warzone2100/lib/framework/utf.c

553 lines
16 KiB
C
Raw Normal View History

/*
This file is part of Warzone 2100.
Copyright (C) 2007 Giel van Schijndel
Copyright (C) 2007 Warzone Resurrection Project
Warzone 2100 is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Warzone 2100 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Warzone 2100; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
$Revision$
$Id$
$HeadURL$
*/
/** \file
* Functions to convert between different Unicode Transformation Formats (UTF for short)
*/
#include "utf.h"
#include "debug.h"
#include <assert.h>
// Assert that non-starting octets are of the form 10xxxxxx
#define ASSERT_NON_START_OCTET(octet) \
assert((octet & 0xC0) == 0x80 && "invalid non-start UTF-8 octet")
// Assert that starting octets are either of the form 0xxxxxxx (ASCII) or 11xxxxxx
#define ASSERT_START_OCTECT(octet) \
assert((octet & 0x80) == 0x00 || (octet & 0xC0) == 0xC0 || !"invalid starting UTF-8 octet")
// Assert that hexadect (16bit sequence) 1 of UTF-16 surrogate pair sequences are of the form 110110XXXXXXXXXX
#define ASSERT_START_HEXADECT(hexadect) \
assert(((hexadect) & 0xD800) == 0xD800 && "invalid first UTF-16 hexadect")
// Assert that hexadect (16bit sequence) 2 of UTF-16 surrogate pair sequences are of the form 110111XXXXXXXXXX
#define ASSERT_FINAL_HEXADECT(hexadect) \
assert(((hexadect) & 0xDC00) == 0xDC00 && "invalid first UTF-16 hexadect")
/** Decodes a single Unicode character from the given UTF-8 string.
*
* \param utf8_char Points to a character string that should contain at
* least one valid UTF-8 character sequence.
* \param[out] next_char Will be modified to point to the first character
* following the UTF-8 character sequence.
*
* \return The Unicode character encoded as UTF-32 with native endianness.
*/
static utf_32_char decode_utf8_char(const char * const utf8_char, const char** next_char)
{
utf_32_char decoded;
*next_char = utf8_char;
ASSERT_START_OCTECT(*utf8_char);
// first octect: 0xxxxxxx: 7 bit (ASCII)
if ((*utf8_char & 0x80) == 0x00)
{
// 1 byte long encoding
decoded = *((*next_char)++);
}
// first octect: 110xxxxx: 11 bit
else if ((*utf8_char & 0xe0) == 0xc0)
{
// 2 byte long encoding
ASSERT_NON_START_OCTET(utf8_char[1]);
decoded = (*((*next_char)++) & 0x1f) << 6;
decoded |= (*((*next_char)++) & 0x3f) << 0;
}
// first octect: 1110xxxx: 16 bit
else if ((*utf8_char & 0xf0) == 0xe0)
{
// 3 byte long encoding
ASSERT_NON_START_OCTET(utf8_char[1]);
ASSERT_NON_START_OCTET(utf8_char[2]);
decoded = (*((*next_char)++) & 0x0f) << 12;
decoded |= (*((*next_char)++) & 0x3f) << 6;
decoded |= (*((*next_char)++) & 0x3f) << 0;
}
// first octect: 11110xxx: 21 bit
else if ((*utf8_char & 0xf8) == 0xf0)
{
// 4 byte long encoding
ASSERT_NON_START_OCTET(utf8_char[1]);
ASSERT_NON_START_OCTET(utf8_char[2]);
ASSERT_NON_START_OCTET(utf8_char[3]);
decoded = (*((*next_char)++) & 0x07) << 18;
decoded |= (*((*next_char)++) & 0x3f) << 12;
decoded |= (*((*next_char)++) & 0x3f) << 6;
decoded |= (*((*next_char)++) & 0x3f) << 0;
}
// first octect: 111110xx: 26 bit
else if ((*utf8_char & 0xfc) == 0xf8)
{
// 5 byte long encoding
ASSERT_NON_START_OCTET(utf8_char[1]);
ASSERT_NON_START_OCTET(utf8_char[2]);
ASSERT_NON_START_OCTET(utf8_char[3]);
ASSERT_NON_START_OCTET(utf8_char[4]);
decoded = (*((*next_char)++) & 0x03) << 24;
decoded |= (*((*next_char)++) & 0x3f) << 18;
decoded |= (*((*next_char)++) & 0x3f) << 12;
