Mypal/js/src/gc/Allocator.cpp

627 lines
20 KiB
C++
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gc/Allocator.h"
#include "jscntxt.h"
#include "gc/GCInternals.h"
#include "gc/GCTrace.h"
#include "gc/Nursery.h"
#include "jit/JitCompartment.h"
#include "vm/Runtime.h"
#include "vm/String.h"
#include "jsobjinlines.h"
#include "gc/Heap-inl.h"
using namespace js;
using namespace gc;
template <typename T, AllowGC allowGC /* = CanGC */>
JSObject*
js::Allocate(ExclusiveContext* cx, AllocKind kind, size_t nDynamicSlots, InitialHeap heap,
const Class* clasp)
{
static_assert(mozilla::IsConvertible<T*, JSObject*>::value, "must be JSObject derived");
MOZ_ASSERT(IsObjectAllocKind(kind));
size_t thingSize = Arena::thingSize(kind);
MOZ_ASSERT(thingSize == Arena::thingSize(kind));
MOZ_ASSERT(thingSize >= sizeof(JSObject_Slots0));
static_assert(sizeof(JSObject_Slots0) >= CellSize,
"All allocations must be at least the allocator-imposed minimum size.");
MOZ_ASSERT_IF(nDynamicSlots != 0, clasp->isNative() || clasp->isProxy());
// Off-main-thread alloc cannot trigger GC or make runtime assertions.
if (!cx->isJSContext()) {
JSObject* obj = GCRuntime::tryNewTenuredObject<NoGC>(cx, kind, thingSize, nDynamicSlots);
if (MOZ_UNLIKELY(allowGC && !obj))
ReportOutOfMemory(cx);
return obj;
}
JSContext* ncx = cx->asJSContext();
JSRuntime* rt = ncx->runtime();
if (!rt->gc.checkAllocatorState<allowGC>(ncx, kind))
return nullptr;
if (ncx->nursery().isEnabled() && heap != TenuredHeap) {
JSObject* obj = rt->gc.tryNewNurseryObject<allowGC>(ncx, thingSize, nDynamicSlots, clasp);
if (obj)
return obj;
// Our most common non-jit allocation path is NoGC; thus, if we fail the
// alloc and cannot GC, we *must* return nullptr here so that the caller
// will do a CanGC allocation to clear the nursery. Failing to do so will
// cause all allocations on this path to land in Tenured, and we will not
// get the benefit of the nursery.
if (!allowGC)
return nullptr;
}
return GCRuntime::tryNewTenuredObject<allowGC>(cx, kind, thingSize, nDynamicSlots);
}
template JSObject* js::Allocate<JSObject, NoGC>(ExclusiveContext* cx, gc::AllocKind kind,
size_t nDynamicSlots, gc::InitialHeap heap,
const Class* clasp);
template JSObject* js::Allocate<JSObject, CanGC>(ExclusiveContext* cx, gc::AllocKind kind,
size_t nDynamicSlots, gc::InitialHeap heap,
const Class* clasp);
// Attempt to allocate a new GC thing out of the nursery. If there is not enough
// room in the nursery or there is an OOM, this method will return nullptr.
template <AllowGC allowGC>
JSObject*
GCRuntime::tryNewNurseryObject(JSContext* cx, size_t thingSize, size_t nDynamicSlots, const Class* clasp)
{
MOZ_ASSERT(isNurseryAllocAllowed());
MOZ_ASSERT(!cx->zone()->usedByExclusiveThread);
MOZ_ASSERT(!IsAtomsCompartment(cx->compartment()));
JSObject* obj = nursery.allocateObject(cx, thingSize, nDynamicSlots, clasp);
if (obj)
return obj;
if (allowGC && !rt->mainThread.suppressGC) {
minorGC(JS::gcreason::OUT_OF_NURSERY);
// Exceeding gcMaxBytes while tenuring can disable the Nursery.
