Mypal/js/src/vm/EnvironmentObject.h

1128 lines
40 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef vm_EnvironmentObject_h
#define vm_EnvironmentObject_h
#include "jscntxt.h"
#include "jsobj.h"
#include "jsweakmap.h"
#include "builtin/ModuleObject.h"
#include "frontend/NameAnalysisTypes.h"
#include "gc/Barrier.h"
#include "js/GCHashTable.h"
#include "vm/ArgumentsObject.h"
#include "vm/ProxyObject.h"
#include "vm/Scope.h"
namespace js {
class ModuleObject;
typedef Handle<ModuleObject*> HandleModuleObject;
/*
* Return a shape representing the static scope containing the variable
* accessed by the ALIASEDVAR op at 'pc'.
*/
extern Shape*
EnvironmentCoordinateToEnvironmentShape(JSScript* script, jsbytecode* pc);
/* Return the name being accessed by the given ALIASEDVAR op. */
extern PropertyName*
EnvironmentCoordinateName(EnvironmentCoordinateNameCache& cache, JSScript* script, jsbytecode* pc);
/* Return the function script accessed by the given ALIASEDVAR op, or nullptr. */
extern JSScript*
EnvironmentCoordinateFunctionScript(JSScript* script, jsbytecode* pc);
/*** Environment objects *****************************************************/
/*** Environment objects *****************************************************/
/*
* About environments
* ------------------
*
* (See also: ecma262 rev c7952de (19 Aug 2016) 8.1 "Lexical Environments".)
*
* Scoping in ES is specified in terms of "Environment Records". There's a
* global Environment Record per realm, and a new Environment Record is created
* whenever control enters a function, block, or other scope.
*
* A "Lexical Environment" is a list of nested Environment Records, innermost
* first: everything that's in scope. Throughout SpiderMonkey, "environment"
* means a Lexical Environment.
*
* N.B.: "Scope" means something different: a static scope, the compile-time
* analogue of an environment. See Scope.h.
*
* How SpiderMonkey represents environments
* ----------------------------------------
*
* Some environments are stored as JSObjects. Several kinds of objects
* represent environments:
*
* JSObject
* |
* +--NativeObject
* | |
* | +--EnvironmentObject Engine-internal environment
* | | |
* | | +--CallObject Environment of entire function
* | | |
* | | +--ModuleEnvironmentObject Module top-level environment
* | | |
* | | +--LexicalEnvironmentObject Lexical (block) environment
* | | | |
* | | | +--NamedLambdaObject Environment for `(function f(){...})`
* | | | containing only a binding for `f`
* | | +--VarEnvironmentObject See VarScope in Scope.h.
* | | |
* | | +--WithEnvironmentObject Presents object properties as bindings
* | | |
* | | +--NonSyntacticVariablesObject See "Non-syntactic environments" below
* | |
* | +--GlobalObject The global environment
* |
* +--ProxyObject
* |
* +--DebugEnvironmentProxy Environment for debugger eval-in-frame
*
* EnvironmentObjects are technically real JSObjects but only belong on the
* environment chain (that is, fp->environmentChain() or fun->environment()).
* They are never exposed to scripts.
*
* Note that reserved slots in any base classes shown above are fixed for all
* derived classes. So e.g. EnvironmentObject::enclosingEnvironment() can
* simply access a fixed slot without further dynamic type information.
*
* When the current environment is represented by an object, the stack frame
* has a pointer to that object (see AbstractFramePtr::environmentChain()).
* However, that isn't always the case. Where possible, we store binding values
* in JS stack slots. For block and function scopes where all bindings can be
* stored in stack slots, nothing is allocated in the heap; there is no
* environment object.
*
* Full information about the environment chain is always recoverable:
* EnvironmentIter can do it, and we construct a fake environment for debugger
* eval-in-frame (see "Debug environment objects" below).
*
* Syntactic Environments
* ----------------------
*
* Environments may be syntactic, i.e., corresponding to source text, or
* non-syntactic, i.e., specially created by embedding. The distinction is
* necessary to maintain invariants about the environment chain: non-syntactic
* environments may not occur in arbitrary positions in the chain.
*
* CallObject, ModuleEnvironmentObject, and LexicalEnvironmentObject always
* represent syntactic environments. (CallObject is considered syntactic even
* when it's used as the scope of strict eval code.) WithEnvironmentObject is
* syntactic when it's used to represent the scope of a `with` block.
*
*
* Non-syntactic Environments
* --------------------------
*
* A non-syntactic environment is one that was not created due to JS source
* code. On the scope chain, a single NonSyntactic GlobalScope maps to 0+
* non-syntactic environment objects. This is contrasted with syntactic
* environments, where each scope corresponds to 0 or 1 environment object.
