Mypal/js/src/gc/Marking.cpp

3024 lines
98 KiB
C++
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gc/Marking.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/IntegerRange.h"
#include "mozilla/ReentrancyGuard.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/TypeTraits.h"
#include "jsgc.h"
#include "jsprf.h"
#include "builtin/ModuleObject.h"
#include "gc/GCInternals.h"
#include "gc/Policy.h"
#include "jit/IonCode.h"
#include "js/SliceBudget.h"
#include "vm/ArgumentsObject.h"
#include "vm/ArrayObject.h"
#include "vm/Debugger.h"
#include "vm/EnvironmentObject.h"
#include "vm/Scope.h"
#include "vm/Shape.h"
#include "vm/Symbol.h"
#include "vm/TypedArrayObject.h"
#include "vm/UnboxedObject.h"
#include "wasm/WasmJS.h"
#include "jscompartmentinlines.h"
#include "jsgcinlines.h"
#include "jsobjinlines.h"
#include "gc/Nursery-inl.h"
#include "vm/String-inl.h"
#include "vm/UnboxedObject-inl.h"
using namespace js;
using namespace js::gc;
using JS::MapTypeToTraceKind;
using mozilla::ArrayLength;
using mozilla::DebugOnly;
using mozilla::IsBaseOf;
using mozilla::IsSame;
using mozilla::MakeRange;
using mozilla::PodCopy;
// Tracing Overview
// ================
//
// Tracing, in this context, refers to an abstract visitation of some or all of
// the GC-controlled heap. The effect of tracing an edge of the graph depends
// on the subclass of the JSTracer on whose behalf we are tracing.
//
// Marking
// -------
//
// The primary JSTracer is the GCMarker. The marking tracer causes the target
// of each traversed edge to be marked black and the target edge's children to
// be marked either gray (in the gc algorithm sense) or immediately black.
//
// Callback
// --------
//
// The secondary JSTracer is the CallbackTracer. This simply invokes a callback
// on each edge in a child.
//
// The following is a rough outline of the general struture of the tracing
// internals.
//
// //
// .---------. .---------. .--------------------------. .----------. //
// |TraceEdge| |TraceRoot| |TraceManuallyBarrieredEdge| ... |TraceRange| ... etc. //
// '---------' '---------' '--------------------------' '----------' //
// \ \ / / //
// \ \ .----------------. / / //
// o------------->o-|DispatchToTracer|-o<-----------------------o //
// '----------------' //
// / \ //
// / \ //
// .---------. .----------. .-----------------. //
// |DoMarking| |DoCallback|-------> |<JSTraceCallback>|-----------> //
// '---------' '----------' '-----------------' //
// | //
// | //
// .--------. //
// o---------------->|traverse| . //
// /_\ '--------' ' . //
// | . . ' . //
// | . . ' . //
// | . . ' . //
// | .-----------. .-----------. ' . .--------------------. //
// | |markAndScan| |markAndPush| ' - |markAndTraceChildren|----> //
// | '-----------' '-----------' '--------------------' //
// | | \ //
// | | \ //
// | .----------------------. .----------------. //
// | |T::eagerlyMarkChildren| |pushMarkStackTop|<===Oo //
// | '----------------------' '----------------' || //
// | | || || //
// | | || || //
// | | || || //
// o<-----------------o<========================OO============Oo //
// //
// //
// Legend: //
// ------ Direct calls //
// . . . Static dispatch //
// ====== Dispatch through a manual stack. //
// //
/*** Tracing Invariants **************************************************************************/
#if defined(DEBUG)
template<typename T>
static inline bool
IsThingPoisoned(T* thing)
{
const uint8_t poisonBytes[] = {
JS_FRESH_NURSERY_PATTERN,
JS_SWEPT_NURSERY_PATTERN,
JS_ALLOCATED_NURSERY_PATTERN,
JS_FRESH_TENURED_PATTERN,
JS_MOVED_TENURED_PATTERN,
JS_SWEPT_TENURED_PATTERN,
JS_ALLOCATED_TENURED_PATTERN,
JS_SWEPT_CODE_PATTERN
};
const int numPoisonBytes = sizeof(poisonBytes) / sizeof(poisonBytes[0]);
uint32_t* p = reinterpret_cast<uint32_t*>(reinterpret_cast<FreeSpan*>(thing) + 1);
// Note: all free patterns are odd to make the common, not-poisoned case a single test.
if ((*p & 1) == 0)
return false;
for (int i = 0; i < numPoisonBytes; ++i) {
const uint8_t pb = poisonBytes[i];
const uint32_t pw = pb | (pb << 8) | (pb << 16) | (pb << 24);
if (*p == pw)
return true;
}
return false;
}
static bool
IsMovingTracer(JSTracer *trc)
{
return trc->isCallbackTracer() &&
trc->asCallbackTracer()->getTracerKind() == JS::CallbackTracer::TracerKind::Moving;
}
#endif
template <typename T> bool ThingIsPermanentAtomOrWellKnownSymbol(T* thing) { return false; }
template <> bool ThingIsPermanentAtomOrWellKnownSymbol<JSString>(JSString* str) {
return str->isPermanentAtom();
}
template <> bool ThingIsPermanentAtomOrWellKnownSymbol<JSFlatString>(JSFlatString* str) {
return str->isPermanentAtom();
}
template <> bool ThingIsPermanentAtomOrWellKnownSymbol<JSLinearString>(JSLinearString* str) {
return str->isPermanentAtom();
}
template <> bool ThingIsPermanentAtomOrWellKnownSymbol<JSAtom>(JSAtom* atom) {
return atom->isPermanent();
}
template <> bool ThingIsPermanentAtomOrWellKnownSymbol<PropertyName>(PropertyName* name) {
return name->isPermanent();
}
template <> bool ThingIsPermanentAtomOrWellKnownSymbol<JS::Symbol>(JS::Symbol* sym) {
return sym->isWellKnownSymbol();
}
template <typename T>
static inline bool
IsOwnedByOtherRuntime(JSRuntime* rt, T thing)
{
bool other = thing->runtimeFromAnyThread() != rt;
MOZ_ASSERT_IF(other,
ThingIsPermanentAtomOrWellKnownSymbol(thing) ||
thing->zoneFromAnyThread()->isSelfHostingZone());
return other;
}
template<typename T>
void
js::CheckTracedThing(JSTracer* trc, T* thing)
{
#ifdef DEBUG
MOZ_ASSERT(trc);
MOZ_ASSERT(thing);
if (!trc->checkEdges())
return;
if (IsForwarded(thing))
thing = Forwarded(thing);
/* This function uses data that's not available in the nursery. */
if (IsInsideNursery(thing))
return;
MOZ_ASSERT_IF(!IsMovingTracer(trc) && !trc->isTenuringTracer(), !IsForwarded(thing));
/*
* Permanent atoms and things in the self-hosting zone are not associated
* with this runtime, but will be ignored during marking.