decoded |= (*((*next_char)++) & 0x3f) << 6;
decoded |= (*((*next_char)++) & 0x3f) << 0;
}
// first octect: 1111110x: 31 bit
else if ((*utf8_char & 0xfe) == 0xfc)
{
// 6 byte long encoding
ASSERT_NON_START_OCTET(utf8_char[1]);
ASSERT_NON_START_OCTET(utf8_char[2]);
ASSERT_NON_START_OCTET(utf8_char[3]);
ASSERT_NON_START_OCTET(utf8_char[4]);
ASSERT_NON_START_OCTET(utf8_char[5]);
decoded = (*((*next_char)++) & 0x01) << 30;
decoded |= (*((*next_char)++) & 0x3f) << 24;
decoded |= (*((*next_char)++) & 0x3f) << 18;
decoded |= (*((*next_char)++) & 0x3f) << 12;
decoded |= (*((*next_char)++) & 0x3f) << 6;
decoded |= (*((*next_char)++) & 0x3f) << 0;
}
// first octect: 11111110: 36 bit (we'll only use 32bit though)
else if ((*utf8_char & 0xff) == 0xfe)
{
// 7 byte long encoding
ASSERT_NON_START_OCTET(utf8_char[1]);
ASSERT_NON_START_OCTET(utf8_char[2]);
ASSERT_NON_START_OCTET(utf8_char[3]);
ASSERT_NON_START_OCTET(utf8_char[4]);
ASSERT_NON_START_OCTET(utf8_char[5]);
ASSERT_NON_START_OCTET(utf8_char[6]);
// original: decoded = (*((*next_char)++) & 0x00) << 36;
// The first octect contains no data bits
decoded = 0; ++(*next_char);
// original: decoded |= (*((*next_char)++) & 0x3f) << 30;
// Use only the 2 least significant bits of this byte
// to make sure we use 32bit at maximum
decoded |= (*((*next_char)++) & 0x03) << 30;
decoded |= (*((*next_char)++) & 0x3f) << 24;
decoded |= (*((*next_char)++) & 0x3f) << 18;
decoded |= (*((*next_char)++) & 0x3f) << 12;
decoded |= (*((*next_char)++) & 0x3f) << 6;
decoded |= (*((*next_char)++) & 0x3f) << 0;
}
// first octet: 11111111: 41 bit or more
else
{
// apparently this character uses more than 36 bit
// this decoder is not developed to cope with those
// characters so error out
ASSERT(!"out-of-range UTF-8 character", "utf8_character_count: this UTF-8 character is too large (> 36bits) for this UTF-8 decoder");
}
return decoded;
}
size_t utf8_character_count(const char* utf8_string)
{
const char* curChar = utf8_string;
size_t length = 0;
while (*curChar != '\0')
{
decode_utf8_char(curChar, &curChar);
++length;
}
return length;
}
static size_t unicode_utf8_char_length(const utf_32_char unicode_char)
{
// an ASCII character, which uses 7 bit at most, which is one byte in UTF-8
if (unicode_char < 0x00000080)
return 1; // stores 7 bits
else if (unicode_char < 0x00000800)
return 2; // stores 11 bits
else if (unicode_char < 0x00010000)
return 3; // stores 16 bits
else if (unicode_char < 0x00200000)
return 4; // stores 21 bits
else if (unicode_char < 0x04000000)
return 5; // stores 26 bits
else if (unicode_char < 0x80000000)
return 6; // stores 31 bits
else // if (unicode_char < 0x1000000000)
return 7; // stores 36 bits
}
size_t utf32_utf8_buffer_length(const utf_32_char* unicode_string)
{
const utf_32_char* curChar;
// Determine length of string (in octets) when encoded in UTF-8
size_t length = 0;
for (curChar = unicode_string; *curChar != '\0'; ++curChar)
{
length += unicode_utf8_char_length(*curChar);
}
return length;
}
/** Encodes a single Unicode character to a UTF-8 encoded string.
*
* \param unicode_char A UTF-32 encoded Unicode codepoint that will be encoded
* into UTF-8.
* \param out_char Points to the position in a buffer where the UTF-8
* encoded character can be stored.
*
* \return A pointer pointing to the first byte <em>after</em> the encoded
* UTF-8 sequence. This can be used as the \c out_char parameter for a
* next invocation of encode_utf8_char().