*
* There are 3 kinds of dynamic environment objects:
*
* 1. WithEnvironmentObject
*
* When the embedding compiles or executes a script, it has the option to
* pass in a vector of objects to be used as the initial env chain, ordered
* from outermost env to innermost env. Each of those objects is wrapped by
* a WithEnvironmentObject.
*
* The innermost object passed in by the embedding becomes a qualified
* variables object that captures 'var' bindings. That is, it wraps the
* holder object of 'var' bindings.
*
* Does not hold 'let' or 'const' bindings.
*
* 2. NonSyntacticVariablesObject
*
* When the embedding wants qualified 'var' bindings and unqualified
* bareword assignments to go on a different object than the global
* object. While any object can be made into a qualified variables object,
* only the GlobalObject and NonSyntacticVariablesObject are considered
* unqualified variables objects.
*
* Unlike WithEnvironmentObjects that delegate to the object they wrap,
* this object is itself the holder of 'var' bindings.
*
* Does not hold 'let' or 'const' bindings.
*
* 3. LexicalEnvironmentObject
*
* Each non-syntactic object used as a qualified variables object needs to
* enclose a non-syntactic LexicalEnvironmentObject to hold 'let' and
* 'const' bindings. There is a bijection per compartment between the
* non-syntactic variables objects and their non-syntactic
* LexicalEnvironmentObjects.
*
* Does not hold 'var' bindings.
*
* The embedding (Gecko) uses non-syntactic envs for various things, some of
* which are detailed below. All env chain listings below are, from top to
* bottom, outermost to innermost.
*
* A. Component loading
*
* Components may be loaded in "reuse loader global" mode, where to save on
* memory, all JSMs and JS-implemented XPCOM modules are loaded into a single
* global. Each individual JSMs are compiled as functions with their own
* FakeBackstagePass. They have the following env chain:
*
* BackstagePass global
* |
* Global lexical scope
* |
* WithEnvironmentObject wrapping FakeBackstagePass
* |
* LexicalEnvironmentObject
*
* B. Subscript loading
*
* Subscripts may be loaded into a target object. They have the following
* env chain:
*
* Loader global
* |
* Global lexical scope
* |
* WithEnvironmentObject wrapping target
* |
* LexicalEnvironmentObject
*
* C. Frame scripts
*
* XUL frame scripts are always loaded with a NonSyntacticVariablesObject as a
* "polluting global". This is done exclusively in
* js::ExecuteInGlobalAndReturnScope.
*
* Loader global
* |
* Global lexical scope
* |
* NonSyntacticVariablesObject
* |
* LexicalEnvironmentObject
*
* D. XBL and DOM event handlers
*
* XBL methods are compiled as functions with XUL elements on the env chain,
* and DOM event handlers are compiled as functions with HTML elements on the
* env chain. For a chain of elements e0,...,eN:
*
* ...
* |
* WithEnvironmentObject wrapping eN
* |
* ...
* |
* WithEnvironmentObject wrapping e0
* |
* LexicalEnvironmentObject
*
*/
class EnvironmentObject : public NativeObject
{
protected:
// The enclosing environment. Either another EnvironmentObject, a
// GlobalObject, or a non-syntactic environment object.
static const uint32_t ENCLOSING_ENV_SLOT = 0;
inline void setAliasedBinding(JSContext* cx, uint32_t slot, PropertyName* name,
const Value& v);
void setEnclosingEnvironment(JSObject* enclosing) {
setReservedSlot(ENCLOSING_ENV_SLOT, ObjectOrNullValue(enclosing));
}
public:
// Since every env chain terminates with a global object, whether
// GlobalObject or a non-syntactic one, and since those objects do not
// derive EnvironmentObject (they have completely different layouts), the
// enclosing environment of an EnvironmentObject is necessarily non-null.
JSObject& enclosingEnvironment() const {
return getReservedSlot(ENCLOSING_ENV_SLOT).toObject();
}
void initEnclosingEnvironment(JSObject* enclosing) {
initReservedSlot(ENCLOSING_ENV_SLOT, ObjectOrNullValue(enclosing));
}
// Get or set a name contained in this environment.
const Value& aliasedBinding(EnvironmentCoordinate ec) {
return getSlot(ec.slot());
}
const Value& aliasedBinding(const BindingIter& bi) {
MOZ_ASSERT(bi.location().kind() == BindingLocation::Kind::Environment);
return getSlot(bi.location().slot());
}
inline void setAliasedBinding(JSContext* cx, EnvironmentCoordinate ec, PropertyName* name,
const Value& v);
inline void setAliasedBinding(JSContext* cx, const BindingIter& bi, const Value& v);
// For JITs.
static size_t offsetOfEnclosingEnvironment() {
return getFixedSlotOffset(ENCLOSING_ENV_SLOT);
}
static uint32_t enclosingEnvironmentSlot() {
return ENCLOSING_ENV_SLOT;
}
};
class CallObject : public EnvironmentObject
{
protected:
static const uint32_t CALLEE_SLOT = 1;
static CallObject* create(JSContext* cx, HandleScript script, HandleFunction callee,
HandleObject enclosing);
public:
static const uint32_t RESERVED_SLOTS = 2;
static const Class class_;
/* These functions are internal and are exposed only for JITs. */
/*
* Construct a bare-bones call object given a shape and a non-singleton
* group. The call object must be further initialized to be usable.