*/
if (IsOwnedByOtherRuntime(trc->runtime(), thing))
return;
Zone* zone = thing->zoneFromAnyThread();
JSRuntime* rt = trc->runtime();
MOZ_ASSERT_IF(!IsMovingTracer(trc), CurrentThreadCanAccessZone(zone));
MOZ_ASSERT_IF(!IsMovingTracer(trc), CurrentThreadCanAccessRuntime(rt));
MOZ_ASSERT(zone->runtimeFromAnyThread() == trc->runtime());
MOZ_ASSERT(thing->isAligned());
MOZ_ASSERT(MapTypeToTraceKind<typename mozilla::RemovePointer<T>::Type>::kind ==
thing->getTraceKind());
/*
* Do not check IsMarkingTracer directly -- it should only be used in paths
* where we cannot be the gray buffering tracer.
*/
bool isGcMarkingTracer = trc->isMarkingTracer();
MOZ_ASSERT_IF(zone->requireGCTracer(), isGcMarkingTracer || IsBufferGrayRootsTracer(trc));
if (isGcMarkingTracer) {
GCMarker* gcMarker = static_cast<GCMarker*>(trc);
MOZ_ASSERT_IF(gcMarker->shouldCheckCompartments(),
zone->isCollecting() || zone->isAtomsZone());
MOZ_ASSERT_IF(gcMarker->markColor() == GRAY,
!zone->isGCMarkingBlack() || zone->isAtomsZone());
MOZ_ASSERT(!(zone->isGCSweeping() || zone->isGCFinished() || zone->isGCCompacting()));
}
/*
* Try to assert that the thing is allocated.
*
* We would like to assert that the thing is not in the free list, but this
* check is very slow. Instead we check whether the thing has been poisoned:
* if it has not then we assume it is allocated, but if it has then it is
* either free or uninitialized in which case we check the free list.
*
* Further complications are that background sweeping may be running and
* concurrently modifiying the free list and that tracing is done off main
* thread during compacting GC and reading the contents of the thing by
* IsThingPoisoned would be racy in this case.
*/
MOZ_ASSERT_IF(rt->isHeapBusy() && !zone->isGCCompacting() && !rt->gc.isBackgroundSweeping(),
!IsThingPoisoned(thing) || !InFreeList(thing->asTenured().arena(), thing));
#endif
}
template <typename S>
struct CheckTracedFunctor : public VoidDefaultAdaptor<S> {
template <typename T> void operator()(T* t, JSTracer* trc) { CheckTracedThing(trc, t); }
};
template<typename T>
void
js::CheckTracedThing(JSTracer* trc, T thing)
{
DispatchTyped(CheckTracedFunctor<T>(), thing, trc);
}
namespace js {
#define IMPL_CHECK_TRACED_THING(_, type, __) \
template void CheckTracedThing<type>(JSTracer*, type*);
JS_FOR_EACH_TRACEKIND(IMPL_CHECK_TRACED_THING);
#undef IMPL_CHECK_TRACED_THING
} // namespace js
static bool
ShouldMarkCrossCompartment(JSTracer* trc, JSObject* src, Cell* cell)
{
if (!trc->isMarkingTracer())
return true;
uint32_t color = static_cast<GCMarker*>(trc)->markColor();
MOZ_ASSERT(color == BLACK || color == GRAY);
if (!cell->isTenured()) {
MOZ_ASSERT(color == BLACK);
return false;
}
TenuredCell& tenured = cell->asTenured();
JS::Zone* zone = tenured.zone();
if (color == BLACK) {
/*
* Having black->gray edges violates our promise to the cycle
* collector. This can happen if we're collecting a compartment and it
* has an edge to an uncollected compartment: it's possible that the
* source and destination of the cross-compartment edge should be gray,
* but the source was marked black by the conservative scanner.
*/
if (tenured.isMarked(GRAY)) {
MOZ_ASSERT(!zone->isCollecting());
trc->runtime()->gc.setFoundBlackGrayEdges(tenured);
}
return zone->isGCMarking();
} else {
if (zone->isGCMarkingBlack()) {
/*
* The destination compartment is being not being marked gray now,
* but it will be later, so record the cell so it can be marked gray
* at the appropriate time.
*/
if (!tenured.isMarked())
DelayCrossCompartmentGrayMarking(src);
return false;
}
return zone->isGCMarkingGray();
}
}
static bool
ShouldMarkCrossCompartment(JSTracer* trc, JSObject* src, const Value& val)
{
return val.isGCThing() && ShouldMarkCrossCompartment(trc, src, val.toGCThing());
}
static void
AssertZoneIsMarking(Cell* thing)
{
MOZ_ASSERT(TenuredCell::fromPointer(thing)->zone()->isGCMarking());
}
static void
AssertZoneIsMarking(JSString* str)
{
#ifdef DEBUG
Zone* zone = TenuredCell::fromPointer(str)->zone();
MOZ_ASSERT(zone->isGCMarking() || zone->isAtomsZone());
#endif
}
static void
AssertZoneIsMarking(JS::Symbol* sym)
{
#ifdef DEBUG
Zone* zone = TenuredCell::fromPointer(sym)->zone();
MOZ_ASSERT(zone->isGCMarking() || zone->isAtomsZone());
#endif
}
static void
AssertRootMarkingPhase(JSTracer* trc)
{
MOZ_ASSERT_IF(trc->isMarkingTracer(),
trc->runtime()->gc.state() == State::NotActive ||
trc->runtime()->gc.state() == State::MarkRoots);
}
/*** Tracing Interface ***************************************************************************/
// The second parameter to BaseGCType is derived automatically based on T. The
// relation here is that for any T, the TraceKind will automatically,
// statically select the correct Cell layout for marking. Below, we instantiate
// each override with a declaration of the most derived layout type.
//
// The use of TraceKind::Null for the case where the type is not matched
// generates a compile error as no template instantiated for that kind.
