*> &modified_blocks)
{
// The light the current node can provide to its neighbors.
u8 spreading_light;
// The ChangingLight for the current node.
ChangingLight current;
// Position of the current neighbor.
mapblock_v3 neighbor_block_pos;
relative_v3 neighbor_rel_pos;
// A dummy boolean.
bool is_valid_position;
while (light_sources.next(spreading_light, current)) {
spreading_light--;
for (direction i = 0; i < 6; i++) {
// This node can't light up its light source
if (current.source_direction + i == 5) {
continue;
}
// Get the neighbor's position and block
neighbor_rel_pos = current.rel_position;
neighbor_block_pos = current.block_position;
MapBlock *neighbor_block;
if (step_rel_block_pos(i, neighbor_rel_pos, neighbor_block_pos)) {
neighbor_block = map->getBlockNoCreateNoEx(neighbor_block_pos);
if (neighbor_block == NULL) {
current.block->setLightingComplete(bank, i, false);
continue;
}
} else {
neighbor_block = current.block;
}
// Get the neighbor itself
MapNode neighbor = neighbor_block->getNodeNoCheck(neighbor_rel_pos,
&is_valid_position);
const ContentFeatures &f = nodemgr->get(neighbor.getContent());
if (f.light_propagates) {
// Light up the neighbor, if it has less light than it should.
u8 neighbor_light = neighbor.getLightRaw(bank, f);
if (neighbor_light < spreading_light) {
neighbor.setLight(bank, spreading_light, f);
neighbor_block->setNodeNoCheck(neighbor_rel_pos, neighbor);
light_sources.push(spreading_light, neighbor_rel_pos,
neighbor_block_pos, neighbor_block, i);
// The current node was modified earlier, so its block
// is in modified_blocks.
if (current.block != neighbor_block) {
modified_blocks[neighbor_block_pos] = neighbor_block;
}
}
}
}
}
}
struct SunlightPropagationUnit{
v2s16 relative_pos;
bool is_sunlit;
SunlightPropagationUnit(v2s16 relpos, bool sunlit):
relative_pos(relpos),
is_sunlit(sunlit)
{}
};
struct SunlightPropagationData{
std::vector<SunlightPropagationUnit> data;
v3s16 target_block;
};
/*!
* Returns true if the node gets sunlight from the
* node above it.
*
* \param pos position of the node.
*/
bool is_sunlight_above(Map *map, v3s16 pos, const NodeDefManager *ndef)
{
bool sunlight = true;
mapblock_v3 source_block_pos;
relative_v3 source_rel_pos;
getNodeBlockPosWithOffset(pos + v3s16(0, 1, 0), source_block_pos,
source_rel_pos);
// If the node above has sunlight, this node also can get it.
MapBlock *source_block = map->getBlockNoCreateNoEx(source_block_pos);
if (source_block == NULL) {
// But if there is no node above, then use heuristics
MapBlock *node_block = map->getBlockNoCreateNoEx(getNodeBlockPos(pos));
if (node_block == NULL) {
sunlight = false;
} else {
sunlight = !node_block->getIsUnderground();
}
} else {
bool is_valid_position;
MapNode above = source_block->getNodeNoCheck(source_rel_pos,
&is_valid_position);
if (is_valid_position) {
if (above.getContent() == CONTENT_IGNORE) {
// Trust heuristics
if (source_block->getIsUnderground()) {
sunlight = false;
}
} else if (above.getLight(LIGHTBANK_DAY, ndef) != LIGHT_SUN) {
// If the node above doesn't have sunlight, this
// node is in shadow.
sunlight = false;
}
}
}
return sunlight;
}
static const LightBank banks[] = { LIGHTBANK_DAY, LIGHTBANK_NIGHT };
void update_lighting_nodes(Map *map,
std::vector<std::pair<v3s16, MapNode> > &oldnodes,
std::map<v3s16, MapBlock*> &modified_blocks)
{
const NodeDefManager *ndef = map->getNodeDefManager();
// For node getter functions
bool is_valid_position;
// Process each light bank separately
for (LightBank bank : banks) {
UnlightQueue disappearing_lights(256);
ReLightQueue light_sources(256);
// Nodes that are brighter than the brightest modified node was
// won't change, since they didn't get their light from a
// modified node.
u8 min_safe_light = 0;
for (std::vector<std::pair<v3s16, MapNode> >::iterator it =
oldnodes.begin(); it < oldnodes.end(); ++it) {
u8 old_light = it->second.getLight(bank, ndef);
if (old_light > min_safe_light) {
min_safe_light = old_light;
}
}
// If only one node changed, even nodes with the same brightness
// didn't get their light from the changed node.
