More vector math, by EvilGuru. Minor changes by me (brackets around the ()^2 and swap RHS,LHS in the comment, so Kate's highlighting doesn't go nuts (yes, I know this is stupid...))

git-svn-id: svn+ssh://svn.gna.org/svn/warzone/trunk@2126 4a71c877-e1ca-e34f-864e-861f7616d084
master
Dennis Schridde 2007-07-17 15:02:57 +00:00
parent 84f1d476e4
commit 9dafbd404f
1 changed files with 64 additions and 0 deletions

View File

@ -71,6 +71,36 @@ static inline WZ_DECL_CONST int Vector2i_ScalarP(const Vector2i op1, const Vecto
} }
/*!
* Calculate the length of a vector.
* \param v Vector
* \return Length
*/
static inline WZ_DECL_CONST int Vector2i_Length(const Vector2i v)
{
return sqrtf( Vector2i_ScalarP(v, v) );
}
/*!
* Checks to see if vector v is inside the circle whose centre is at point c
* with a radius of r.
* This function makes use of the following equation:
* (x - a)^2 + (y - b)^2 = r^2 which is used for drawing a circle of radius r
* with a centre (a, b). However we can also use it to see if a point is in a
* circle, which is the case so long as RHS > LHS.
* \param v Vector to test
* \param c Vector containing the centre of the circle
* \param r The radius of the circle
* \return If v falls within the circle
*/
static inline WZ_DECL_CONST BOOL Vector2i_InCircle(const Vector2i v, const Vector2i c, const unsigned int r)
{
Vector2i delta = Vector2i_Sub(v, c);
return (delta.x * delta.x) + (delta.y * delta.y) < (r * r);
}
/*! /*!
* Add op2 to op1. * Add op2 to op1.
* \param op1,op2 Operands * \param op1,op2 Operands
@ -220,3 +250,37 @@ static inline WZ_DECL_CONST Vector3f Vector3f_CrossP(const Vector3f op1, const V
}; };
return dest; return dest;
} }
/*!
* Substract op2 from op1.
* \param op1,op2 Operands
* \return Result
*/
static inline WZ_DECL_CONST Vector3i Vector3i_Sub(const Vector3i op1, const Vector3i op2)
{
Vector3i dest = {
op1.x - op2.x,
op1.y - op2.y,
op1.z - op2.z
};
return dest;
}
/*!
* Much the same as Vector2i_InCircle except that it works in 3-axis and with
* spheres.
* The equation used is also ever so slightly different:
* (x - a)^2 + (y - b)^2 + (z - c)^2 = r^2. Notice how it is still squared and
* _not_ cubed!
* \param v Vector to test
* \param c Vector containing the centre of the sphere
* \param r The radius of the sphere
* \return If v falls within the sphere
*/
static inline WZ_DECL_CONST BOOL Vector3i_InSphere (const Vector3i v, const Vector3i c, const unsigned int r)
{
Vector3i delta = Vector3i_Sub(v, c);
return (delta.x * delta.x) + (delta.y * delta.y) + (delta.z * delta.z) < (r * r);
}