//
// Usage:
// BaseGCType<T>::type
//
// Examples:
// BaseGCType<JSFunction>::type => JSObject
// BaseGCType<UnownedBaseShape>::type => BaseShape
// etc.
template <typename T, JS::TraceKind =
#define EXPAND_MATCH_TYPE(name, type, _) \
IsBaseOf<type, T>::value ? JS::TraceKind::name :
JS_FOR_EACH_TRACEKIND(EXPAND_MATCH_TYPE)
#undef EXPAND_MATCH_TYPE
JS::TraceKind::Null>
struct BaseGCType;
#define IMPL_BASE_GC_TYPE(name, type_, _) \
template <typename T> struct BaseGCType<T, JS::TraceKind:: name> { typedef type_ type; };
JS_FOR_EACH_TRACEKIND(IMPL_BASE_GC_TYPE);
#undef IMPL_BASE_GC_TYPE
// Our barrier templates are parameterized on the pointer types so that we can
// share the definitions with Value and jsid. Thus, we need to strip the
// pointer before sending the type to BaseGCType and re-add it on the other
// side. As such:
template <typename T> struct PtrBaseGCType { typedef T type; };
template <typename T> struct PtrBaseGCType<T*> { typedef typename BaseGCType<T>::type* type; };
template <typename T>
typename PtrBaseGCType<T>::type*
ConvertToBase(T* thingp)
{
return reinterpret_cast<typename PtrBaseGCType<T>::type*>(thingp);
}
template <typename T> void DispatchToTracer(JSTracer* trc, T* thingp, const char* name);
template <typename T> T DoCallback(JS::CallbackTracer* trc, T* thingp, const char* name);
template <typename T> void DoMarking(GCMarker* gcmarker, T* thing);
template <typename T> void DoMarking(GCMarker* gcmarker, const T& thing);
template <typename T> void NoteWeakEdge(GCMarker* gcmarker, T** thingp);
template <typename T> void NoteWeakEdge(GCMarker* gcmarker, T* thingp);
template <typename T>
void
js::TraceEdge(JSTracer* trc, WriteBarrieredBase<T>* thingp, const char* name)
{
DispatchToTracer(trc, ConvertToBase(thingp->unsafeUnbarrieredForTracing()), name);
}
template <typename T>
void
js::TraceEdge(JSTracer* trc, ReadBarriered<T>* thingp, const char* name)
{
DispatchToTracer(trc, ConvertToBase(thingp->unsafeGet()), name);
}
template <typename T>
void
js::TraceNullableEdge(JSTracer* trc, WriteBarrieredBase<T>* thingp, const char* name)
{
if (InternalBarrierMethods<T>::isMarkable(thingp->get()))
DispatchToTracer(trc, ConvertToBase(thingp->unsafeUnbarrieredForTracing()), name);
}
template <typename T>
JS_PUBLIC_API(void)
JS::TraceEdge(JSTracer* trc, JS::Heap<T>* thingp, const char* name)
{
MOZ_ASSERT(thingp);
if (InternalBarrierMethods<T>::isMarkable(*thingp->unsafeGet()))
DispatchToTracer(trc, ConvertToBase(thingp->unsafeGet()), name);
}
JS_PUBLIC_API(void)
JS::TraceEdge(JSTracer* trc, JS::TenuredHeap<JSObject*>* thingp, const char* name)
{
MOZ_ASSERT(thingp);
if (JSObject* ptr = thingp->unbarrieredGetPtr()) {
DispatchToTracer(trc, &ptr, name);
thingp->setPtr(ptr);
}
}
template <typename T>
void
js::TraceManuallyBarrieredEdge(JSTracer* trc, T* thingp, const char* name)
{
DispatchToTracer(trc, ConvertToBase(thingp), name);
}
template <typename T>
JS_PUBLIC_API(void)
js::UnsafeTraceManuallyBarrieredEdge(JSTracer* trc, T* thingp, const char* name)
{
DispatchToTracer(trc, ConvertToBase(thingp), name);
}
template <typename T>
void
js::TraceWeakEdge(JSTracer* trc, WeakRef<T>* thingp, const char* name)
{
// Non-marking tracers treat the edge strongly.
if (!trc->isMarkingTracer())
return DispatchToTracer(trc, ConvertToBase(thingp->unsafeUnbarrieredForTracing()), name);
NoteWeakEdge(static_cast<GCMarker*>(trc),
ConvertToBase(thingp->unsafeUnbarrieredForTracing()));
}
template <typename T>
void
js::TraceRoot(JSTracer* trc, T* thingp, const char* name)
{
AssertRootMarkingPhase(trc);
DispatchToTracer(trc, ConvertToBase(thingp), name);
}
template <typename T>
void
js::TraceRoot(JSTracer* trc, ReadBarriered<T>* thingp, const char* name)
{
TraceRoot(trc, thingp->unsafeGet(), name);
}
template <typename T>
void
js::TraceNullableRoot(JSTracer* trc, T* thingp, const char* name)
{
AssertRootMarkingPhase(trc);
if (InternalBarrierMethods<T>::isMarkableTaggedPointer(*thingp))
DispatchToTracer(trc, ConvertToBase(thingp), name);
}
template <typename T>
void
js::TraceNullableRoot(JSTracer* trc, ReadBarriered<T>* thingp, const char* name)
{
TraceNullableRoot(trc, thingp->unsafeGet(), name);
}
template <typename T>
JS_PUBLIC_API(void)
JS::UnsafeTraceRoot(JSTracer* trc, T* thingp, const char* name)
{
MOZ_ASSERT(thingp);
js::TraceNullableRoot(trc, thingp, name);
}
template <typename T>
void
js::TraceRange(JSTracer* trc, size_t len, WriteBarrieredBase<T>* vec, const char* name)
{
JS::AutoTracingIndex index(trc);
for (auto i : MakeRange(len)) {
if (InternalBarrierMethods<T>::isMarkable(vec[i].get()))
DispatchToTracer(trc, ConvertToBase(vec[i].unsafeUnbarrieredForTracing()), name);
++index;
}
}
template <typename T>
void
js::TraceRootRange(JSTracer* trc, size_t len, T* vec, const char* name)
{
AssertRootMarkingPhase(trc);
JS::AutoTracingIndex index(trc);
for (auto i : MakeRange(len)) {
if (InternalBarrierMethods<T>::isMarkable(vec[i]))
DispatchToTracer(trc, ConvertToBase(&vec[i]), name);
++index;
}
}
// Instantiate a copy of the Tracing templates for each derived type.