if (oldnodes.size() > 1) {
min_safe_light++;
}
// For each changed node process sunlight and initialize
for (std::vector<std::pair<v3s16, MapNode> >::iterator it =
oldnodes.begin(); it < oldnodes.end(); ++it) {
// Get position and block of the changed node
v3s16 p = it->first;
relative_v3 rel_pos;
mapblock_v3 block_pos;
getNodeBlockPosWithOffset(p, block_pos, rel_pos);
MapBlock *block = map->getBlockNoCreateNoEx(block_pos);
if (block == NULL || block->isDummy()) {
continue;
}
// Get the new node
MapNode n = block->getNodeNoCheck(rel_pos, &is_valid_position);
if (!is_valid_position) {
break;
}
// Light of the old node
u8 old_light = it->second.getLight(bank, ndef);
// Add the block of the added node to modified_blocks
modified_blocks[block_pos] = block;
// Get new light level of the node
u8 new_light = 0;
if (ndef->get(n).light_propagates) {
if (bank == LIGHTBANK_DAY && ndef->get(n).sunlight_propagates
&& is_sunlight_above(map, p, ndef)) {
new_light = LIGHT_SUN;
} else {
new_light = ndef->get(n).light_source;
for (const v3s16 &neighbor_dir : neighbor_dirs) {
v3s16 p2 = p + neighbor_dir;
bool is_valid;
MapNode n2 = map->getNodeNoEx(p2, &is_valid);
if (is_valid) {
u8 spread = n2.getLight(bank, ndef);
// If it is sure that the neighbor won't be
// unlighted, its light can spread to this node.
if (spread > new_light && spread >= min_safe_light) {
new_light = spread - 1;
}
}
}
}
} else {
// If this is an opaque node, it still can emit light.
new_light = ndef->get(n).light_source;
}
if (new_light > 0) {
light_sources.push(new_light, rel_pos, block_pos, block, 6);
}
if (new_light < old_light) {
// The node became opaque or doesn't provide as much
// light as the previous one, so it must be unlighted.
// Add to unlight queue
n.setLight(bank, 0, ndef);
block->setNodeNoCheck(rel_pos, n);
disappearing_lights.push(old_light, rel_pos, block_pos, block,
6);
// Remove sunlight, if there was any
if (bank == LIGHTBANK_DAY && old_light == LIGHT_SUN) {
for (s16 y = p.Y - 1;; y--) {
v3s16 n2pos(p.X, y, p.Z);
MapNode n2;
n2 = map->getNodeNoEx(n2pos, &is_valid_position);
if (!is_valid_position)
break;
// If this node doesn't have sunlight, the nodes below
// it don't have too.
if (n2.getLight(LIGHTBANK_DAY, ndef) != LIGHT_SUN) {
break;
}
// Remove sunlight and add to unlight queue.
n2.setLight(LIGHTBANK_DAY, 0, ndef);
map->setNode(n2pos, n2);
relative_v3 rel_pos2;
mapblock_v3 block_pos2;
getNodeBlockPosWithOffset(n2pos, block_pos2, rel_pos2);
MapBlock *block2 = map->getBlockNoCreateNoEx(
block_pos2);
disappearing_lights.push(LIGHT_SUN, rel_pos2,
block_pos2, block2,
4 /* The node above caused the change */);
}
}
} else if (new_light > old_light) {
// It is sure that the node provides more light than the previous
// one, unlighting is not necessary.
// Propagate sunlight
if (bank == LIGHTBANK_DAY && new_light == LIGHT_SUN) {
for (s16 y = p.Y - 1;; y--) {
v3s16 n2pos(p.X, y, p.Z);
MapNode n2;
n2 = map->getNodeNoEx(n2pos, &is_valid_position);
if (!is_valid_position)
break;
// This should not happen, but if the node has sunlight
// then the iteration should stop.
if (n2.getLight(LIGHTBANK_DAY, ndef) == LIGHT_SUN) {
break;
}
// If the node terminates sunlight, stop.
if (!ndef->get(n2).sunlight_propagates) {
break;
}
relative_v3 rel_pos2;
mapblock_v3 block_pos2;
getNodeBlockPosWithOffset(n2pos, block_pos2, rel_pos2);
MapBlock *block2 = map->getBlockNoCreateNoEx(
block_pos2);
// Mark node for lighting.