*/
static CallObject* create(JSContext* cx, HandleShape shape, HandleObjectGroup group);
/*
* Construct a bare-bones call object given a shape and make it into
* a singleton. The call object must be initialized to be usable.
*/
static CallObject* createSingleton(JSContext* cx, HandleShape shape);
static CallObject* createTemplateObject(JSContext* cx, HandleScript script,
HandleObject enclosing, gc::InitialHeap heap);
static CallObject* create(JSContext* cx, HandleFunction callee, HandleObject enclosing);
static CallObject* create(JSContext* cx, AbstractFramePtr frame);
static CallObject* createHollowForDebug(JSContext* cx, HandleFunction callee);
/*
* When an aliased formal (var accessed by nested closures) is also
* aliased by the arguments object, it must of course exist in one
* canonical location and that location is always the CallObject. For this
* to work, the ArgumentsObject stores special MagicValue in its array for
* forwarded-to-CallObject variables. This MagicValue's payload is the
* slot of the CallObject to access.
*/
const Value& aliasedFormalFromArguments(const Value& argsValue) {
return getSlot(ArgumentsObject::SlotFromMagicScopeSlotValue(argsValue));
}
inline void setAliasedFormalFromArguments(JSContext* cx, const Value& argsValue, jsid id,
const Value& v);
JSFunction& callee() const {
return getReservedSlot(CALLEE_SLOT).toObject().as<JSFunction>();
}
/* For jit access. */
static size_t offsetOfCallee() {
return getFixedSlotOffset(CALLEE_SLOT);
}
static size_t calleeSlot() {
return CALLEE_SLOT;
}
};
class VarEnvironmentObject : public EnvironmentObject
{
static const uint32_t SCOPE_SLOT = 1;
static VarEnvironmentObject* create(JSContext* cx, HandleShape shape, HandleObject enclosing,
gc::InitialHeap heap);
void initScope(Scope* scope) {
initReservedSlot(SCOPE_SLOT, PrivateGCThingValue(scope));
}
public:
static const uint32_t RESERVED_SLOTS = 2;
static const Class class_;
static VarEnvironmentObject* create(JSContext* cx, HandleScope scope, AbstractFramePtr frame);
static VarEnvironmentObject* createHollowForDebug(JSContext* cx, Handle<VarScope*> scope);
Scope& scope() const {
Value v = getReservedSlot(SCOPE_SLOT);
MOZ_ASSERT(v.isPrivateGCThing());
Scope& s = *static_cast<Scope*>(v.toGCThing());
MOZ_ASSERT(s.is<VarScope>() || s.is<EvalScope>());
return s;
}
bool isForEval() const {
return scope().is<EvalScope>();
}
};
class ModuleEnvironmentObject : public EnvironmentObject
{
static const uint32_t MODULE_SLOT = 1;
static const ObjectOps objectOps_;
public:
static const Class class_;
static const uint32_t RESERVED_SLOTS = 2;
static ModuleEnvironmentObject* create(ExclusiveContext* cx, HandleModuleObject module);
ModuleObject& module();
IndirectBindingMap& importBindings();
bool createImportBinding(JSContext* cx, HandleAtom importName, HandleModuleObject module,
HandleAtom exportName);
bool hasImportBinding(HandlePropertyName name);
bool lookupImport(jsid name, ModuleEnvironmentObject** envOut, Shape** shapeOut);
void fixEnclosingEnvironmentAfterCompartmentMerge(GlobalObject& global);
private:
static bool lookupProperty(JSContext* cx, HandleObject obj, HandleId id,
MutableHandleObject objp, MutableHandleShape propp);
static bool hasProperty(JSContext* cx, HandleObject obj, HandleId id, bool* foundp);
static bool getProperty(JSContext* cx, HandleObject obj, HandleValue receiver, HandleId id,
MutableHandleValue vp);
static bool setProperty(JSContext* cx, HandleObject obj, HandleId id, HandleValue v,
HandleValue receiver, JS::ObjectOpResult& result);
static bool getOwnPropertyDescriptor(JSContext* cx, HandleObject obj, HandleId id,
MutableHandle<PropertyDescriptor> desc);
static bool deleteProperty(JSContext* cx, HandleObject obj, HandleId id,
ObjectOpResult& result);
static bool enumerate(JSContext* cx, HandleObject obj, AutoIdVector& properties,
bool enumerableOnly);
};
typedef Rooted<ModuleEnvironmentObject*> RootedModuleEnvironmentObject;
typedef Handle<ModuleEnvironmentObject*> HandleModuleEnvironmentObject;
typedef MutableHandle<ModuleEnvironmentObject*> MutableHandleModuleEnvironmentObject;
class LexicalEnvironmentObject : public EnvironmentObject
{
// Global and non-syntactic lexical environments need to store a 'this'
// value and all other lexical environments have a fixed shape and store a
// backpointer to the LexicalScope.