#define INSTANTIATE_ALL_VALID_TRACE_FUNCTIONS(type) \
template void js::TraceEdge<type>(JSTracer*, WriteBarrieredBase<type>*, const char*); \
template void js::TraceEdge<type>(JSTracer*, ReadBarriered<type>*, const char*); \
template void js::TraceNullableEdge<type>(JSTracer*, WriteBarrieredBase<type>*, const char*); \
template void js::TraceManuallyBarrieredEdge<type>(JSTracer*, type*, const char*); \
template void js::TraceWeakEdge<type>(JSTracer*, WeakRef<type>*, const char*); \
template void js::TraceRoot<type>(JSTracer*, type*, const char*); \
template void js::TraceRoot<type>(JSTracer*, ReadBarriered<type>*, const char*); \
template void js::TraceNullableRoot<type>(JSTracer*, type*, const char*); \
template void js::TraceNullableRoot<type>(JSTracer*, ReadBarriered<type>*, const char*); \
template void js::TraceRange<type>(JSTracer*, size_t, WriteBarrieredBase<type>*, const char*); \
template void js::TraceRootRange<type>(JSTracer*, size_t, type*, const char*);
FOR_EACH_GC_POINTER_TYPE(INSTANTIATE_ALL_VALID_TRACE_FUNCTIONS)
#undef INSTANTIATE_ALL_VALID_TRACE_FUNCTIONS
#define INSTANTIATE_PUBLIC_TRACE_FUNCTIONS(type) \
template JS_PUBLIC_API(void) JS::TraceEdge<type>(JSTracer*, JS::Heap<type>*, const char*); \
template JS_PUBLIC_API(void) JS::UnsafeTraceRoot<type>(JSTracer*, type*, const char*); \
template JS_PUBLIC_API(void) js::UnsafeTraceManuallyBarrieredEdge<type>(JSTracer*, type*, \
const char*);
FOR_EACH_PUBLIC_GC_POINTER_TYPE(INSTANTIATE_PUBLIC_TRACE_FUNCTIONS)
FOR_EACH_PUBLIC_TAGGED_GC_POINTER_TYPE(INSTANTIATE_PUBLIC_TRACE_FUNCTIONS)
#undef INSTANTIATE_PUBLIC_TRACE_FUNCTIONS
template <typename T>
void
js::TraceManuallyBarrieredCrossCompartmentEdge(JSTracer* trc, JSObject* src, T* dst,
const char* name)
{
if (ShouldMarkCrossCompartment(trc, src, *dst))
DispatchToTracer(trc, dst, name);
}
template void js::TraceManuallyBarrieredCrossCompartmentEdge<JSObject*>(JSTracer*, JSObject*,
JSObject**, const char*);
template void js::TraceManuallyBarrieredCrossCompartmentEdge<JSScript*>(JSTracer*, JSObject*,
JSScript**, const char*);
template <typename T>
void
js::TraceCrossCompartmentEdge(JSTracer* trc, JSObject* src, WriteBarrieredBase<T>* dst,
const char* name)
{
if (ShouldMarkCrossCompartment(trc, src, dst->get()))
DispatchToTracer(trc, dst->unsafeUnbarrieredForTracing(), name);
}
template void js::TraceCrossCompartmentEdge<Value>(JSTracer*, JSObject*,
WriteBarrieredBase<Value>*, const char*);
template <typename T>
void
js::TraceProcessGlobalRoot(JSTracer* trc, T* thing, const char* name)
{
AssertRootMarkingPhase(trc);
MOZ_ASSERT(ThingIsPermanentAtomOrWellKnownSymbol(thing));
// We have to mark permanent atoms and well-known symbols through a special
// method because the default DoMarking implementation automatically skips
// them. Fortunately, atoms (permanent and non) cannot refer to other GC
// things so they do not need to go through the mark stack and may simply
// be marked directly. Moreover, well-known symbols can refer only to
// permanent atoms, so likewise require no subsquent marking.
CheckTracedThing(trc, *ConvertToBase(&thing));
if (trc->isMarkingTracer())
thing->markIfUnmarked(gc::BLACK);
else
DoCallback(trc->asCallbackTracer(), ConvertToBase(&thing), name);
}
template void js::TraceProcessGlobalRoot<JSAtom>(JSTracer*, JSAtom*, const char*);
template void js::TraceProcessGlobalRoot<JS::Symbol>(JSTracer*, JS::Symbol*, const char*);
// A typed functor adaptor for TraceRoot.
struct TraceRootFunctor {
template <typename T>
void operator()(JSTracer* trc, Cell** thingp, const char* name) {
TraceRoot(trc, reinterpret_cast<T**>(thingp), name);
}
};
void
js::TraceGenericPointerRoot(JSTracer* trc, Cell** thingp, const char* name)
{
MOZ_ASSERT(thingp);
if (!*thingp)
return;
TraceRootFunctor f;
DispatchTraceKindTyped(f, (*thingp)->getTraceKind(), trc, thingp, name);
}
// A typed functor adaptor for TraceManuallyBarrieredEdge.
struct TraceManuallyBarrieredEdgeFunctor {
template <typename T>
void operator()(JSTracer* trc, Cell** thingp, const char* name) {
TraceManuallyBarrieredEdge(trc, reinterpret_cast<T**>(thingp), name);
}
};
void
js::TraceManuallyBarrieredGenericPointerEdge(JSTracer* trc, Cell** thingp, const char* name)
{
MOZ_ASSERT(thingp);
if (!*thingp)
return;
TraceManuallyBarrieredEdgeFunctor f;
DispatchTraceKindTyped(f, (*thingp)->getTraceKind(), trc, thingp, name);
}
// This method is responsible for dynamic dispatch to the real tracer
// implementation. Consider replacing this choke point with virtual dispatch:
// a sufficiently smart C++ compiler may be able to devirtualize some paths.
template <typename T>
void
DispatchToTracer(JSTracer* trc, T* thingp, const char* name)
{
#define IS_SAME_TYPE_OR(name, type, _) mozilla::IsSame<type*, T>::value ||
static_assert(
JS_FOR_EACH_TRACEKIND(IS_SAME_TYPE_OR)
mozilla::IsSame<T, JS::Value>::value ||
mozilla::IsSame<T, jsid>::value ||
mozilla::IsSame<T, TaggedProto>::value,
"Only the base cell layout types are allowed into marking/tracing internals");
#undef IS_SAME_TYPE_OR
if (trc->isMarkingTracer())
return DoMarking(static_cast<GCMarker*>(trc), *thingp);
if (trc->isTenuringTracer())
return static_cast<TenuringTracer*>(trc)->traverse(thingp);
MOZ_ASSERT(trc->isCallbackTracer());
DoCallback(trc->asCallbackTracer(), thingp, name);
}
/*** GC Marking Interface *************************************************************************/
namespace js {
typedef bool HasNoImplicitEdgesType;
template <typename T>
struct ImplicitEdgeHolderType {
typedef HasNoImplicitEdgesType Type;
};
// For now, we only handle JSObject* and JSScript* keys, but the linear time
// algorithm can be easily extended by adding in more types here, then making
// GCMarker::traverse<T> call markPotentialEphemeronKey.