*/
static char* encode_utf8_char(const utf_32_char unicode_char, char * const out_char)
{
char * next_char = out_char;
// 7 bits
if (unicode_char < 0x00000080)
{
*(next_char++) = unicode_char;
}
// 11 bits
else if (unicode_char < 0x00000800)
{
// 0xc0 provides the counting bits: 110
// then append the 5 most significant bits
*(next_char++) = 0xc0 | (unicode_char >> 6);
// Put the next 6 bits in a byte of their own
*(next_char++) = 0x80 | (unicode_char & 0x3f);
}
// 16 bits
else if (unicode_char < 0x00010000)
{
// 0xe0 provides the counting bits: 1110
// then append the 4 most significant bits
*(next_char++) = 0xe0 | (unicode_char >> 12);
// Put the next 12 bits in two bytes of their own
*(next_char++) = 0x80 | ((unicode_char >> 6) & 0x3f);
*(next_char++) = 0x80 | (unicode_char & 0x3f);
}
// 21 bits
else if (unicode_char < 0x00200000)
{
// 0xf0 provides the counting bits: 11110
// then append the 3 most significant bits
*(next_char++) = 0xf0 | (unicode_char >> 18);
// Put the next 18 bits in three bytes of their own
*(next_char++) = 0x80 | ((unicode_char >> 12) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 6) & 0x3f);
*(next_char++) = 0x80 | (unicode_char & 0x3f);
}
// 26 bits
else if (unicode_char < 0x04000000)
{
// 0xf8 provides the counting bits: 111110
// then append the 2 most significant bits
*(next_char++) = 0xf8 | (unicode_char >> 24 );
// Put the next 24 bits in four bytes of their own
*(next_char++) = 0x80 | ((unicode_char >> 18) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 12) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 6) & 0x3f);
*(next_char++) = 0x80 | (unicode_char & 0x3f);
}
// 31 bits
else if (unicode_char < 0x80000000)
{
// 0xfc provides the counting bits: 1111110
// then append the 1 most significant bit
*(next_char++) = 0xfc | (unicode_char >> 30);
// Put the next 30 bits in five bytes of their own
*(next_char++) = 0x80 | ((unicode_char >> 24) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 18) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 12) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 6) & 0x3f);
*(next_char++) = 0x80 | (unicode_char & 0x3f);
}
// 36 bits
else
{
// 0xfe provides the counting bits: 11111110
*(next_char++) = 0xfe;
// Put the next 36 bits in six bytes of their own
*(next_char++) = 0x80 | ((unicode_char >> 30) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 24) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 18) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 12) & 0x3f);
*(next_char++) = 0x80 | ((unicode_char >> 6) & 0x3f);
*(next_char++) = 0x80 | (unicode_char & 0x3f);
}
return next_char;
}
char* utf8_encode_utf32(const utf_32_char* unicode_string)
{
const utf_32_char* curChar;
const size_t utf8_length = utf32_utf8_buffer_length(unicode_string);
// Allocate memory to hold the UTF-8 encoded string (plus a terminating nul char)
char* utf8_string = malloc(utf8_length + 1);
char* curOutPos = utf8_string;
if (utf8_string == NULL)
{
debug(LOG_ERROR, "Out of memory");
return NULL;
}
for (curChar = unicode_string; *curChar != 0; ++curChar)
{
curOutPos = encode_utf8_char(*curChar, curOutPos);
}
// Terminate the string with a nul character
utf8_string[utf8_length] = '\0';
return utf8_string;
}
utf_32_char* utf8_decode_utf32(const char* utf8_string)
{
const char* curChar = utf8_string;
const size_t unicode_length = utf8_character_count(utf8_string);
// Allocate memory to hold the UTF-32 encoded string (plus a terminating nul)
utf_32_char* unicode_string = malloc(sizeof(utf_32_char) * (unicode_length + 1));
utf_32_char* curOutPos = unicode_string;
if (unicode_string == NULL)
{
debug(LOG_ERROR, "Out of memory");
return NULL;
}
while (*curChar != '\0')
{
*(curOutPos++) = decode_utf8_char(curChar, &curChar);
}
// Terminate the string with a nul
unicode_string[unicode_length] = '\0';
return unicode_string;
}
size_t utf32_strlen(const utf_32_char* unicode_string)
{
size_t length = 0;
while (*(unicode_string++))
{
++length;
}
return length;
}
/** Decodes a single Unicode character from the given UTF-16 string.
*
* \param utf16_char Points to a character string that should contain at
* least one valid UTF-16 character sequence.
* \param[out] next_char Will be modified to point to the first character
* following the UTF-16 character sequence.
*
* \return The Unicode character encoded as UTF-32 with native endianness.