//
// Since the two sets are disjoint, we only use one slot to save space.
static const unsigned THIS_VALUE_OR_SCOPE_SLOT = 1;
public:
static const unsigned RESERVED_SLOTS = 2;
static const Class class_;
private:
static LexicalEnvironmentObject* createTemplateObject(JSContext* cx, HandleShape shape,
HandleObject enclosing,
gc::InitialHeap heap);
void initThisValue(JSObject* obj) {
MOZ_ASSERT(isGlobal() || !isSyntactic());
initReservedSlot(THIS_VALUE_OR_SCOPE_SLOT, GetThisValue(obj));
}
void initScopeUnchecked(LexicalScope* scope) {
initReservedSlot(THIS_VALUE_OR_SCOPE_SLOT, PrivateGCThingValue(scope));
}
void initScope(LexicalScope* scope) {
MOZ_ASSERT(!isGlobal());
MOZ_ASSERT(isSyntactic());
initScopeUnchecked(scope);
}
public:
static LexicalEnvironmentObject* createTemplateObject(JSContext* cx,
Handle<LexicalScope*> scope,
HandleObject enclosing,
gc::InitialHeap heap);
static LexicalEnvironmentObject* create(JSContext* cx, Handle<LexicalScope*> scope,
AbstractFramePtr frame);
static LexicalEnvironmentObject* createGlobal(JSContext* cx, Handle<GlobalObject*> global);
static LexicalEnvironmentObject* createNonSyntactic(JSContext* cx, HandleObject enclosing);
static LexicalEnvironmentObject* createHollowForDebug(JSContext* cx,
Handle<LexicalScope*> scope);
// Create a new LexicalEnvironmentObject with the same enclosing env and
// variable values as this.
static LexicalEnvironmentObject* clone(JSContext* cx, Handle<LexicalEnvironmentObject*> env);
// Create a new LexicalEnvironmentObject with the same enclosing env as
// this, with all variables uninitialized.
static LexicalEnvironmentObject* recreate(JSContext* cx, Handle<LexicalEnvironmentObject*> env);
// For non-extensible lexical environments, the LexicalScope that created
// this environment. Otherwise asserts.
LexicalScope& scope() const {
Value v = getReservedSlot(THIS_VALUE_OR_SCOPE_SLOT);
MOZ_ASSERT(!isExtensible() && v.isPrivateGCThing());
return *static_cast<LexicalScope*>(v.toGCThing());
}
// Is this the global lexical scope?
bool isGlobal() const {
return enclosingEnvironment().is<GlobalObject>();
}
GlobalObject& global() const {
return enclosingEnvironment().as<GlobalObject>();
}
// Global and non-syntactic lexical scopes are extensible. All other
// lexical scopes are not.
bool isExtensible() const;
// Is this a syntactic (i.e. corresponds to a source text) lexical
// environment?
bool isSyntactic() const {
return !isExtensible() || isGlobal();
}
// For extensible lexical environments, the 'this' value for its
// scope. Otherwise asserts.
Value thisValue() const;
};
class NamedLambdaObject : public LexicalEnvironmentObject
{
static NamedLambdaObject* create(JSContext* cx, HandleFunction callee,
HandleFunction replacement,
HandleObject enclosing, gc::InitialHeap heap);
public:
static NamedLambdaObject* createTemplateObject(JSContext* cx, HandleFunction callee,
gc::InitialHeap heap);
static NamedLambdaObject* create(JSContext* cx, AbstractFramePtr frame);
static NamedLambdaObject* create(JSContext* cx, AbstractFramePtr frame,
HandleFunction replacement);
// For JITs.
static size_t lambdaSlot();
};
// A non-syntactic dynamic scope object that captures non-lexical
// bindings. That is, a scope object that captures both qualified var
// assignments and unqualified bareword assignments. Its parent is always the
// global lexical environment.