light_sources.push(LIGHT_SUN, rel_pos2, block_pos2,
block2, 4);
}
}
}
}
// Remove lights
unspread_light(map, ndef, bank, disappearing_lights, light_sources,
modified_blocks);
// Initialize light values for light spreading.
for (u8 i = 0; i <= LIGHT_SUN; i++) {
const std::vector<ChangingLight> &lights = light_sources.lights[i];
for (std::vector<ChangingLight>::const_iterator it = lights.begin();
it < lights.end(); ++it) {
MapNode n = it->block->getNodeNoCheck(it->rel_position,
&is_valid_position);
n.setLight(bank, i, ndef);
it->block->setNodeNoCheck(it->rel_position, n);
}
}
// Spread lights.
spread_light(map, ndef, bank, light_sources, modified_blocks);
}
}
/*!
* Borders of a map block in relative node coordinates.
* Compatible with type 'direction'.
*/
const VoxelArea block_borders[] = {
VoxelArea(v3s16(15, 0, 0), v3s16(15, 15, 15)), //X+
VoxelArea(v3s16(0, 15, 0), v3s16(15, 15, 15)), //Y+
VoxelArea(v3s16(0, 0, 15), v3s16(15, 15, 15)), //Z+
VoxelArea(v3s16(0, 0, 0), v3s16(15, 15, 0)), //Z-
VoxelArea(v3s16(0, 0, 0), v3s16(15, 0, 15)), //Y-
VoxelArea(v3s16(0, 0, 0), v3s16(0, 15, 15)) //X-
};
/*!
* Returns true if:
* -the node has unloaded neighbors
* -the node doesn't have light
* -the node's light is the same as the maximum of
* its light source and its brightest neighbor minus one.
* .
*/
bool is_light_locally_correct(Map *map, const NodeDefManager *ndef,
LightBank bank, v3s16 pos)
{
bool is_valid_position;
MapNode n = map->getNodeNoEx(pos, &is_valid_position);
const ContentFeatures &f = ndef->get(n);
if (f.param_type != CPT_LIGHT) {
return true;
}
u8 light = n.getLightNoChecks(bank, &f);
assert(f.light_source <= LIGHT_MAX);
u8 brightest_neighbor = f.light_source + 1;
for (const v3s16 &neighbor_dir : neighbor_dirs) {
MapNode n2 = map->getNodeNoEx(pos + neighbor_dir,
&is_valid_position);
u8 light2 = n2.getLight(bank, ndef);
if (brightest_neighbor < light2) {
brightest_neighbor = light2;
}
}
assert(light <= LIGHT_SUN);
return brightest_neighbor == light + 1;
}
void update_block_border_lighting(Map *map, MapBlock *block,
std::map<v3s16, MapBlock*> &modified_blocks)
{
const NodeDefManager *ndef = map->getNodeDefManager();
bool is_valid_position;
for (LightBank bank : banks) {
// Since invalid light is not common, do not allocate
// memory if not needed.
UnlightQueue disappearing_lights(0);
ReLightQueue light_sources(0);
// Get incorrect lights
for (direction d = 0; d < 6; d++) {
// For each direction
// Get neighbor block
v3s16 otherpos = block->getPos() + neighbor_dirs[d];
MapBlock *other = map->getBlockNoCreateNoEx(otherpos);
if (other == NULL) {
continue;
}
// Only update if lighting was not completed.
if (block->isLightingComplete(bank, d) &&
other->isLightingComplete(bank, 5 - d))
continue;
// Reset flags
block->setLightingComplete(bank, d, true);
other->setLightingComplete(bank, 5 - d, true);
// The two blocks and their connecting surfaces
MapBlock *blocks[] = {block, other};
VoxelArea areas[] = {block_borders[d], block_borders[5 - d]};
// For both blocks
for (u8 blocknum = 0; blocknum < 2; blocknum++) {
MapBlock *b = blocks[blocknum];
VoxelArea a = areas[blocknum];
// For all nodes
for (s32 x = a.MinEdge.X; x <= a.MaxEdge.X; x++)
for (s32 z = a.MinEdge.Z; z <= a.MaxEdge.Z; z++)
for (s32 y = a.MinEdge.Y; y <= a.MaxEdge.Y; y++) {
MapNode n = b->getNodeNoCheck(x, y, z,
&is_valid_position);
u8 light = n.getLight(bank, ndef);
// Sunlight is fixed
if (light < LIGHT_SUN) {
// Unlight if not correct
if (!is_light_locally_correct(map, ndef, bank,
v3s16(x, y, z) + b->getPosRelative())) {
// Initialize for unlighting
n.setLight(bank, 0, ndef);
b->setNodeNoCheck(x, y, z, n);
modified_blocks[b->getPos()]=b;
disappearing_lights.push(light,
relative_v3(x, y, z), b->getPos(), b,
6);
}
}
}
}
}
// Remove lights
unspread_light(map, ndef, bank, disappearing_lights, light_sources,
modified_blocks);
// Initialize light values for light spreading.