template <>
struct ImplicitEdgeHolderType<JSObject*> {
typedef JSObject* Type;
};
template <>
struct ImplicitEdgeHolderType<JSScript*> {
typedef JSScript* Type;
};
void
GCMarker::markEphemeronValues(gc::Cell* markedCell, WeakEntryVector& values)
{
size_t initialLen = values.length();
for (size_t i = 0; i < initialLen; i++)
values[i].weakmap->traceEntry(this, markedCell, values[i].key);
// The vector should not be appended to during iteration because the key is
// already marked, and even in cases where we have a multipart key, we
// should only be inserting entries for the unmarked portions.
MOZ_ASSERT(values.length() == initialLen);
}
template <typename T>
void
GCMarker::markImplicitEdgesHelper(T markedThing)
{
if (!isWeakMarkingTracer())
return;
Zone* zone = gc::TenuredCell::fromPointer(markedThing)->zone();
MOZ_ASSERT(zone->isGCMarking());
MOZ_ASSERT(!zone->isGCSweeping());
auto p = zone->gcWeakKeys.get(JS::GCCellPtr(markedThing));
if (!p)
return;
WeakEntryVector& markables = p->value;
markEphemeronValues(markedThing, markables);
markables.clear(); // If key address is reused, it should do nothing
}
template <>
void
GCMarker::markImplicitEdgesHelper(HasNoImplicitEdgesType)
{
}
template <typename T>
void
GCMarker::markImplicitEdges(T* thing)
{
markImplicitEdgesHelper<typename ImplicitEdgeHolderType<T*>::Type>(thing);
}
} // namespace js
template <typename T>
static inline bool
MustSkipMarking(GCMarker* gcmarker, T thing)
{
// Don't trace things that are owned by another runtime.
if (IsOwnedByOtherRuntime(gcmarker->runtime(), thing))
return true;
// Don't mark things outside a zone if we are in a per-zone GC.
return !thing->zone()->isGCMarking();
}
template <>
bool
MustSkipMarking<JSObject*>(GCMarker* gcmarker, JSObject* obj)
{
// Don't trace things that are owned by another runtime.
if (IsOwnedByOtherRuntime(gcmarker->runtime(), obj))
return true;
// We may mark a Nursery thing outside the context of the
// MinorCollectionTracer because of a pre-barrier. The pre-barrier is not
// needed in this case because we perform a minor collection before each
// incremental slice.
if (IsInsideNursery(obj))
return true;
// Don't mark things outside a zone if we are in a per-zone GC. It is
// faster to check our own arena, which we can do since we know that
// the object is tenured.
return !TenuredCell::fromPointer(obj)->zone()->isGCMarking();
}
template <typename T>
void
DoMarking(GCMarker* gcmarker, T* thing)
{
// Do per-type marking precondition checks.
if (MustSkipMarking(gcmarker, thing))
return;
CheckTracedThing(gcmarker, thing);
gcmarker->traverse(thing);
// Mark the compartment as live.
SetMaybeAliveFlag(thing);
}
template <typename S>
struct DoMarkingFunctor : public VoidDefaultAdaptor<S> {
template <typename T> void operator()(T* t, GCMarker* gcmarker) { DoMarking(gcmarker, t); }
};
template <typename T>
void
DoMarking(GCMarker* gcmarker, const T& thing)
{
DispatchTyped(DoMarkingFunctor<T>(), thing, gcmarker);
}
template <typename T>
void
NoteWeakEdge(GCMarker* gcmarker, T** thingp)
{
// Do per-type marking precondition checks.
if (MustSkipMarking(gcmarker, *thingp))
return;
CheckTracedThing(gcmarker, *thingp);
// If the target is already marked, there's no need to store the edge.
if (IsMarkedUnbarriered(gcmarker->runtime(), thingp))
return;
gcmarker->noteWeakEdge(thingp);
}
template <typename T>
void
NoteWeakEdge(GCMarker* gcmarker, T* thingp)
{
MOZ_CRASH("the gc does not support tagged pointers as weak edges");
}
template <typename T>
void
js::GCMarker::noteWeakEdge(T* edge)
{
static_assert(IsBaseOf<Cell, typename mozilla::RemovePointer<T>::Type>::value,
"edge must point to a GC pointer");
MOZ_ASSERT((*edge)->isTenured());
// Note: we really want the *source* Zone here. The edge may start in a
// non-gc heap location, however, so we use the fact that cross-zone weak
// references are not allowed and use the *target's* zone.
JS::Zone::WeakEdges &weakRefs = (*edge)->asTenured().zone()->gcWeakRefs;
AutoEnterOOMUnsafeRegion oomUnsafe;
if (!weakRefs.append(reinterpret_cast<TenuredCell**>(edge)))
oomUnsafe.crash("Failed to record a weak edge for sweeping.");
}
// The simplest traversal calls out to the fully generic traceChildren function
// to visit the child edges. In the absence of other traversal mechanisms, this
// function will rapidly grow the stack past its bounds and crash the process.