//
// This is used in ExecuteInGlobalAndReturnScope and sits in front of the
// global scope to store 'var' bindings, and to store fresh properties created
// by assignments to undeclared variables that otherwise would have gone on
// the global object.
class NonSyntacticVariablesObject : public EnvironmentObject
{
public:
static const unsigned RESERVED_SLOTS = 1;
static const Class class_;
static NonSyntacticVariablesObject* create(JSContext* cx);
};
// With environment objects on the run-time environment chain.
class WithEnvironmentObject : public EnvironmentObject
{
static const unsigned OBJECT_SLOT = 1;
static const unsigned THIS_SLOT = 2;
static const unsigned SCOPE_SLOT = 3;
public:
static const unsigned RESERVED_SLOTS = 4;
static const Class class_;
static WithEnvironmentObject* create(JSContext* cx, HandleObject object, HandleObject enclosing,
Handle<WithScope*> scope);
static WithEnvironmentObject* createNonSyntactic(JSContext* cx, HandleObject object,
HandleObject enclosing);
/* Return the 'o' in 'with (o)'. */
JSObject& object() const;
/* Return object for GetThisValue. */
JSObject* withThis() const;
/*
* Return whether this object is a syntactic with object. If not, this is
* a With object we inserted between the outermost syntactic scope and the
* global object to wrap the environment chain someone explicitly passed
* via JSAPI to CompileFunction or script evaluation.
*/
bool isSyntactic() const;
// For syntactic with environment objects, the with scope.
WithScope& scope() const;
static inline size_t objectSlot() {
return OBJECT_SLOT;
}
static inline size_t thisSlot() {
return THIS_SLOT;
}
};
// Internal scope object used by JSOP_BINDNAME upon encountering an
// uninitialized lexical slot or an assignment to a 'const' binding.
//
// ES6 lexical bindings cannot be accessed in any way (throwing
// ReferenceErrors) until initialized. Normally, NAME operations
// unconditionally check for uninitialized lexical slots. When getting or
// looking up names, this can be done without slowing down normal operations
// on the return value. When setting names, however, we do not want to pollute
// all set-property paths with uninitialized lexical checks. For setting names
// (i.e. JSOP_SETNAME), we emit an accompanying, preceding JSOP_BINDNAME which
// finds the right scope on which to set the name. Moreover, when the name on
// the scope is an uninitialized lexical, we cannot throw eagerly, as the spec
// demands that the error be thrown after evaluating the RHS of
// assignments. Instead, this sentinel scope object is pushed on the stack.
// Attempting to access anything on this scope throws the appropriate
// ReferenceError.
//
// ES6 'const' bindings induce a runtime error when assigned to outside
// of initialization, regardless of strictness.
class RuntimeLexicalErrorObject : public EnvironmentObject
{
static const unsigned ERROR_SLOT = 1;
public:
static const unsigned RESERVED_SLOTS = 2;
static const Class class_;
static RuntimeLexicalErrorObject* create(JSContext* cx, HandleObject enclosing,
unsigned errorNumber);
unsigned errorNumber() {
return getReservedSlot(ERROR_SLOT).toInt32();
}
};
/*****************************************************************************/
// A environment iterator describes the active environments starting from an
// environment, scope pair. This pair may be derived from the current point of
// execution in a frame. If derived in such a fashion, the EnvironmentIter
// tracks whether the current scope is within the extent of this initial
// frame. Here, "frame" means a single activation of: a function, eval, or
// global code.
class MOZ_RAII EnvironmentIter
{
Rooted<ScopeIter> si_;
RootedObject env_;
AbstractFramePtr frame_;
void incrementScopeIter();
void settle();
// No value semantics.
EnvironmentIter(const EnvironmentIter& ei) = delete;
public:
// Constructing from a copy of an existing EnvironmentIter.
EnvironmentIter(JSContext* cx, const EnvironmentIter& ei
MOZ_GUARD_OBJECT_NOTIFIER_PARAM);
// Constructing from an environment, scope pair. All environments
// considered not to be withinInitialFrame, since no frame is given.
EnvironmentIter(JSContext* cx, JSObject* env, Scope* scope
MOZ_GUARD_OBJECT_NOTIFIER_PARAM);
// Constructing from a frame. Places the EnvironmentIter on the innermost
// environment at pc.
EnvironmentIter(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc
MOZ_GUARD_OBJECT_NOTIFIER_PARAM);
bool done() const {
return si_.done();
}
explicit operator bool() const {
return !done();
}
void operator++(int) {
if (hasAnyEnvironmentObject())
env_ = &env_->as<EnvironmentObject>().enclosingEnvironment();
incrementScopeIter();
settle();
}
EnvironmentIter& operator++() {
operator++(1);
return *this;
}
// If done():
JSObject& enclosingEnvironment() const;
// If !done():
bool hasNonSyntacticEnvironmentObject() const;
bool hasSyntacticEnvironment() const {
return si_.hasSyntacticEnvironment();
}
bool hasAnyEnvironmentObject() const {
return hasNonSyntacticEnvironmentObject() || hasSyntacticEnvironment();
}
EnvironmentObject& environment() const {
MOZ_ASSERT(hasAnyEnvironmentObject());
return env_->as<EnvironmentObject>();
}
Scope& scope() const {
return *si_.scope();
}
Scope* maybeScope() const {
if (si_)
return si_.scope();
return nullptr;
}
JSFunction& callee() const {
return env_->as<CallObject>().callee();
}
bool withinInitialFrame() const {
return !!frame_;
}
AbstractFramePtr initialFrame() const {
MOZ_ASSERT(withinInitialFrame());
return frame_;
}
AbstractFramePtr maybeInitialFrame() const {
return frame_;
}
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
};
// The key in MissingEnvironmentMap. For live frames, maps live frames to
// their synthesized environments. For completely optimized-out environments,
// maps the Scope to their synthesized environments. The env we synthesize for
// Scopes are read-only, and we never use their parent links, so they don't
// need to be distinct.