if (nursery.isEnabled()) {
JSObject* obj = nursery.allocateObject(cx, thingSize, nDynamicSlots, clasp);
MOZ_ASSERT(obj);
return obj;
}
}
return nullptr;
}
template <AllowGC allowGC>
JSObject*
GCRuntime::tryNewTenuredObject(ExclusiveContext* cx, AllocKind kind, size_t thingSize,
size_t nDynamicSlots)
{
HeapSlot* slots = nullptr;
if (nDynamicSlots) {
slots = cx->zone()->pod_malloc<HeapSlot>(nDynamicSlots);
if (MOZ_UNLIKELY(!slots)) {
if (allowGC)
ReportOutOfMemory(cx);
return nullptr;
}
Debug_SetSlotRangeToCrashOnTouch(slots, nDynamicSlots);
}
JSObject* obj = tryNewTenuredThing<JSObject, allowGC>(cx, kind, thingSize);
if (obj)
obj->setInitialSlotsMaybeNonNative(slots);
else
js_free(slots);
return obj;
}
template <typename T, AllowGC allowGC /* = CanGC */>
T*
js::Allocate(ExclusiveContext* cx)
{
static_assert(!mozilla::IsConvertible<T*, JSObject*>::value, "must not be JSObject derived");
static_assert(sizeof(T) >= CellSize,
"All allocations must be at least the allocator-imposed minimum size.");
AllocKind kind = MapTypeToFinalizeKind<T>::kind;
size_t thingSize = sizeof(T);
MOZ_ASSERT(thingSize == Arena::thingSize(kind));
if (cx->isJSContext()) {
JSContext* ncx = cx->asJSContext();
if (!ncx->runtime()->gc.checkAllocatorState<allowGC>(ncx, kind))
return nullptr;
}
return GCRuntime::tryNewTenuredThing<T, allowGC>(cx, kind, thingSize);
}
#define DECL_ALLOCATOR_INSTANCES(allocKind, traceKind, type, sizedType) \
template type* js::Allocate<type, NoGC>(ExclusiveContext* cx);\
template type* js::Allocate<type, CanGC>(ExclusiveContext* cx);
FOR_EACH_NONOBJECT_ALLOCKIND(DECL_ALLOCATOR_INSTANCES)
#undef DECL_ALLOCATOR_INSTANCES
template <typename T, AllowGC allowGC>
/* static */ T*
GCRuntime::tryNewTenuredThing(ExclusiveContext* cx, AllocKind kind, size_t thingSize)
{
// Bump allocate in the arena's current free-list span.
T* t = reinterpret_cast<T*>(cx->arenas()->allocateFromFreeList(kind, thingSize));
if (MOZ_UNLIKELY(!t)) {
// Get the next available free list and allocate out of it. This may
// acquire a new arena, which will lock the chunk list. If there are no
// chunks available it may also allocate new memory directly.
t = reinterpret_cast<T*>(refillFreeListFromAnyThread(cx, kind, thingSize));
if (MOZ_UNLIKELY(!t && allowGC && cx->isJSContext())) {
// We have no memory available for a new chunk; perform an
// all-compartments, non-incremental, shrinking GC and wait for
// sweeping to finish.
JS::PrepareForFullGC(cx->asJSContext());
AutoKeepAtoms keepAtoms(cx->perThreadData);
cx->asJSContext()->gc.gc(GC_SHRINK, JS::gcreason::LAST_DITCH);
cx->asJSContext()->gc.waitBackgroundSweepOrAllocEnd();
t = tryNewTenuredThing<T, NoGC>(cx, kind, thingSize);
if (!t)
ReportOutOfMemory(cx);
}
}
checkIncrementalZoneState(cx, t);
TraceTenuredAlloc(t, kind);
return t;
}
template <AllowGC allowGC>
bool
GCRuntime::checkAllocatorState(JSContext* cx, AllocKind kind)
{
if (allowGC) {
if (!gcIfNeededPerAllocation(cx))
return false;
}
#if defined(DEBUG)
MOZ_ASSERT_IF(cx->compartment()->isAtomsCompartment(),
kind == AllocKind::ATOM ||
kind == AllocKind::FAT_INLINE_ATOM ||
kind == AllocKind::SYMBOL ||
kind == AllocKind::JITCODE ||
kind == AllocKind::SCOPE);
MOZ_ASSERT_IF(!cx->compartment()->isAtomsCompartment(),
kind != AllocKind::ATOM &&
kind != AllocKind::FAT_INLINE_ATOM);
MOZ_ASSERT(!rt->isHeapBusy());
MOZ_ASSERT(isAllocAllowed());
#endif
// Crash if we perform a GC action when it is not safe.
if (allowGC && !rt->mainThread.suppressGC)
rt->gc.verifyIsSafeToGC();
// For testing out of memory conditions
if (js::oom::ShouldFailWithOOM()) {
// If we are doing a fallible allocation, percolate up the OOM
// instead of reporting it.
if (allowGC)
ReportOutOfMemory(cx);
return false;
}
return true;
}
bool
GCRuntime::gcIfNeededPerAllocation(JSContext* cx)
{
// Invoking the interrupt callback can fail and we can't usefully
// handle that here. Just check in case we need to collect instead.