for (u8 i = 0; i <= LIGHT_SUN; i++) {
const std::vector<ChangingLight> &lights = light_sources.lights[i];
for (std::vector<ChangingLight>::const_iterator it = lights.begin();
it < lights.end(); ++it) {
MapNode n = it->block->getNodeNoCheck(it->rel_position,
&is_valid_position);
n.setLight(bank, i, ndef);
it->block->setNodeNoCheck(it->rel_position, n);
}
}
// Spread lights.
spread_light(map, ndef, bank, light_sources, modified_blocks);
}
}
/*!
* Resets the lighting of the given VoxelManipulator to
* complete darkness and full sunlight.
* Operates in one map sector.
*
* \param offset contains the least x and z node coordinates
* of the map sector.
* \param light incoming sunlight, light[x][z] is true if there
* is sunlight above the voxel manipulator at the given x-z coordinates.
* The array's indices are relative node coordinates in the sector.
* After the procedure returns, this contains outgoing light at
* the bottom of the voxel manipulator.
*/
void fill_with_sunlight(MMVManip *vm, const NodeDefManager *ndef, v2s16 offset,
bool light[MAP_BLOCKSIZE][MAP_BLOCKSIZE])
{
// Distance in array between two nodes on top of each other.
s16 ystride = vm->m_area.getExtent().X;
// Cache the ignore node.
MapNode ignore = MapNode(CONTENT_IGNORE);
// For each column of nodes:
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++) {
// Position of the column on the map.
v2s16 realpos = offset + v2s16(x, z);
// Array indices in the voxel manipulator
s32 maxindex = vm->m_area.index(realpos.X, vm->m_area.MaxEdge.Y,
realpos.Y);
s32 minindex = vm->m_area.index(realpos.X, vm->m_area.MinEdge.Y,
realpos.Y);
// True if the current node has sunlight.
bool lig = light[z][x];
// For each node, downwards:
for (s32 i = maxindex; i >= minindex; i -= ystride) {
MapNode *n;
if (vm->m_flags[i] & VOXELFLAG_NO_DATA)
n = &ignore;
else
n = &vm->m_data[i];
// Ignore IGNORE nodes, these are not generated yet.
if(n->getContent() == CONTENT_IGNORE)
continue;
const ContentFeatures &f = ndef->get(n->getContent());
if (lig && !f.sunlight_propagates)
// Sunlight is stopped.
lig = false;
// Reset light
n->setLight(LIGHTBANK_DAY, lig ? 15 : 0, f);
n->setLight(LIGHTBANK_NIGHT, 0, f);
}
// Output outgoing light.
light[z][x] = lig;
}
}
/*!
* Returns incoming sunlight for one map block.
* If block above is not found, it is loaded.
*
* \param pos position of the map block that gets the sunlight.
* \param light incoming sunlight, light[z][x] is true if there
* is sunlight above the block at the given z-x relative
* node coordinates.
*/
void is_sunlight_above_block(ServerMap *map, mapblock_v3 pos,
const NodeDefManager *ndef, bool light[MAP_BLOCKSIZE][MAP_BLOCKSIZE])
{
mapblock_v3 source_block_pos = pos + v3s16(0, 1, 0);
// Get or load source block.
// It might take a while to load, but correcting incorrect
// sunlight may be even slower.
MapBlock *source_block = map->emergeBlock(source_block_pos, false);
// Trust only generated blocks.
if (source_block == NULL || source_block->isDummy()
|| !source_block->isGenerated()) {
// But if there is no block above, then use heuristics
bool sunlight = true;
MapBlock *node_block = map->getBlockNoCreateNoEx(pos);
if (node_block == NULL)
// This should not happen.
sunlight = false;
else
sunlight = !node_block->getIsUnderground();
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++)
light[z][x] = sunlight;
} else {
// Dummy boolean, the position is valid.
bool is_valid_position;
// For each column:
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++) {
// Get the bottom block.
MapNode above = source_block->getNodeNoCheck(x, 0, z,
&is_valid_position);
light[z][x] = above.getLight(LIGHTBANK_DAY, ndef) == LIGHT_SUN;
}
}
}
/*!
* Propagates sunlight down in a given map block.