*/
static utf_32_char decode_utf16_char(const utf_16_char * const utf16_char, const utf_16_char** next_char)
{
utf_32_char decoded;
*next_char = utf16_char;
// Are we dealing with a surrogate pair
if (*utf16_char >= 0xD800
&& *utf16_char <= 0xDFFF)
{
ASSERT_START_HEXADECT(utf16_char[0]);
ASSERT_FINAL_HEXADECT(utf16_char[1]);
decoded = (*((*next_char)++) & 0x3ff) << 10;
decoded |= *((*next_char)++) & 0x3ff;
decoded += 0x10000;
}
// Not a surrogate pair, so it's a valid Unicode codepoint right away
else
{
decoded = *((*next_char)++);
}
return decoded;
}
/** Encodes a single Unicode character to a UTF-16 encoded string.
*
* \param unicode_char A UTF-32 encoded Unicode codepoint that will be encoded
* into UTF-16.
* \param out_char Points to the position in a buffer where the UTF-16
* encoded character can be stored.
*
* \return A pointer pointing to the first byte <em>after</em> the encoded
* UTF-16 sequence. This can be used as the \c out_char parameter for a
* next invocation of encode_utf16_char().
*/
static utf_16_char* encode_utf16_char(const utf_32_char unicode_char, utf_16_char * const out_char)
{
utf_16_char * next_char = out_char;
// 16 bits
if (unicode_char < 0x10000)
{
*(next_char++) = unicode_char;
}
else if (unicode_char < 0x110000)
{
const utf_16_char v = unicode_char - 0x10000;
*(next_char++) = 0xD800 | (v >> 10);
*(next_char++) = 0xDC00 | (v & 0x3ff);
ASSERT_START_HEXADECT(out_char[0]);
ASSERT_FINAL_HEXADECT(out_char[1]);
}
else
{
/* Apparently this character lies outside the 0x0 - 0x10FFFF
* Unicode range, and UTF-16 cannot cope with that, so error
* out.
*/
ASSERT(!"out-of-range Unicode codepoint", "This Unicode codepoint too large (%u > 0x10FFFF) for the UTF-16 encoding", (unsigned int)unicode_char);
}
return next_char;
}
size_t utf16_utf8_buffer_length(const utf_16_char* unicode_string)
{
const utf_16_char* curChar = unicode_string;
// Determine length of string (in octets) when encoded in UTF-8
size_t length = 0;
while (*curChar)
{
length += unicode_utf8_char_length(decode_utf16_char(curChar, &curChar));
}
return length;
}
char* utf8_encode_utf16(const utf_16_char* unicode_string)
{
const utf_16_char* curChar;
const size_t utf8_length = utf16_utf8_buffer_length(unicode_string);
// Allocate memory to hold the UTF-8 encoded string (plus a terminating nul char)
char* utf8_string = malloc(utf8_length + 1);
char* curOutPos = utf8_string;
if (utf8_string == NULL)
{
debug(LOG_ERROR, "Out of memory");
return NULL;
}
curChar = unicode_string;
while (*curChar)
{
curOutPos = encode_utf8_char(decode_utf16_char(curChar, &curChar), curOutPos);
}
// Terminate the string with a nul character
utf8_string[utf8_length] = '\0';
return utf8_string;
}
static size_t utf8_as_utf16_buf_size(const char* utf8_string)
{
const char* curChar = utf8_string;
size_t length = 0;
while (*curChar != '\0')
{
const utf_32_char unicode_char = decode_utf8_char(curChar, &curChar);
if (unicode_char < 0x10000)
{
length += 1;
}
else if (unicode_char < 0x110000)
{
length += 2;
}
else
{
/* Apparently this character lies outside the 0x0 - 0x10FFFF
* Unicode range, and UTF-16 cannot cope with that, so error
* out.
*/
ASSERT(!"out-of-range Unicode codepoint", "This Unicode codepoint too large (%u > 0x10FFFF) for the UTF-16 encoding", (unsigned int)unicode_char);
}
}
return length;
}
utf_16_char* utf8_decode_utf16(const char* utf8_string)
{
const char* curChar = utf8_string;
const size_t unicode_length = utf8_as_utf16_buf_size(utf8_string);
// Allocate memory to hold the UTF-16 encoded string (plus a terminating nul)
utf_16_char* unicode_string = malloc(sizeof(utf_16_char) * (unicode_length + 1));
utf_16_char* curOutPos = unicode_string;
if (unicode_string == NULL)
{
debug(LOG_ERROR, "Out of memory");
return NULL;
}
while (*curChar != '\0')
{
curOutPos = encode_utf16_char(decode_utf8_char(curChar, &curChar), curOutPos);
}
// Terminate the string with a nul
unicode_string[unicode_length] = '\0';
return unicode_string;
}