if (rt->hasPendingInterrupt())
gcIfRequested();
// If we have grown past our GC heap threshold while in the middle of
// an incremental GC, we're growing faster than we're GCing, so stop
// the world and do a full, non-incremental GC right now, if possible.
if (isIncrementalGCInProgress() &&
cx->zone()->usage.gcBytes() > cx->zone()->threshold.gcTriggerBytes())
{
PrepareZoneForGC(cx->zone());
AutoKeepAtoms keepAtoms(cx->perThreadData);
gc(GC_NORMAL, JS::gcreason::INCREMENTAL_TOO_SLOW);
}
return true;
}
template <typename T>
/* static */ void
GCRuntime::checkIncrementalZoneState(ExclusiveContext* cx, T* t)
{
#ifdef DEBUG
if (!cx->isJSContext())
return;
Zone* zone = cx->asJSContext()->zone();
MOZ_ASSERT_IF(t && zone->wasGCStarted() && (zone->isGCMarking() || zone->isGCSweeping()),
t->asTenured().arena()->allocatedDuringIncremental);
#endif
}
// /////////// Arena -> Thing Allocator //////////////////////////////////////
void
GCRuntime::startBackgroundAllocTaskIfIdle()
{
AutoLockHelperThreadState helperLock;
if (allocTask.isRunningWithLockHeld(helperLock))
return;
// Join the previous invocation of the task. This will return immediately
// if the thread has never been started.
allocTask.joinWithLockHeld(helperLock);
allocTask.startWithLockHeld(helperLock);
}
/* static */ TenuredCell*
GCRuntime::refillFreeListFromAnyThread(ExclusiveContext* cx, AllocKind thingKind, size_t thingSize)
{
cx->arenas()->checkEmptyFreeList(thingKind);
if (cx->isJSContext())
return refillFreeListFromMainThread(cx->asJSContext(), thingKind, thingSize);
return refillFreeListOffMainThread(cx, thingKind);
}
/* static */ TenuredCell*
GCRuntime::refillFreeListFromMainThread(JSContext* cx, AllocKind thingKind, size_t thingSize)
{
// It should not be possible to allocate on the main thread while we are
// inside a GC.
Zone *zone = cx->zone();
MOZ_ASSERT(!cx->runtime()->isHeapBusy(), "allocating while under GC");
AutoMaybeStartBackgroundAllocation maybeStartBGAlloc;
return cx->arenas()->allocateFromArena(zone, thingKind, CheckThresholds, maybeStartBGAlloc);
}
/* static */ TenuredCell*
GCRuntime::refillFreeListOffMainThread(ExclusiveContext* cx, AllocKind thingKind)
{
// A GC may be happening on the main thread, but zones used by exclusive
// contexts are never collected.
Zone* zone = cx->zone();
MOZ_ASSERT(!zone->wasGCStarted());
AutoMaybeStartBackgroundAllocation maybeStartBGAlloc;
return cx->arenas()->allocateFromArena(zone, thingKind, CheckThresholds, maybeStartBGAlloc);
}
/* static */ TenuredCell*
GCRuntime::refillFreeListInGC(Zone* zone, AllocKind thingKind)
{
/*
* Called by compacting GC to refill a free list while we are in a GC.
*/
zone->arenas.checkEmptyFreeList(thingKind);
mozilla::DebugOnly<JSRuntime*> rt = zone->runtimeFromMainThread();
MOZ_ASSERT(rt->isHeapCollecting());
MOZ_ASSERT_IF(!rt->isHeapMinorCollecting(), !rt->gc.isBackgroundSweeping());
AutoMaybeStartBackgroundAllocation maybeStartBackgroundAllocation;
return zone->arenas.allocateFromArena(zone, thingKind, DontCheckThresholds,
maybeStartBackgroundAllocation);
}
TenuredCell*
ArenaLists::allocateFromArena(JS::Zone* zone, AllocKind thingKind,
ShouldCheckThresholds checkThresholds,
AutoMaybeStartBackgroundAllocation& maybeStartBGAlloc)
{
JSRuntime* rt = zone->runtimeFromAnyThread();
mozilla::Maybe<AutoLockGC> maybeLock;
// See if we can proceed without taking the GC lock.
if (backgroundFinalizeState[thingKind] != BFS_DONE)
maybeLock.emplace(rt);
ArenaList& al = arenaLists[thingKind];
Arena* arena = al.takeNextArena();
if (arena) {
// Empty arenas should be immediately freed.