*
* \param data contains incoming sunlight and shadow and
* the coordinates of the target block.
* \param unlight propagated shadow is inserted here
* \param relight propagated sunlight is inserted here
*
* \returns true if the block was modified, false otherwise.
*/
bool propagate_block_sunlight(Map *map, const NodeDefManager *ndef,
SunlightPropagationData *data, UnlightQueue *unlight, ReLightQueue *relight)
{
bool modified = false;
// Get the block.
MapBlock *block = map->getBlockNoCreateNoEx(data->target_block);
if (block == NULL || block->isDummy()) {
// The work is done if the block does not contain data.
data->data.clear();
return false;
}
// Dummy boolean
bool is_valid;
// For each changing column of nodes:
size_t index;
for (index = 0; index < data->data.size(); index++) {
SunlightPropagationUnit it = data->data[index];
// Relative position of the currently inspected node.
relative_v3 current_pos(it.relative_pos.X, MAP_BLOCKSIZE - 1,
it.relative_pos.Y);
if (it.is_sunlit) {
// Propagate sunlight.
// For each node downwards:
for (; current_pos.Y >= 0; current_pos.Y--) {
MapNode n = block->getNodeNoCheck(current_pos, &is_valid);
const ContentFeatures &f = ndef->get(n);
if (n.getLightRaw(LIGHTBANK_DAY, f) < LIGHT_SUN
&& f.sunlight_propagates) {
// This node gets sunlight.
n.setLight(LIGHTBANK_DAY, LIGHT_SUN, f);
block->setNodeNoCheck(current_pos, n);
modified = true;
relight->push(LIGHT_SUN, current_pos, data->target_block,
block, 4);
} else {
// Light already valid, propagation stopped.
break;
}
}
} else {
// Propagate shadow.
// For each node downwards:
for (; current_pos.Y >= 0; current_pos.Y--) {
MapNode n = block->getNodeNoCheck(current_pos, &is_valid);
const ContentFeatures &f = ndef->get(n);
if (n.getLightRaw(LIGHTBANK_DAY, f) == LIGHT_SUN) {
// The sunlight is no longer valid.
n.setLight(LIGHTBANK_DAY, 0, f);
block->setNodeNoCheck(current_pos, n);
modified = true;
unlight->push(LIGHT_SUN, current_pos, data->target_block,
block, 4);
} else {
// Reached shadow, propagation stopped.
break;
}
}
}
if (current_pos.Y >= 0) {
// Propagation stopped, remove from data.
data->data[index] = data->data.back();
data->data.pop_back();
index--;
}
}
return modified;
}
/*!
* Borders of a map block in relative node coordinates.
* The areas do not overlap.
* Compatible with type 'direction'.
*/
const VoxelArea block_pad[] = {
VoxelArea(v3s16(15, 0, 0), v3s16(15, 15, 15)), //X+
VoxelArea(v3s16(1, 15, 0), v3s16(14, 15, 15)), //Y+
VoxelArea(v3s16(1, 1, 15), v3s16(14, 14, 15)), //Z+
VoxelArea(v3s16(1, 1, 0), v3s16(14, 14, 0)), //Z-
VoxelArea(v3s16(1, 0, 0), v3s16(14, 0, 15)), //Y-
VoxelArea(v3s16(0, 0, 0), v3s16(0, 15, 15)) //X-
};
/*!
* The common part of bulk light updates - it is always executed.
* The procedure takes the nodes that should be unlit, and the
* full modified area.
*
* The procedure handles the correction of all lighting except
* direct sunlight spreading.
*
* \param minblock least coordinates of the changed area in block
* coordinates
* \param maxblock greatest coordinates of the changed area in block
* coordinates
* \param unlight the first queue is for day light, the second is for
* night light. Contains all nodes on the borders that need to be unlit.
* \param relight the first queue is for day light, the second is for
* night light. Contains nodes that were not modified, but got sunlight
* because the changes.