//
// That is, completely optimized out environments can't be distinguished by
// frame. Note that even if the frame corresponding to the Scope is live on
// the stack, it is unsound to synthesize an environment from that live
// frame. In other words, the provenance of the environment chain is from
// allocated closures (i.e., allocation sites) and is irrecoverable from
// simple stack inspection (i.e., call sites).
class MissingEnvironmentKey
{
friend class LiveEnvironmentVal;
AbstractFramePtr frame_;
Scope* scope_;
public:
explicit MissingEnvironmentKey(const EnvironmentIter& ei)
: frame_(ei.maybeInitialFrame()),
scope_(ei.maybeScope())
{ }
MissingEnvironmentKey(AbstractFramePtr frame, Scope* scope)
: frame_(frame),
scope_(scope)
{ }
AbstractFramePtr frame() const { return frame_; }
Scope* scope() const { return scope_; }
void updateScope(Scope* scope) { scope_ = scope; }
void updateFrame(AbstractFramePtr frame) { frame_ = frame; }
// For use as hash policy.
typedef MissingEnvironmentKey Lookup;
static HashNumber hash(MissingEnvironmentKey sk);
static bool match(MissingEnvironmentKey sk1, MissingEnvironmentKey sk2);
bool operator!=(const MissingEnvironmentKey& other) const {
return frame_ != other.frame_ || scope_ != other.scope_;
}
static void rekey(MissingEnvironmentKey& k, const MissingEnvironmentKey& newKey) {
k = newKey;
}
};
// The value in LiveEnvironmentMap, mapped from by live environment objects.
class LiveEnvironmentVal
{
friend class DebugEnvironments;
friend class MissingEnvironmentKey;
AbstractFramePtr frame_;
HeapPtr<Scope*> scope_;
static void staticAsserts();
public:
explicit LiveEnvironmentVal(const EnvironmentIter& ei)
: frame_(ei.initialFrame()),
scope_(ei.maybeScope())
{ }
AbstractFramePtr frame() const { return frame_; }
Scope* scope() const { return scope_; }
void updateFrame(AbstractFramePtr frame) { frame_ = frame; }
bool needsSweep();
};
/*****************************************************************************/
/*
* Debug environment objects
*
* The debugger effectively turns every opcode into a potential direct eval.
* Naively, this would require creating a EnvironmentObject for every
* call/block scope and using JSOP_GETALIASEDVAR for every access. To optimize
* this, the engine assumes there is no debugger and optimizes scope access
* and creation accordingly. When the debugger wants to perform an unexpected
* eval-in-frame (or other, similar environment-requiring operations),
* fp->environmentChain is now incomplete.
*
* To resolve this, the debugger first calls GetDebugEnvironmentFor* to
* synthesize a "debug env chain". A debug env chain is just a chain of
* objects that fill in missing environments and protect the engine from
* unexpected access. (The latter means that some debugger operations, like
* redefining a lexical binding, can fail when a true eval would succeed.) To
* do both of these things, GetDebugEnvironmentFor* creates a new proxy
* DebugEnvironmentProxy to sit in front of every existing EnvironmentObject.
*
* GetDebugEnvironmentFor* ensures the invariant that the same
* DebugEnvironmentProxy is always produced for the same underlying
* environment (optimized or not!). This is maintained by some bookkeeping
* information stored in DebugEnvironments.
*/
extern JSObject*
GetDebugEnvironmentForFunction(JSContext* cx, HandleFunction fun);
extern JSObject*
GetDebugEnvironmentForFrame(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc);
extern JSObject*
GetDebugEnvironmentForGlobalLexicalEnvironment(JSContext* cx);
/* Provides debugger access to a environment. */
class DebugEnvironmentProxy : public ProxyObject
{
/*
* The enclosing environment on the dynamic environment chain. This slot is analogous
* to the ENCLOSING_ENV_SLOT of a EnvironmentObject.
*/
static const unsigned ENCLOSING_EXTRA = 0;
/*
* NullValue or a dense array holding the unaliased variables of a function
* frame that has been popped.