MOZ_ASSERT(!arena->isEmpty());
return allocateFromArenaInner(zone, arena, thingKind);
}
// Parallel threads have their own ArenaLists, but chunks are shared;
// if we haven't already, take the GC lock now to avoid racing.
if (maybeLock.isNothing())
maybeLock.emplace(rt);
Chunk* chunk = rt->gc.pickChunk(maybeLock.ref(), maybeStartBGAlloc);
if (!chunk)
return nullptr;
// Although our chunk should definitely have enough space for another arena,
// there are other valid reasons why Chunk::allocateArena() may fail.
arena = rt->gc.allocateArena(chunk, zone, thingKind, checkThresholds, maybeLock.ref());
if (!arena)
return nullptr;
MOZ_ASSERT(al.isCursorAtEnd());
al.insertBeforeCursor(arena);
return allocateFromArenaInner(zone, arena, thingKind);
}
inline TenuredCell*
ArenaLists::allocateFromArenaInner(JS::Zone* zone, Arena* arena, AllocKind kind)
{
size_t thingSize = Arena::thingSize(kind);
freeLists[kind] = arena->getFirstFreeSpan();
if (MOZ_UNLIKELY(zone->wasGCStarted()))
zone->runtimeFromAnyThread()->gc.arenaAllocatedDuringGC(zone, arena);
TenuredCell* thing = freeLists[kind]->allocate(thingSize);
MOZ_ASSERT(thing); // This allocation is infallible.
return thing;
}
void
GCRuntime::arenaAllocatedDuringGC(JS::Zone* zone, Arena* arena)
{
if (zone->needsIncrementalBarrier()) {
arena->allocatedDuringIncremental = true;
marker.delayMarkingArena(arena);
} else if (zone->isGCSweeping()) {
arena->setNextAllocDuringSweep(arenasAllocatedDuringSweep);
arenasAllocatedDuringSweep = arena;
}
}
// /////////// Chunk -> Arena Allocator //////////////////////////////////////
bool
GCRuntime::wantBackgroundAllocation(const AutoLockGC& lock) const
{
// To minimize memory waste, we do not want to run the background chunk
// allocation if we already have some empty chunks or when the runtime has
// a small heap size (and therefore likely has a small growth rate).
return allocTask.enabled() &&
emptyChunks(lock).count() < tunables.minEmptyChunkCount(lock) &&
(fullChunks(lock).count() + availableChunks(lock).count()) >= 4;
}
Arena*
GCRuntime::allocateArena(Chunk* chunk, Zone* zone, AllocKind thingKind,
ShouldCheckThresholds checkThresholds, const AutoLockGC& lock)
{
MOZ_ASSERT(chunk->hasAvailableArenas());
// Fail the allocation if we are over our heap size limits.
if (checkThresholds && usage.gcBytes() >= tunables.gcMaxBytes())
return nullptr;
Arena* arena = chunk->allocateArena(rt, zone, thingKind, lock);
zone->usage.addGCArena();
// Trigger an incremental slice if needed.
if (checkThresholds)
maybeAllocTriggerZoneGC(zone, lock);
return arena;
}
Arena*
Chunk::allocateArena(JSRuntime* rt, Zone* zone, AllocKind thingKind, const AutoLockGC& lock)
{
Arena* arena = info.numArenasFreeCommitted > 0
? fetchNextFreeArena(rt)
: fetchNextDecommittedArena();
arena->init(zone, thingKind);
updateChunkListAfterAlloc(rt, lock);
return arena;
}
inline void
GCRuntime::updateOnFreeArenaAlloc(const ChunkInfo& info)
{
MOZ_ASSERT(info.numArenasFreeCommitted <= numArenasFreeCommitted);
--numArenasFreeCommitted;
}
Arena*
Chunk::fetchNextFreeArena(JSRuntime* rt)
{
MOZ_ASSERT(info.numArenasFreeCommitted > 0);
MOZ_ASSERT(info.numArenasFreeCommitted <= info.numArenasFree);
Arena* arena = info.freeArenasHead;
info.freeArenasHead = arena->next;
--info.numArenasFreeCommitted;
--info.numArenasFree;
rt->gc.updateOnFreeArenaAlloc(info);
return arena;
}
Arena*
Chunk::fetchNextDecommittedArena()
{
MOZ_ASSERT(info.numArenasFreeCommitted == 0);
MOZ_ASSERT(info.numArenasFree > 0);
unsigned offset = findDecommittedArenaOffset();
info.lastDecommittedArenaOffset = offset + 1;
--info.numArenasFree;
decommittedArenas.unset(offset);
Arena* arena = &arenas[offset];
MarkPagesInUse(arena, ArenaSize);
arena->setAsNotAllocated();
return arena;
}
/*
* Search for and return the next decommitted Arena. Our goal is to keep
* lastDecommittedArenaOffset "close" to a free arena. We do this by setting
* it to the most recently freed arena when we free, and forcing it to
* the last alloc + 1 when we allocate.