* \param modified_blocks the procedure adds all modified blocks to
* this map
*/
void finish_bulk_light_update(Map *map, mapblock_v3 minblock,
mapblock_v3 maxblock, UnlightQueue unlight[2], ReLightQueue relight[2],
std::map<v3s16, MapBlock*> *modified_blocks)
{
const NodeDefManager *ndef = map->getNodeDefManager();
// dummy boolean
bool is_valid;
// --- STEP 1: Do unlighting
for (size_t bank = 0; bank < 2; bank++) {
LightBank b = banks[bank];
unspread_light(map, ndef, b, unlight[bank], relight[bank],
*modified_blocks);
}
// --- STEP 2: Get all newly inserted light sources
// For each block:
for (s16 b_x = minblock.X; b_x <= maxblock.X; b_x++)
for (s16 b_y = minblock.Y; b_y <= maxblock.Y; b_y++)
for (s16 b_z = minblock.Z; b_z <= maxblock.Z; b_z++) {
const v3s16 blockpos(b_x, b_y, b_z);
MapBlock *block = map->getBlockNoCreateNoEx(blockpos);
if (!block || block->isDummy())
// Skip not existing blocks
continue;
// For each node in the block:
for (s32 x = 0; x < MAP_BLOCKSIZE; x++)
for (s32 z = 0; z < MAP_BLOCKSIZE; z++)
for (s32 y = 0; y < MAP_BLOCKSIZE; y++) {
v3s16 relpos(x, y, z);
MapNode node = block->getNodeNoCheck(x, y, z, &is_valid);
const ContentFeatures &f = ndef->get(node);
// For each light bank
for (size_t b = 0; b < 2; b++) {
LightBank bank = banks[b];
u8 light = f.param_type == CPT_LIGHT ?
node.getLightNoChecks(bank, &f):
f.light_source;
if (light > 1)
relight[b].push(light, relpos, blockpos, block, 6);
} // end of banks
} // end of nodes
} // end of blocks
// --- STEP 3: do light spreading
// For each light bank:
for (size_t b = 0; b < 2; b++) {
LightBank bank = banks[b];
// Sunlight is already initialized.
u8 maxlight = (b == 0) ? LIGHT_MAX : LIGHT_SUN;
// Initialize light values for light spreading.
for (u8 i = 0; i <= maxlight; i++) {
const std::vector<ChangingLight> &lights = relight[b].lights[i];
for (std::vector<ChangingLight>::const_iterator it = lights.begin();
it < lights.end(); ++it) {
MapNode n = it->block->getNodeNoCheck(it->rel_position,
&is_valid);
n.setLight(bank, i, ndef);
it->block->setNodeNoCheck(it->rel_position, n);
}
}
// Spread lights.
spread_light(map, ndef, bank, relight[b], *modified_blocks);
}
}
void blit_back_with_light(ServerMap *map, MMVManip *vm,
std::map<v3s16, MapBlock*> *modified_blocks)
{
const NodeDefManager *ndef = map->getNodeDefManager();
mapblock_v3 minblock = getNodeBlockPos(vm->m_area.MinEdge);
mapblock_v3 maxblock = getNodeBlockPos(vm->m_area.MaxEdge);
// First queue is for day light, second is for night light.
UnlightQueue unlight[] = { UnlightQueue(256), UnlightQueue(256) };
ReLightQueue relight[] = { ReLightQueue(256), ReLightQueue(256) };
// Will hold sunlight data.
bool lights[MAP_BLOCKSIZE][MAP_BLOCKSIZE];
SunlightPropagationData data;
// Dummy boolean.
bool is_valid;
// --- STEP 1: reset everything to sunlight
// For each map block:
for (s16 x = minblock.X; x <= maxblock.X; x++)
for (s16 z = minblock.Z; z <= maxblock.Z; z++) {
// Extract sunlight above.
is_sunlight_above_block(map, v3s16(x, maxblock.Y, z), ndef, lights);
v2s16 offset(x, z);
offset *= MAP_BLOCKSIZE;
// Reset the voxel manipulator.
fill_with_sunlight(vm, ndef, offset, lights);
// Copy sunlight data
data.target_block = v3s16(x, minblock.Y - 1, z);
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++)
data.data.emplace_back(v2s16(x, z), lights[z][x]);
// Propagate sunlight and shadow below the voxel manipulator.
while (!data.data.empty()) {
if (propagate_block_sunlight(map, ndef, &data, &unlight[0],
&relight[0]))
(*modified_blocks)[data.target_block] =
map->getBlockNoCreateNoEx(data.target_block);
// Step downwards.
data.target_block.Y--;
}
}
// --- STEP 2: Get nodes from borders to unlight
// In case there are unloaded holes in the voxel manipulator
// unlight each block.
