339 lines
7.5 KiB
C
339 lines
7.5 KiB
C
/*
|
|
This file is part of Warzone 2100.
|
|
Copyright (C) 2007 Warzone Resurrection Project
|
|
|
|
Warzone 2100 is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Warzone 2100 is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Warzone 2100; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef __INCLUDED_LIB_IVIS_PIEVECTOR_H__
|
|
#define __INCLUDED_LIB_IVIS_PIEVECTOR_H__
|
|
|
|
#include "lib/framework/wzglobal.h"
|
|
|
|
#if defined(WZ_CC_MSVC)
|
|
// Prevent nasty "nonstandard extension used : non-constant aggregate initializer" warning when using MSVC
|
|
#pragma warning(disable:4204)
|
|
#endif
|
|
|
|
|
|
typedef struct { int x, y; } Vector2i;
|
|
typedef struct { float x, y; } Vector2f;
|
|
typedef struct { int x, y, z; } Vector3i;
|
|
typedef struct { float x, y, z; } Vector3f;
|
|
|
|
|
|
|
|
/*!
|
|
* Convert a integer vector to float
|
|
* \param v Vector to convert
|
|
* \return Float vector
|
|
*/
|
|
static inline WZ_DECL_CONST Vector2f Vector2i_To2f(const Vector2i v)
|
|
{
|
|
Vector2f dest = { (float)v.x, (float)v.y };
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Add op2 to op1.
|
|
* \param[in] op1,op2 Operands
|
|
* \return Result
|
|
*/
|
|
static inline WZ_DECL_CONST Vector2i Vector2i_Add(const Vector2i op1, const Vector2i op2)
|
|
{
|
|
Vector2i dest = {
|
|
op1.x + op2.x,
|
|
op1.y + op2.y
|
|
};
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Substract op2 from op1.
|
|
* \param op1,op2 Operands
|
|
* \return Result
|
|
*/
|
|
static inline WZ_DECL_CONST Vector2i Vector2i_Sub(const Vector2i op1, const Vector2i op2)
|
|
{
|
|
Vector2i dest = {
|
|
op1.x - op2.x,
|
|
op1.y - op2.y
|
|
};
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Multiply a vector with a scalar.
|
|
* \param v Vector
|
|
* \param s Scalar
|
|
* \return Product
|
|
*/
|
|
static inline WZ_DECL_CONST Vector2i Vector2i_Mult(const Vector2i v, const float s)
|
|
{
|
|
Vector2i dest = { v.x * s, v.y * s };
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Calculate the scalar product of op1 and op2.
|
|
* \param op1,op2 Operands
|
|
* \return Scalarproduct of the 2 vectors
|
|
*/
|
|
static inline WZ_DECL_CONST int Vector2i_ScalarP(const Vector2i op1, const Vector2i op2)
|
|
{
|
|
return op1.x * op2.x + op1.y * op2.y;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Calculate the length of a vector.
|
|
* \param v Vector
|
|
* \return Length
|
|
*/
|
|
static inline WZ_DECL_CONST int Vector2i_Length(const Vector2i v)
|
|
{
|
|
return sqrtf( (float)Vector2i_ScalarP(v, v) );
|
|
}
|
|
|
|
|
|
/*!
|
|
* Checks to see if vector v is inside the circle whose centre is at point c
|
|
* with a radius of r.
|
|
* This function makes use of the following equation:
|
|
* (x - a)^2 + (y - b)^2 = r^2 which is used for drawing a circle of radius r
|
|
* with a centre (a, b). However we can also use it to see if a point is in a
|
|
* circle, which is the case so long as RHS > LHS.
|
|
* \param v Vector to test
|
|
* \param c Vector containing the centre of the circle
|
|
* \param r The radius of the circle
|
|
* \return If v falls within the circle
|
|
*/
|
|
static inline WZ_DECL_CONST BOOL Vector2i_InCircle(const Vector2i v, const Vector2i c, const unsigned int r)
|
|
{
|
|
Vector2i delta = Vector2i_Sub(v, c);
|
|
return (delta.x * delta.x) + (delta.y * delta.y) < (r * r);
|
|
}
|
|
|
|
|
|
/*!
|
|
* Create a Vector from x and y
|
|
* \param x,y Coordinates
|
|
* \return New Vector
|
|
*/
|
|
static inline WZ_DECL_CONST Vector2f Vector2f_New(const float x, const float y)
|
|
{
|
|
Vector2f dest = { x, y };
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Add op2 to op1.
|
|
* \param op1,op2 Operands
|
|
* \return Result
|
|
*/
|
|
static inline WZ_DECL_CONST Vector2f Vector2f_Add(const Vector2f op1, const Vector2f op2)
|
|
{
|
|
Vector2f dest = {
|
|
op1.x + op2.x,
|
|
op1.y + op2.y
|
|
};
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Substract op2 from op1.
|
|
* \param op1,op2 Operands
|
|
* \return Result
|
|
*/
|
|
static inline WZ_DECL_CONST Vector2f Vector2f_Sub(const Vector2f op1, const Vector2f op2)
|
|
{
|
|
Vector2f dest = {
|
|
op1.x - op2.x,
|
|
op1.y - op2.y
|
|
};
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Multiply a vector with a scalar.