// Thus, this generic tracing should only be used in cases where subsequent
// tracing will not recurse.
template <typename T>
void
js::GCMarker::markAndTraceChildren(T* thing)
{
if (ThingIsPermanentAtomOrWellKnownSymbol(thing))
return;
if (mark(thing))
thing->traceChildren(this);
}
namespace js {
template <> void GCMarker::traverse(BaseShape* thing) { markAndTraceChildren(thing); }
template <> void GCMarker::traverse(JS::Symbol* thing) { markAndTraceChildren(thing); }
} // namespace js
// Strings, LazyScripts, Shapes, and Scopes are extremely common, but have
// simple patterns of recursion. We traverse trees of these edges immediately,
// with aggressive, manual inlining, implemented by eagerlyTraceChildren.
template <typename T>
void
js::GCMarker::markAndScan(T* thing)
{
if (ThingIsPermanentAtomOrWellKnownSymbol(thing))
return;
if (mark(thing))
eagerlyMarkChildren(thing);
}
namespace js {
template <> void GCMarker::traverse(JSString* thing) { markAndScan(thing); }
template <> void GCMarker::traverse(LazyScript* thing) { markAndScan(thing); }
template <> void GCMarker::traverse(Shape* thing) { markAndScan(thing); }
template <> void GCMarker::traverse(js::Scope* thing) { markAndScan(thing); }
} // namespace js
// Object and ObjectGroup are extremely common and can contain arbitrarily
// nested graphs, so are not trivially inlined. In this case we use a mark
// stack to control recursion. JitCode shares none of these properties, but is
// included for historical reasons. JSScript normally cannot recurse, but may
// be used as a weakmap key and thereby recurse into weakmapped values.
template <typename T>
void
js::GCMarker::markAndPush(StackTag tag, T* thing)
{
if (!mark(thing))
return;
pushTaggedPtr(tag, thing);
markImplicitEdges(thing);
}
namespace js {
template <> void GCMarker::traverse(JSObject* thing) { markAndPush(ObjectTag, thing); }
template <> void GCMarker::traverse(ObjectGroup* thing) { markAndPush(GroupTag, thing); }
template <> void GCMarker::traverse(jit::JitCode* thing) { markAndPush(JitCodeTag, thing); }
template <> void GCMarker::traverse(JSScript* thing) { markAndPush(ScriptTag, thing); }
} // namespace js
namespace js {
template <>
void
GCMarker::traverse(AccessorShape* thing) {
MOZ_CRASH("AccessorShape must be marked as a Shape");
}
} // namespace js
template <typename S, typename T>
static void
CheckTraversedEdge(S source, T* target)
{
// Atoms and Symbols do not have or mark their internal pointers, respectively.
MOZ_ASSERT(!ThingIsPermanentAtomOrWellKnownSymbol(source));
// The Zones must match, unless the target is an atom.
MOZ_ASSERT_IF(!ThingIsPermanentAtomOrWellKnownSymbol(target),
target->zone()->isAtomsZone() || target->zone() == source->zone());
// Atoms and Symbols do not have access to a compartment pointer, or we'd need
// to adjust the subsequent check to catch that case.
MOZ_ASSERT_IF(ThingIsPermanentAtomOrWellKnownSymbol(target), !target->maybeCompartment());
MOZ_ASSERT_IF(target->zoneFromAnyThread()->isAtomsZone(), !target->maybeCompartment());
// If we have access to a compartment pointer for both things, they must match.
MOZ_ASSERT_IF(source->maybeCompartment() && target->maybeCompartment(),
source->maybeCompartment() == target->maybeCompartment());
}
template <typename S, typename T>
void
js::GCMarker::traverseEdge(S source, T* target)
{
CheckTraversedEdge(source, target);
traverse(target);
}
template <typename V, typename S> struct TraverseEdgeFunctor : public VoidDefaultAdaptor<V> {
template <typename T> void operator()(T t, GCMarker* gcmarker, S s) {
return gcmarker->traverseEdge(s, t);
}
};
template <typename S, typename T>
void
js::GCMarker::traverseEdge(S source, const T& thing)
{
DispatchTyped(TraverseEdgeFunctor<T, S>(), thing, this, source);
}
template <typename T>
bool
js::GCMarker::mark(T* thing)
{
AssertZoneIsMarking(thing);
MOZ_ASSERT(!IsInsideNursery(gc::TenuredCell::fromPointer(thing)));
return gc::ParticipatesInCC<T>::value
? gc::TenuredCell::fromPointer(thing)->markIfUnmarked(markColor())
: gc::TenuredCell::fromPointer(thing)->markIfUnmarked(gc::BLACK);
}
/*** Inline, Eager GC Marking *********************************************************************/
// Each of the eager, inline marking paths is directly preceeded by the
// out-of-line, generic tracing code for comparison. Both paths must end up
// traversing equivalent subgraphs.
void
LazyScript::traceChildren(JSTracer* trc)
{
if (script_)
TraceWeakEdge(trc, &script_, "script");
if (function_)
TraceEdge(trc, &function_, "function");
if (sourceObject_)
TraceEdge(trc, &sourceObject_, "sourceObject");
if (enclosingScope_)
TraceEdge(trc, &enclosingScope_, "enclosingScope");
// We rely on the fact that atoms are always tenured.
JSAtom** closedOverBindings = this->closedOverBindings();
for (auto i : MakeRange(numClosedOverBindings())) {
if (closedOverBindings[i])
TraceManuallyBarrieredEdge(trc, &closedOverBindings[i], "closedOverBinding");
}
GCPtrFunction* innerFunctions = this->innerFunctions();
for (auto i : MakeRange(numInnerFunctions()))
TraceEdge(trc, &innerFunctions[i], "lazyScriptInnerFunction");
}
inline void
js::GCMarker::eagerlyMarkChildren(LazyScript *thing)
{
if (thing->script_)
noteWeakEdge(thing->script_.unsafeUnbarrieredForTracing());
if (thing->function_)
traverseEdge(thing, static_cast<JSObject*>(thing->function_));
if (thing->sourceObject_)
traverseEdge(thing, static_cast<JSObject*>(thing->sourceObject_));
if (thing->enclosingScope_)
traverseEdge(thing, static_cast<Scope*>(thing->enclosingScope_));
// We rely on the fact that atoms are always tenured.
JSAtom** closedOverBindings = thing->closedOverBindings();
for (auto i : MakeRange(thing->numClosedOverBindings())) {
if (closedOverBindings[i])
traverseEdge(thing, static_cast<JSString*>(closedOverBindings[i]));
}
GCPtrFunction* innerFunctions = thing->innerFunctions();
for (auto i : MakeRange(thing->numInnerFunctions()))
traverseEdge(thing, static_cast<JSObject*>(innerFunctions[i]));
}
void
Shape::traceChildren(JSTracer* trc)
{
TraceEdge(trc, &base_, "base");
TraceEdge(trc, &propidRef(), "propid");
if (parent)
TraceEdge(trc, &parent, "parent");
if (hasGetterObject())
TraceManuallyBarrieredEdge(trc, &asAccessorShape().getterObj, "getter");
if (hasSetterObject())
TraceManuallyBarrieredEdge(trc, &asAccessorShape().setterObj, "setter");
}
inline void
js::GCMarker::eagerlyMarkChildren(Shape* shape)
{
MOZ_ASSERT(shape->isMarked(this->markColor()));
do {
// Special case: if a base shape has a shape table then all its pointers
// must point to this shape or an anscestor. Since these pointers will
// be traced by this loop they do not need to be traced here as well.