// For each block:
for (s16 b_x = minblock.X; b_x <= maxblock.X; b_x++)
for (s16 b_y = minblock.Y; b_y <= maxblock.Y; b_y++)
for (s16 b_z = minblock.Z; b_z <= maxblock.Z; b_z++) {
v3s16 blockpos(b_x, b_y, b_z);
MapBlock *block = map->getBlockNoCreateNoEx(blockpos);
if (!block || block->isDummy())
// Skip not existing blocks.
continue;
v3s16 offset = block->getPosRelative();
// For each border of the block:
for (const VoxelArea &a : block_pad) {
// For each node of the border:
for (s32 x = a.MinEdge.X; x <= a.MaxEdge.X; x++)
for (s32 z = a.MinEdge.Z; z <= a.MaxEdge.Z; z++)
for (s32 y = a.MinEdge.Y; y <= a.MaxEdge.Y; y++) {
v3s16 relpos(x, y, z);
// Get old and new node
MapNode oldnode = block->getNodeNoCheck(x, y, z, &is_valid);
const ContentFeatures &oldf = ndef->get(oldnode);
MapNode newnode = vm->getNodeNoExNoEmerge(relpos + offset);
const ContentFeatures &newf = ndef->get(newnode);
// For each light bank
for (size_t b = 0; b < 2; b++) {
LightBank bank = banks[b];
u8 oldlight = oldf.param_type == CPT_LIGHT ?
oldnode.getLightNoChecks(bank, &oldf):
LIGHT_SUN; // no light information, force unlighting
u8 newlight = newf.param_type == CPT_LIGHT ?
newnode.getLightNoChecks(bank, &newf):
newf.light_source;
// If the new node is dimmer, unlight.
if (oldlight > newlight) {
unlight[b].push(
oldlight, relpos, blockpos, block, 6);
}
} // end of banks
} // end of nodes
} // end of borders
} // end of blocks
// --- STEP 3: All information extracted, overwrite
vm->blitBackAll(modified_blocks, true);
// --- STEP 4: Finish light update
finish_bulk_light_update(map, minblock, maxblock, unlight, relight,
modified_blocks);
}
/*!
* Resets the lighting of the given map block to
* complete darkness and full sunlight.
*
* \param light incoming sunlight, light[x][z] is true if there
* is sunlight above the map block at the given x-z coordinates.
* The array's indices are relative node coordinates in the block.
* After the procedure returns, this contains outgoing light at
* the bottom of the map block.
*/
void fill_with_sunlight(MapBlock *block, const NodeDefManager *ndef,
bool light[MAP_BLOCKSIZE][MAP_BLOCKSIZE])
{
if (block->isDummy())
return;
// dummy boolean
bool is_valid;
// For each column of nodes:
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++) {
// True if the current node has sunlight.
bool lig = light[z][x];
// For each node, downwards:
for (s16 y = MAP_BLOCKSIZE - 1; y >= 0; y--) {
MapNode n = block->getNodeNoCheck(x, y, z, &is_valid);
// Ignore IGNORE nodes, these are not generated yet.
if (n.getContent() == CONTENT_IGNORE)
continue;
const ContentFeatures &f = ndef->get(n.getContent());
if (lig && !f.sunlight_propagates) {
// Sunlight is stopped.
lig = false;
}
// Reset light
n.setLight(LIGHTBANK_DAY, lig ? 15 : 0, f);
n.setLight(LIGHTBANK_NIGHT, 0, f);
block->setNodeNoCheck(x, y, z, n);
}
// Output outgoing light.
light[z][x] = lig;
}
}
void repair_block_light(ServerMap *map, MapBlock *block,
std::map<v3s16, MapBlock*> *modified_blocks)
{
if (!block || block->isDummy())
return;
const NodeDefManager *ndef = map->getNodeDefManager();
// First queue is for day light, second is for night light.
UnlightQueue unlight[] = { UnlightQueue(256), UnlightQueue(256) };
ReLightQueue relight[] = { ReLightQueue(256), ReLightQueue(256) };
// Will hold sunlight data.
bool lights[MAP_BLOCKSIZE][MAP_BLOCKSIZE];
SunlightPropagationData data;
// Dummy boolean.
bool is_valid;
// --- STEP 1: reset everything to sunlight
mapblock_v3 blockpos = block->getPos();
(*modified_blocks)[blockpos] = block;
// For each map block:
// Extract sunlight above.
is_sunlight_above_block(map, blockpos, ndef, lights);
// Reset the voxel manipulator.
fill_with_sunlight(block, ndef, lights);
// Copy sunlight data
data.target_block = v3s16(blockpos.X, blockpos.Y - 1, blockpos.Z);
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++) {
data.data.emplace_back(v2s16(x, z), lights[z][x]);
}
// Propagate sunlight and shadow below the voxel manipulator.
while (!data.data.empty()) {
if (propagate_block_sunlight(map, ndef, &data, &unlight[0],
&relight[0]))
(*modified_blocks)[data.target_block] =
map->getBlockNoCreateNoEx(data.target_block);
// Step downwards.