|
|
* \param v Vector
|
|
* \param s Scalar
|
|
* \return Product
|
|
*/
|
|
static inline WZ_DECL_CONST Vector2f Vector2f_Mult(const Vector2f v, const float s)
|
|
{
|
|
Vector2f dest = { v.x * s, v.y * s };
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Calculate the scalar product of op1 and op2.
|
|
* \param op1,op2 Operands
|
|
* \return Scalarproduct of the 2 vectors
|
|
*/
|
|
static inline WZ_DECL_CONST float Vector2f_ScalarP(const Vector2f op1, const Vector2f op2)
|
|
{
|
|
return op1.x * op2.x + op1.y * op2.y;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Calculate the length of a vector.
|
|
* \param v Vector
|
|
* \return Length
|
|
*/
|
|
static inline WZ_DECL_CONST float Vector2f_Length(const Vector2f v)
|
|
{
|
|
return sqrtf( Vector2f_ScalarP(v, v) );
|
|
}
|
|
|
|
|
|
/*!
|
|
* Normalise a Vector
|
|
* \param v Vector
|
|
* \return Normalised vector, nullvector when input was nullvector or very small
|
|
*/
|
|
static inline WZ_DECL_CONST Vector2f Vector2f_Normalise(const Vector2f v)
|
|
{
|
|
float length = Vector2f_Length(v);
|
|
|
|
if (length == 0.0f)
|
|
{
|
|
Vector2f dest = { 0.0f, 0.0f };
|
|
return dest;
|
|
}
|
|
else
|
|
{
|
|
Vector2f dest = { v.x / length, v.y / length };
|
|
return dest;
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* Set the vector field by field, same as v = (Vector3f){x, y, z};
|
|
* Needed for MSVC which doesn't support C99 struct assignments.
|
|
* \param[out] v Vector to set
|
|
* \param[in] x,y,z Values to set to
|
|
*/
|
|
static inline void Vector3f_Set(Vector3f* v, const float x, const float y, const float z)
|
|
{
|
|
v->x = x;
|
|
v->y = y;
|
|
v->z = z;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Add op2 to op1.
|
|
* \param op1,op2 Operands
|
|
* \return Result
|
|
*/
|
|
static inline WZ_DECL_CONST Vector3f Vector3f_Add(const Vector3f op1, const Vector3f op2)
|
|
{
|
|
Vector3f dest = {
|
|
op1.x + op2.x,
|
|
op1.y + op2.y,
|
|
op1.z + op2.z
|
|
};
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Substract op2 from op1.
|
|
* \param op1,op2 Operands
|
|
* \return Result
|
|
*/
|
|
static inline WZ_DECL_CONST Vector3f Vector3f_Sub(const Vector3f op1, const Vector3f op2)
|
|
{
|
|
Vector3f dest = {
|
|
op1.x - op2.x,
|
|
op1.y - op2.y,
|
|
op1.z - op2.z
|
|
};
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Calculate the scalar product of op1 and op2.
|
|
* \param op1,op2 Operands
|
|
* \return Scalarproduct of the 2 vectors
|
|
*/
|
|
static inline WZ_DECL_CONST float Vector3f_ScalarP(const Vector3f op1, const Vector3f op2)
|
|
{
|
|
return op1.x * op2.x + op1.y * op2.y + op1.z * op2.z;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Calculate the crossproduct of op1 and op2.
|
|
* \param op1,op2 Operands
|
|
* \return Crossproduct
|
|
*/
|
|
static inline WZ_DECL_CONST Vector3f Vector3f_CrossP(const Vector3f op1, const Vector3f op2)
|
|
{
|
|
Vector3f dest = {
|
|
op1.y * op2.z - op1.z * op2.y,
|
|
op1.z * op2.x - op1.x * op2.z,
|
|
op1.x * op2.y - op1.y * op2.x
|
|
};
|
|
return dest;
|
|
}
|
|
|
|
/*!
|
|
* Substract op2 from op1.
|
|
* \param op1,op2 Operands
|
|
* \return Result
|
|
*/
|
|
static inline WZ_DECL_CONST Vector3i Vector3i_Sub(const Vector3i op1, const Vector3i op2)
|
|
{
|
|
Vector3i dest = {
|
|
op1.x - op2.x,
|
|
op1.y - op2.y,
|
|
op1.z - op2.z
|
|
};
|
|
return dest;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Much the same as Vector2i_InCircle except that it works in 3-axis and with
|
|
* spheres.
|
|
* The equation used is also ever so slightly different:
|
|
* (x - a)^2 + (y - b)^2 + (z - c)^2 = r^2. Notice how it is still squared and
|
|
* _not_ cubed!
|
|
* \param v Vector to test
|
|
* \param c Vector containing the centre of the sphere
|
|
* \param r The radius of the sphere
|
|
* \return If v falls within the sphere
|
|
*/
|
|
static inline WZ_DECL_CONST BOOL Vector3i_InSphere (const Vector3i v, const Vector3i c, const unsigned int r)
|
|
{
|
|
Vector3i delta = Vector3i_Sub(v, c);
|
|
return (delta.x * delta.x) + (delta.y * delta.y) + (delta.z * delta.z) < (r * r);
|
|
}
|
|
|
|
#endif // __INCLUDED_LIB_IVIS_PIEVECTOR_H__
|