BaseShape* base = shape->base();
CheckTraversedEdge(shape, base);
if (mark(base)) {
MOZ_ASSERT(base->canSkipMarkingShapeTable(shape));
base->traceChildrenSkipShapeTable(this);
}
traverseEdge(shape, shape->propidRef().get());
// When triggered between slices on belhalf of a barrier, these
// objects may reside in the nursery, so require an extra check.
// FIXME: Bug 1157967 - remove the isTenured checks.
if (shape->hasGetterObject() && shape->getterObject()->isTenured())
traverseEdge(shape, shape->getterObject());
if (shape->hasSetterObject() && shape->setterObject()->isTenured())
traverseEdge(shape, shape->setterObject());
shape = shape->previous();
} while (shape && mark(shape));
}
void
JSString::traceChildren(JSTracer* trc)
{
if (hasBase())
traceBase(trc);
else if (isRope())
asRope().traceChildren(trc);
}
inline void
GCMarker::eagerlyMarkChildren(JSString* str)
{
if (str->isLinear())
eagerlyMarkChildren(&str->asLinear());
else
eagerlyMarkChildren(&str->asRope());
}
void
JSString::traceBase(JSTracer* trc)
{
MOZ_ASSERT(hasBase());
TraceManuallyBarrieredEdge(trc, &d.s.u3.base, "base");
}
inline void
js::GCMarker::eagerlyMarkChildren(JSLinearString* linearStr)
{
AssertZoneIsMarking(linearStr);
MOZ_ASSERT(linearStr->isMarked());
MOZ_ASSERT(linearStr->JSString::isLinear());
// Use iterative marking to avoid blowing out the stack.
while (linearStr->hasBase()) {
linearStr = linearStr->base();
MOZ_ASSERT(linearStr->JSString::isLinear());
if (linearStr->isPermanentAtom())
break;
AssertZoneIsMarking(linearStr);
if (!mark(static_cast<JSString*>(linearStr)))
break;
}
}
void
JSRope::traceChildren(JSTracer* trc) {
js::TraceManuallyBarrieredEdge(trc, &d.s.u2.left, "left child");
js::TraceManuallyBarrieredEdge(trc, &d.s.u3.right, "right child");
}
inline void
js::GCMarker::eagerlyMarkChildren(JSRope* rope)
{
// This function tries to scan the whole rope tree using the marking stack
// as temporary storage. If that becomes full, the unscanned ropes are
// added to the delayed marking list. When the function returns, the
// marking stack is at the same depth as it was on entry. This way we avoid
// using tags when pushing ropes to the stack as ropes never leak to other
// users of the stack. This also assumes that a rope can only point to
// other ropes or linear strings, it cannot refer to GC things of other
// types.
ptrdiff_t savedPos = stack.position();
JS_DIAGNOSTICS_ASSERT(rope->getTraceKind() == JS::TraceKind::String);
#ifdef JS_DEBUG
static const size_t DEEP_ROPE_THRESHOLD = 100000;
static const size_t ROPE_CYCLE_HISTORY = 100;
DebugOnly<size_t> ropeDepth = 0;
JSRope* history[ROPE_CYCLE_HISTORY];
#endif
while (true) {
#ifdef JS_DEBUG
if (++ropeDepth >= DEEP_ROPE_THRESHOLD) {
// Bug 1011786 comment 294 - detect cyclic ropes. There are some
// legitimate deep ropes, at least in tests. So if we hit a deep
// rope, start recording the nodes we visit and check whether we
// repeat. But do it on a finite window size W so that we're not
// scanning the full history for every node. And only check every
// Wth push, to add only constant overhead per node. This will only
// catch cycles of size up to W (but it seems most likely that any
// cycles will be size 1 or maybe 2.)
if ((ropeDepth > DEEP_ROPE_THRESHOLD + ROPE_CYCLE_HISTORY) &&
(ropeDepth % ROPE_CYCLE_HISTORY) == 0)
{
for (size_t i = 0; i < ROPE_CYCLE_HISTORY; i++)
MOZ_ASSERT(history[i] != rope, "cycle detected in rope");
}
history[ropeDepth % ROPE_CYCLE_HISTORY] = rope;
}
#endif
JS_DIAGNOSTICS_ASSERT(rope->getTraceKind() == JS::TraceKind::String);
JS_DIAGNOSTICS_ASSERT(rope->JSString::isRope());
AssertZoneIsMarking(rope);
MOZ_ASSERT(rope->isMarked());
JSRope* next = nullptr;
JSString* right = rope->rightChild();
if (!right->isPermanentAtom() &&
mark(right))
{
if (right->isLinear())
eagerlyMarkChildren(&right->asLinear());
else
next = &right->asRope();
}
JSString* left = rope->leftChild();
if (!left->isPermanentAtom() &&
mark(left))
{
if (left->isLinear()) {
eagerlyMarkChildren(&left->asLinear());
} else {
// When both children are ropes, set aside the right one to
// scan it later.