data.target_block.Y--;
}
// --- STEP 2: Get nodes from borders to unlight
// For each border of the block:
for (const VoxelArea &a : block_pad) {
// For each node of the border:
for (s32 x = a.MinEdge.X; x <= a.MaxEdge.X; x++)
for (s32 z = a.MinEdge.Z; z <= a.MaxEdge.Z; z++)
for (s32 y = a.MinEdge.Y; y <= a.MaxEdge.Y; y++) {
v3s16 relpos(x, y, z);
// Get node
MapNode node = block->getNodeNoCheck(x, y, z, &is_valid);
const ContentFeatures &f = ndef->get(node);
// For each light bank
for (size_t b = 0; b < 2; b++) {
LightBank bank = banks[b];
u8 light = f.param_type == CPT_LIGHT ?
node.getLightNoChecks(bank, &f):
f.light_source;
// If the new node is dimmer than sunlight, unlight.
// (if it has maximal light, it is pointless to remove
// surrounding light, as it can only become brighter)
if (LIGHT_SUN > light) {
unlight[b].push(
LIGHT_SUN, relpos, blockpos, block, 6);
}
} // end of banks
} // end of nodes
} // end of borders
// STEP 3: Remove and spread light
finish_bulk_light_update(map, blockpos, blockpos, unlight, relight,
modified_blocks);
}
VoxelLineIterator::VoxelLineIterator(const v3f &start_position, const v3f &line_vector) :
m_start_position(start_position),
m_line_vector(line_vector)
{
m_current_node_pos = floatToInt(m_start_position, 1);
m_start_node_pos = m_current_node_pos;
m_last_index = getIndex(floatToInt(start_position + line_vector, 1));
if (m_line_vector.X > 0) {
m_next_intersection_multi.X = (floorf(m_start_position.X - 0.5) + 1.5
- m_start_position.X) / m_line_vector.X;
m_intersection_multi_inc.X = 1 / m_line_vector.X;
} else if (m_line_vector.X < 0) {
m_next_intersection_multi.X = (floorf(m_start_position.X - 0.5)
- m_start_position.X + 0.5) / m_line_vector.X;
m_intersection_multi_inc.X = -1 / m_line_vector.X;
m_step_directions.X = -1;
}
if (m_line_vector.Y > 0) {
m_next_intersection_multi.Y = (floorf(m_start_position.Y - 0.5) + 1.5
- m_start_position.Y) / m_line_vector.Y;
m_intersection_multi_inc.Y = 1 / m_line_vector.Y;
} else if (m_line_vector.Y < 0) {
m_next_intersection_multi.Y = (floorf(m_start_position.Y - 0.5)
- m_start_position.Y + 0.5) / m_line_vector.Y;
m_intersection_multi_inc.Y = -1 / m_line_vector.Y;
m_step_directions.Y = -1;
}
if (m_line_vector.Z > 0) {
m_next_intersection_multi.Z = (floorf(m_start_position.Z - 0.5) + 1.5
- m_start_position.Z) / m_line_vector.Z;
m_intersection_multi_inc.Z = 1 / m_line_vector.Z;
} else if (m_line_vector.Z < 0) {
m_next_intersection_multi.Z = (floorf(m_start_position.Z - 0.5)
- m_start_position.Z + 0.5) / m_line_vector.Z;
m_intersection_multi_inc.Z = -1 / m_line_vector.Z;
m_step_directions.Z = -1;
}
}
void VoxelLineIterator::next()
{
m_current_index++;
if ((m_next_intersection_multi.X < m_next_intersection_multi.Y)
&& (m_next_intersection_multi.X < m_next_intersection_multi.Z)) {
m_next_intersection_multi.X += m_intersection_multi_inc.X;
m_current_node_pos.X += m_step_directions.X;
} else if ((m_next_intersection_multi.Y < m_next_intersection_multi.Z)) {
m_next_intersection_multi.Y += m_intersection_multi_inc.Y;
m_current_node_pos.Y += m_step_directions.Y;
} else {
m_next_intersection_multi.Z += m_intersection_multi_inc.Z;
m_current_node_pos.Z += m_step_directions.Z;
}
}
s16 VoxelLineIterator::getIndex(v3s16 voxel){
return
abs(voxel.X - m_start_node_pos.X) +
abs(voxel.Y - m_start_node_pos.Y) +
abs(voxel.Z - m_start_node_pos.Z);
}
} // namespace voxalgo