*/
static const unsigned SNAPSHOT_EXTRA = 1;
public:
static DebugEnvironmentProxy* create(JSContext* cx, EnvironmentObject& env,
HandleObject enclosing);
EnvironmentObject& environment() const;
JSObject& enclosingEnvironment() const;
/* May only be called for proxies to function call objects. */
ArrayObject* maybeSnapshot() const;
void initSnapshot(ArrayObject& snapshot);
// Currently, the 'declarative' environments are function, module, and
// lexical environments.
bool isForDeclarative() const;
// Get a property by 'id', but returns sentinel values instead of throwing
// on exceptional cases.
static bool getMaybeSentinelValue(JSContext* cx, Handle<DebugEnvironmentProxy*> env,
HandleId id, MutableHandleValue vp);
// Returns true iff this is a function environment with its own this-binding
// (all functions except arrow functions and generator expression lambdas).
bool isFunctionEnvironmentWithThis();
// Does this debug environment not have a real counterpart or was never
// live (and thus does not have a synthesized EnvironmentObject or a
// snapshot)?
bool isOptimizedOut() const;
};
/* Maintains per-compartment debug environment bookkeeping information. */
class DebugEnvironments
{
/* The map from (non-debug) environments to debug environments. */
ObjectWeakMap proxiedEnvs;
/*
* The map from live frames which have optimized-away environments to the
* corresponding debug environments.
*/
typedef HashMap<MissingEnvironmentKey,
ReadBarrieredDebugEnvironmentProxy,
MissingEnvironmentKey,
RuntimeAllocPolicy> MissingEnvironmentMap;
MissingEnvironmentMap missingEnvs;
/*
* The map from environment objects of live frames to the live frame. This
* map updated lazily whenever the debugger needs the information. In
* between two lazy updates, liveEnvs becomes incomplete (but not invalid,
* onPop* removes environments as they are popped). Thus, two consecutive
* debugger lazy updates of liveEnvs need only fill in the new
* environments.
*/
typedef GCHashMap<ReadBarriered<JSObject*>,
LiveEnvironmentVal,
MovableCellHasher<ReadBarriered<JSObject*>>,
RuntimeAllocPolicy> LiveEnvironmentMap;
LiveEnvironmentMap liveEnvs;
public:
explicit DebugEnvironments(JSContext* cx);
~DebugEnvironments();
private:
bool init();
static DebugEnvironments* ensureCompartmentData(JSContext* cx);
template <typename Environment, typename Scope>
static void onPopGeneric(JSContext* cx, const EnvironmentIter& ei);
public:
void mark(JSTracer* trc);
void sweep(JSRuntime* rt);
void finish();
#ifdef JSGC_HASH_TABLE_CHECKS
void checkHashTablesAfterMovingGC(JSRuntime* runtime);
#endif
// If a live frame has a synthesized entry in missingEnvs, make sure it's not
// collected.
void markLiveFrame(JSTracer* trc, AbstractFramePtr frame);
static DebugEnvironmentProxy* hasDebugEnvironment(JSContext* cx, EnvironmentObject& env);
static bool addDebugEnvironment(JSContext* cx, Handle<EnvironmentObject*> env,
Handle<DebugEnvironmentProxy*> debugEnv);
static DebugEnvironmentProxy* hasDebugEnvironment(JSContext* cx, const EnvironmentIter& ei);
static bool addDebugEnvironment(JSContext* cx, const EnvironmentIter& ei,
Handle<DebugEnvironmentProxy*> debugEnv);
static bool updateLiveEnvironments(JSContext* cx);
static LiveEnvironmentVal* hasLiveEnvironment(EnvironmentObject& env);
static void unsetPrevUpToDateUntil(JSContext* cx, AbstractFramePtr frame);
// When a frame bails out from Ion to Baseline, there might be missing
// envs keyed on, and live envs containing, the old
// RematerializedFrame. Forward those values to the new BaselineFrame.
static void forwardLiveFrame(JSContext* cx, AbstractFramePtr from, AbstractFramePtr to);
// When an environment is popped, we store a snapshot of its bindings that
// live on the frame.
//
// This is done during frame unwinding, which cannot handle errors
// gracefully. Errors result in no snapshot being set on the
// DebugEnvironmentProxy.
static void takeFrameSnapshot(JSContext* cx, Handle<DebugEnvironmentProxy*> debugEnv,
AbstractFramePtr frame);
// In debug-mode, these must be called whenever exiting a scope that might
// have stack-allocated locals.
