warzone2100/lib/framework/trig.c

245 lines
3.9 KiB
C
Raw Normal View History

/*
* Trig.c
*
* Trig lookup tables
*
*/
/* Allow frame header files to be singly included */
#define FRAME_LIB_INCLUDE
#include <assert.h>
#include "types.h"
#include "debug.h"
#include "mem.h"
#include "fractions.h"
#include "trig.h"
#define PI 3.141592654
/* Number of steps between -1 and 1 for the inverse tables */
#define TRIG_ACCURACY 4096
#define TRIG_ACCMASK 0x0fff
/* Number of entries in sqrt table */
#define SQRT_ACCURACY 4096
#define SQRT_ACCBITS 12
/* The trig functions */
#define SINFUNC (FRACT)sin
#define COSFUNC (FRACT)cos
#define ASINFUNC (FRACT)asin
#define ACOSFUNC (FRACT)acos
static FRACT *aSin;
static FRACT *aCos;
static FRACT *aInvCos;
/* Square root table - not needed on PSX cos there is a fast hardware sqrt */
static FRACT *aSqrt;
static FRACT *aInvSin;
/* Initialise the Trig tables */
BOOL trigInitialise(void)
{
FRACT val, inc;
UDWORD count;
// Allocate the tables
aSin=(FRACT*)MALLOC(sizeof(FRACT) * TRIG_DEGREES);
if (!aSin)
{
return FALSE;
}
aCos=(FRACT*)MALLOC(sizeof(FRACT) * TRIG_DEGREES);
if (!aCos)
{
return FALSE;
}
aInvSin=(FRACT*)MALLOC(sizeof(FRACT) * TRIG_ACCURACY);
if (!aInvSin)
{
return FALSE;
}
aInvCos=(FRACT*)MALLOC(sizeof(FRACT) * TRIG_ACCURACY);
if (!aInvCos)
{
return FALSE;
}
//#ifndef PSX
aSqrt=(FRACT*)MALLOC(sizeof(FRACT) * SQRT_ACCURACY);
if (!aSqrt)
{
return FALSE;
}
//#endif
// Initialise the tables
// inc = 2*PI/TRIG_DEGREES
inc = FRACTmul(FRACTCONST(2,1), FRACTCONST(PI,TRIG_DEGREES));
val = FRACTCONST(0,1);
for(count = 0; count < TRIG_DEGREES; count++)
{
aSin[count] = SINFUNC(val);
aCos[count] = COSFUNC(val);
val += inc;
}
inc = FRACTCONST(2,TRIG_ACCURACY-1);
val = FRACTCONST(-1,1);
for(count =0; count < TRIG_ACCURACY; count++)
{
aInvSin[count] = FRACTmul( ASINFUNC(val), FRACTCONST(TRIG_DEGREES/2, PI) );
aInvCos[count] = FRACTmul( ACOSFUNC(val), FRACTCONST(TRIG_DEGREES/2, PI) );
val += inc;
}
//#ifndef PSX
// Build the sqrt table
for(count=0; count < SQRT_ACCURACY; count++)
{
val = (FRACT)count / (FRACT)(SQRT_ACCURACY / 2);
aSqrt[count]= (FRACT)sqrt(val);
}
//#endif
return TRUE;
}
/* Shutdown the trig tables */
void trigShutDown(void)
{
FREE(aSin);
FREE(aCos);
FREE(aInvSin);
FREE(aInvCos);
FREE(aSqrt);
}
/* Access the trig tables */
FRACT trigSin(SDWORD angle)
{
if (angle < 0)
{
angle = (-angle) % TRIG_DEGREES;
angle = TRIG_DEGREES - angle;
}
else
{
angle = angle % TRIG_DEGREES;
}
return aSin[angle % TRIG_DEGREES];
}
FRACT trigCos(SDWORD angle)
{
if (angle < 0)
{
angle = (-angle) % TRIG_DEGREES;
angle = TRIG_DEGREES - angle;
}
else
{
angle = angle % TRIG_DEGREES;
}
return aCos[angle % TRIG_DEGREES];
}
FRACT trigInvSin(FRACT val)
{
SDWORD index;
index = MAKEINT(FRACTmul(val, MAKEFRACT((TRIG_ACCURACY-1)/2)))
+ (TRIG_ACCURACY-1)/2;
return aInvSin[index & TRIG_ACCMASK];
}
FRACT trigInvCos(FRACT val)
{
SDWORD index;
index = MAKEINT(FRACTmul(val, MAKEFRACT((TRIG_ACCURACY-1)/2)))
+ (TRIG_ACCURACY-1)/2;
return aInvCos[index & TRIG_ACCMASK];
}
/* Fast lookup sqrt */
FRACT trigIntSqrt(UDWORD val)
{
UDWORD exp, mask;
if (val == 0)
{
return FRACTCONST(0,1);
}
// find the exponent of the number
mask = 0x80000000; // set the msb in the mask
for(exp=32; exp!=0; exp--)
{
if (val & mask)
{
break;
}
mask >>= 1;
}
// make all exponents even
// odd exponents result in a mantissa of [1..2) rather than [0..1)
if (exp & 1)
{
exp -= 1;
}
// need to shift the top bit to SQRT_BITS - left or right?
if (exp >= SQRT_ACCBITS)
{
val >>= exp - SQRT_ACCBITS + 1;
}
else
{
val <<= SQRT_ACCBITS - 1 - exp;
}
// now generate the fractional part for the lookup table
ASSERT( val < SQRT_ACCURACY,
"trigIntSqrt: aargh - table index out of range" );
return aSqrt[val] * (FRACT)((UDWORD)1 << ((UDWORD)exp/2));
}
#define DIVCNT (32)
#define ARCGAP (4096/DIVCNT) // X2-X1
#define ARCMASK (ARCGAP-1)
/* */