*/
uint32_t
Chunk::findDecommittedArenaOffset()
{
/* Note: lastFreeArenaOffset can be past the end of the list. */
for (unsigned i = info.lastDecommittedArenaOffset; i < ArenasPerChunk; i++) {
if (decommittedArenas.get(i))
return i;
}
for (unsigned i = 0; i < info.lastDecommittedArenaOffset; i++) {
if (decommittedArenas.get(i))
return i;
}
MOZ_CRASH("No decommitted arenas found.");
}
// /////////// System -> Chunk Allocator /////////////////////////////////////
Chunk*
GCRuntime::getOrAllocChunk(const AutoLockGC& lock,
AutoMaybeStartBackgroundAllocation& maybeStartBackgroundAllocation)
{
Chunk* chunk = emptyChunks(lock).pop();
if (!chunk) {
chunk = Chunk::allocate(rt);
if (!chunk)
return nullptr;
MOZ_ASSERT(chunk->info.numArenasFreeCommitted == 0);
}
if (wantBackgroundAllocation(lock))
maybeStartBackgroundAllocation.tryToStartBackgroundAllocation(rt->gc);
return chunk;
}
void
GCRuntime::recycleChunk(Chunk* chunk, const AutoLockGC& lock)
{
emptyChunks(lock).push(chunk);
}
Chunk*
GCRuntime::pickChunk(const AutoLockGC& lock,
AutoMaybeStartBackgroundAllocation& maybeStartBackgroundAllocation)
{
if (availableChunks(lock).count())
return availableChunks(lock).head();
Chunk* chunk = getOrAllocChunk(lock, maybeStartBackgroundAllocation);
if (!chunk)
return nullptr;
chunk->init(rt);
MOZ_ASSERT(chunk->info.numArenasFreeCommitted == 0);
MOZ_ASSERT(chunk->unused());
MOZ_ASSERT(!fullChunks(lock).contains(chunk));
MOZ_ASSERT(!availableChunks(lock).contains(chunk));
chunkAllocationSinceLastGC = true;
availableChunks(lock).push(chunk);
return chunk;
}
BackgroundAllocTask::BackgroundAllocTask(JSRuntime* rt, ChunkPool& pool)
: runtime(rt),
chunkPool_(pool),
enabled_(CanUseExtraThreads() && GetCPUCount() >= 2)
{
}
/* virtual */ void
BackgroundAllocTask::run()
{
TraceLoggerThread* logger = TraceLoggerForCurrentThread();
AutoTraceLog logAllocation(logger, TraceLogger_GCAllocation);
AutoLockGC lock(runtime);
while (!cancel_ && runtime->gc.wantBackgroundAllocation(lock)) {
Chunk* chunk;
{
AutoUnlockGC unlock(lock);
chunk = Chunk::allocate(runtime);
if (!chunk)
break;
chunk->init(runtime);
}
chunkPool_.push(chunk);
}
}
/* static */ Chunk*
Chunk::allocate(JSRuntime* rt)
{
Chunk* chunk = static_cast<Chunk*>(MapAlignedPages(ChunkSize, ChunkSize));
if (!chunk)
return nullptr;
rt->gc.stats.count(gcstats::STAT_NEW_CHUNK);
return chunk;
}
void
Chunk::init(JSRuntime* rt)
{
JS_POISON(this, JS_FRESH_TENURED_PATTERN, ChunkSize);
/*
* We clear the bitmap to guard against JS::GCThingIsMarkedGray being called
* on uninitialized data, which would happen before the first GC cycle.
*/
bitmap.clear();
/*
* Decommit the arenas. We do this after poisoning so that if the OS does
* not have to recycle the pages, we still get the benefit of poisoning.
*/
decommitAllArenas(rt);
/* Initialize the chunk info. */
info.init();
new (&trailer) ChunkTrailer(rt);
/* The rest of info fields are initialized in pickChunk. */
}
void Chunk::decommitAllArenas(JSRuntime* rt)
{
decommittedArenas.clear(true);
MarkPagesUnused(&arenas[0], ArenasPerChunk * ArenaSize);
info.freeArenasHead = nullptr;
info.lastDecommittedArenaOffset = 0;
info.numArenasFree = ArenasPerChunk;
info.numArenasFreeCommitted = 0;
}