static void onPopCall(JSContext* cx, AbstractFramePtr frame);
static void onPopVar(JSContext* cx, const EnvironmentIter& ei);
static void onPopVar(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc);
static void onPopLexical(JSContext* cx, const EnvironmentIter& ei);
static void onPopLexical(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc);
static void onPopWith(AbstractFramePtr frame);
static void onCompartmentUnsetIsDebuggee(JSCompartment* c);
};
} /* namespace js */
template <>
inline bool
JSObject::is<js::EnvironmentObject>() const
{
return is<js::CallObject>() ||
is<js::VarEnvironmentObject>() ||
is<js::ModuleEnvironmentObject>() ||
is<js::LexicalEnvironmentObject>() ||
is<js::WithEnvironmentObject>() ||
is<js::NonSyntacticVariablesObject>() ||
is<js::RuntimeLexicalErrorObject>();
}
template<>
bool
JSObject::is<js::DebugEnvironmentProxy>() const;
namespace js {
inline bool
IsSyntacticEnvironment(JSObject* env)
{
if (!env->is<EnvironmentObject>())
return false;
if (env->is<WithEnvironmentObject>())
return env->as<WithEnvironmentObject>().isSyntactic();
if (env->is<LexicalEnvironmentObject>())
return env->as<LexicalEnvironmentObject>().isSyntactic();
if (env->is<NonSyntacticVariablesObject>())
return false;
return true;
}
inline bool
IsExtensibleLexicalEnvironment(JSObject* env)
{
return env->is<LexicalEnvironmentObject>() &&
env->as<LexicalEnvironmentObject>().isExtensible();
}
inline bool
IsGlobalLexicalEnvironment(JSObject* env)
{
return env->is<LexicalEnvironmentObject>() &&
env->as<LexicalEnvironmentObject>().isGlobal();
}
template <typename SpecificEnvironment>
inline bool
IsFrameInitialEnvironment(AbstractFramePtr frame, SpecificEnvironment& env)
{
// A frame's initial environment is the innermost environment
// corresponding to the scope chain from frame.script()->bodyScope() to
// frame.script()->outermostScope(). This environment must be on the chain
// for the frame to be considered initialized. That is, it must be on the
// chain for the environment chain to fully match the scope chain at the
// start of execution in the frame.
//
// This logic must be in sync with the HAS_INITIAL_ENV logic in
// InitFromBailout.
// A function frame's CallObject, if present, is always the initial
// environment.
if (mozilla::IsSame<SpecificEnvironment, CallObject>::value)
return true;
// For an eval frame, the VarEnvironmentObject, if present, is always the
// initial environment.
if (mozilla::IsSame<SpecificEnvironment, VarEnvironmentObject>::value &&
frame.isEvalFrame())
{
return true;
}
// For named lambda frames without CallObjects (i.e., no binding in the
// body of the function was closed over), the LexicalEnvironmentObject
// corresponding to the named lambda scope is the initial environment.
if (mozilla::IsSame<SpecificEnvironment, NamedLambdaObject>::value &&
frame.isFunctionFrame() &&
frame.callee()->needsNamedLambdaEnvironment() &&
!frame.callee()->needsCallObject())
{
LexicalScope* namedLambdaScope = frame.script()->maybeNamedLambdaScope();
return &env.template as<LexicalEnvironmentObject>().scope() == namedLambdaScope;
}
return false;
}
extern bool
CreateObjectsForEnvironmentChain(JSContext* cx, AutoObjectVector& chain,
HandleObject terminatingEnv,
MutableHandleObject envObj);
ModuleEnvironmentObject* GetModuleEnvironmentForScript(JSScript* script);
MOZ_MUST_USE bool
GetThisValueForDebuggerMaybeOptimizedOut(JSContext* cx, AbstractFramePtr frame,
jsbytecode* pc, MutableHandleValue res);
MOZ_MUST_USE bool
CheckVarNameConflict(JSContext* cx, Handle<LexicalEnvironmentObject*> lexicalEnv,
HandlePropertyName name);
MOZ_MUST_USE bool
CheckCanDeclareGlobalBinding(JSContext* cx, Handle<GlobalObject*> global,
HandlePropertyName name, bool isFunction);
MOZ_MUST_USE bool
CheckLexicalNameConflict(JSContext* cx, Handle<LexicalEnvironmentObject*> lexicalEnv,
HandleObject varObj, HandlePropertyName name);
MOZ_MUST_USE bool
CheckGlobalDeclarationConflicts(JSContext* cx, HandleScript script,
Handle<LexicalEnvironmentObject*> lexicalEnv,
HandleObject varObj);
MOZ_MUST_USE bool
CheckEvalDeclarationConflicts(JSContext* cx, HandleScript script, HandleObject envChain,
HandleObject varObj);
MOZ_MUST_USE bool
InitFunctionEnvironmentObjects(JSContext* cx, AbstractFramePtr frame);
MOZ_MUST_USE bool
PushVarEnvironmentObject(JSContext* cx, HandleScope scope, AbstractFramePtr frame);
#ifdef DEBUG
bool
AnalyzeEntrainedVariables(JSContext* cx, HandleScript script);
#endif
} // namespace js
namespace JS {
template <>
struct DeletePolicy<js::DebugEnvironments> : public js::GCManagedDeletePolicy<js::DebugEnvironments>
{};
} // namespace JS
#endif /* vm_EnvironmentObject_h */