Convert nodeupdate to non-recursive

This took me a while to figure out. We no longer visit all 9 block
around and with the touched node, but instead visit adjacent plus
self. We then walk -non- recursively through all neigbors and if
they cause a nodeupdate, we just keep walking until it ends. On
the way back we prune the tail.

I've tested this with 8000+ sand nodes. Video result is here:

  https://youtu.be/liKKgLefhFQ

Took ~ 10 seconds to process and return to normal.
This commit is contained in:
Auke Kok 2016-03-30 07:50:10 -07:00 committed by kwolekr
parent 2eeb62057a
commit d7908ee494

View File

@ -147,7 +147,7 @@ end
-- Some common functions -- Some common functions
-- --
function nodeupdate_single(p, delay) function nodeupdate_single(p)
local n = core.get_node(p) local n = core.get_node(p)
if core.get_item_group(n.name, "falling_node") ~= 0 then if core.get_item_group(n.name, "falling_node") ~= 0 then
local p_bottom = {x = p.x, y = p.y - 1, z = p.z} local p_bottom = {x = p.x, y = p.y - 1, z = p.z}
@ -160,35 +160,83 @@ function nodeupdate_single(p, delay)
core.get_node_level(p_bottom) < core.get_node_max_level(p_bottom))) and core.get_node_level(p_bottom) < core.get_node_max_level(p_bottom))) and
(not core.registered_nodes[n_bottom.name].walkable or (not core.registered_nodes[n_bottom.name].walkable or
core.registered_nodes[n_bottom.name].buildable_to) then core.registered_nodes[n_bottom.name].buildable_to) then
if delay then
core.after(0.1, nodeupdate_single, p, false)
else
n.level = core.get_node_level(p) n.level = core.get_node_level(p)
core.remove_node(p) core.remove_node(p)
spawn_falling_node(p, n) spawn_falling_node(p, n)
nodeupdate(p) return true
end
end end
end end
if core.get_item_group(n.name, "attached_node") ~= 0 then if core.get_item_group(n.name, "attached_node") ~= 0 then
if not check_attached_node(p, n) then if not check_attached_node(p, n) then
drop_attached_node(p) drop_attached_node(p)
nodeupdate(p) return true
end end
end end
return false
end end
function nodeupdate(p, delay) -- This table is specifically ordered.
-- Round p to prevent falling entities to get stuck -- We don't walk diagonals, only our direct neighbors, and self.
-- Down first as likely case, but always before self. The same with sides.
-- Up must come last, so that things above self will also fall all at once.
local nodeupdate_neighbors = {
{x = 0, y = -1, z = 0},
{x = -1, y = 0, z = 0},
{x = 1, y = 0, z = 0},
{x = 0, y = 0, z = 1},
{x = 0, y = 0, z = -1},
{x = 0, y = 0, z = 0},
{x = 0, y = 1, z = 0},
}
function nodeupdate(p)
-- Round p to prevent falling entities to get stuck.
p = vector.round(p) p = vector.round(p)
for x = -1, 1 do -- We make a stack, and manually maintain size for performance.
for y = -1, 1 do -- Stored in the stack, we will maintain tables with pos, and
for z = -1, 1 do -- last neighbor visited. This way, when we get back to each
local d = vector.new(x, y, z) -- node, we know which directions we have already walked, and
nodeupdate_single(vector.add(p, d), delay or not (x == 0 and y == 0 and z == 0)) -- which direction is the next to walk.
local s = {}
local n = 0
-- The neighbor order we will visit from our table.
local v = 1
while true do
-- Push current pos onto the stack.
n = n + 1
s[n] = {p = p, v = v}
-- Select next node from neighbor list.
p = vector.add(p, nodeupdate_neighbors[v])
-- Now we check out the node. If it is in need of an update,
-- it will let us know in the return value (true = updated).
if not nodeupdate_single(p) then
-- If we don't need to "recurse" (walk) to it then pop
-- our previous pos off the stack and continue from there,
-- with the v value we were at when we last were at that
-- node
repeat
local pop = s[n]
p = pop.p
v = pop.v
s[n] = nil
n = n - 1
-- If there's nothing left on the stack, and no
-- more sides to walk to, we're done and can exit
if n == 0 and v == 7 then
return
end end
until v < 7
-- The next round walk the next neighbor in list.
v = v + 1
else
-- If we did need to walk the neighbor, then
-- start walking it from the walk order start (1),
-- and not the order we just pushed up the stack.
v = 1
end end
end end
end end