if (next && !stack.push(reinterpret_cast<uintptr_t>(next)))
delayMarkingChildren(next);
next = &left->asRope();
}
}
if (next) {
rope = next;
} else if (savedPos != stack.position()) {
MOZ_ASSERT(savedPos < stack.position());
rope = reinterpret_cast<JSRope*>(stack.pop());
} else {
break;
}
}
MOZ_ASSERT(savedPos == stack.position());
}
static inline void
TraceBindingNames(JSTracer* trc, BindingName* names, uint32_t length)
{
for (uint32_t i = 0; i < length; i++) {
JSAtom* name = names[i].name();
MOZ_ASSERT(name);
TraceManuallyBarrieredEdge(trc, &name, "scope name");
}
};
static inline void
TraceNullableBindingNames(JSTracer* trc, BindingName* names, uint32_t length)
{
for (uint32_t i = 0; i < length; i++) {
if (JSAtom* name = names[i].name())
TraceManuallyBarrieredEdge(trc, &name, "scope name");
}
};
void
BindingName::trace(JSTracer* trc)
{
if (JSAtom* atom = name())
TraceManuallyBarrieredEdge(trc, &atom, "binding name");
}
void
BindingIter::trace(JSTracer* trc)
{
TraceNullableBindingNames(trc, names_, length_);
}
void
LexicalScope::Data::trace(JSTracer* trc)
{
TraceBindingNames(trc, trailingNames.start(), length);
}
void
FunctionScope::Data::trace(JSTracer* trc)
{
TraceNullableEdge(trc, &canonicalFunction, "scope canonical function");
TraceNullableBindingNames(trc, trailingNames.start(), length);
}
void
VarScope::Data::trace(JSTracer* trc)
{
TraceBindingNames(trc, trailingNames.start(), length);
}
void
GlobalScope::Data::trace(JSTracer* trc)
{
TraceBindingNames(trc, trailingNames.start(), length);
}
void
EvalScope::Data::trace(JSTracer* trc)
{
TraceBindingNames(trc, trailingNames.start(), length);
}
void
ModuleScope::Data::trace(JSTracer* trc)
{
TraceNullableEdge(trc, &module, "scope module");
TraceBindingNames(trc, trailingNames.start(), length);
}
void
Scope::traceChildren(JSTracer* trc)
{
TraceNullableEdge(trc, &enclosing_, "scope enclosing");
TraceNullableEdge(trc, &environmentShape_, "scope env shape");
switch (kind_) {
case ScopeKind::Function:
reinterpret_cast<FunctionScope::Data*>(data_)->trace(trc);
break;
case ScopeKind::FunctionBodyVar:
case ScopeKind::ParameterExpressionVar:
reinterpret_cast<VarScope::Data*>(data_)->trace(trc);
break;
case ScopeKind::Lexical:
case ScopeKind::SimpleCatch:
case ScopeKind::Catch:
case ScopeKind::NamedLambda:
case ScopeKind::StrictNamedLambda:
reinterpret_cast<LexicalScope::Data*>(data_)->trace(trc);
break;
case ScopeKind::Global:
case ScopeKind::NonSyntactic:
reinterpret_cast<GlobalScope::Data*>(data_)->trace(trc);
break;
case ScopeKind::Eval:
case ScopeKind::StrictEval:
reinterpret_cast<EvalScope::Data*>(data_)->trace(trc);
break;
case ScopeKind::Module:
reinterpret_cast<ModuleScope::Data*>(data_)->trace(trc);
break;
case ScopeKind::With:
break;
}
}
inline void
js::GCMarker::eagerlyMarkChildren(Scope* scope)
{
if (scope->enclosing_)
traverseEdge(scope, static_cast<Scope*>(scope->enclosing_));
if (scope->environmentShape_)
traverseEdge(scope, static_cast<Shape*>(scope->environmentShape_));
TrailingNamesArray* names = nullptr;
uint32_t length = 0;
switch (scope->kind_) {
case ScopeKind::Function: {
FunctionScope::Data* data = reinterpret_cast<FunctionScope::Data*>(scope->data_);
traverseEdge(scope, static_cast<JSObject*>(data->canonicalFunction));
names = &data->trailingNames;
length = data->length;
break;
}
case ScopeKind::FunctionBodyVar:
case ScopeKind::ParameterExpressionVar: {
VarScope::Data* data = reinterpret_cast<VarScope::Data*>(scope->data_);
names = &data->trailingNames;
length = data->length;
break;
}
case ScopeKind::Lexical:
case ScopeKind::SimpleCatch:
case ScopeKind::Catch:
case ScopeKind::NamedLambda:
case ScopeKind::StrictNamedLambda: {
LexicalScope::Data* data = reinterpret_cast<LexicalScope::Data*>(scope->data_);
names = &data->trailingNames;
length = data->length;
break;
}
case ScopeKind::Global:
case ScopeKind::NonSyntactic: {
GlobalScope::Data* data = reinterpret_cast<GlobalScope::Data*>(scope->data_);
names = &data->trailingNames;
length = data->length;
break;
}
case ScopeKind::Eval:
case ScopeKind::StrictEval: {
EvalScope::Data* data = reinterpret_cast<EvalScope::Data*>(scope->data_);
names = &data->trailingNames;
length = data->length;
break;
}
case ScopeKind::Module: {
ModuleScope::Data* data = reinterpret_cast<ModuleScope::Data*>(scope->data_);
traverseEdge(scope, static_cast<JSObject*>(data->module));
names = &data->trailingNames;
length = data->length;
break;
}
case ScopeKind::With:
break;
}
if (scope->kind_ == ScopeKind::Function) {
for (uint32_t i = 0; i < length; i++) {
if (JSAtom* name = names->operator[](i).name())
traverseEdge(scope, static_cast<JSString*>(name));
}
} else {
for (uint32_t i = 0; i < length; i++)
traverseEdge(scope, static_cast<JSString*>(names->operator[](i).name()));
}
}
void
js::ObjectGroup::traceChildren(JSTracer* trc)
{
unsigned count = getPropertyCount();
for (unsigned i = 0; i < count; i++) {
if (ObjectGroup::Property* prop = getProperty(i))
TraceEdge(trc, &prop->id, "group_property");
}
if (proto().isObject())
TraceEdge(trc, &proto(), "group_proto");
if (trc->isMarkingTracer())
compartment()->mark();
if (JSObject* global = compartment()->unsafeUnbarrieredMaybeGlobal())
TraceManuallyBarrieredEdge(trc, &global, "group_global");
if (newScript())
newScript()->trace(trc);
if (maybePreliminaryObjects())
maybePreliminaryObjects()->trace(trc);
if (maybeUnboxedLayout())
unboxedLayout().trace(trc);
if (ObjectGroup* unboxedGroup = maybeOriginalUnboxedGroup()) {
TraceManuallyBarrieredEdge(trc, &unboxedGroup, "group_original_unboxed_group");
setOriginalUnboxedGroup(unboxedGroup);
}
if (JSObject* descr = maybeTypeDescr()) {
TraceManuallyBarrieredEdge(trc, &descr, "group_type_descr");
setTypeDescr(&descr->as<TypeDescr>());
}
if (JSObject* fun = maybeInterpretedFunction()) {
TraceManuallyBarrieredEdge(trc, &fun, "group_function");
setInterpretedFunction(&fun->as<JSFunction>());
}
}
void
js::GCMarker::lazilyMarkChildren(ObjectGroup* group)
{
unsigned count = group->getPropertyCount();
for (unsigned i = 0; i < count; i++) {
if (ObjectGroup::Property* prop = group->getProperty(i))
traverseEdge(group, prop->id.get());
}
if (group->proto().isObject())
traverseEdge(group, group->proto().toObject());
group->compartment()->mark();
if (GlobalObject* global = group->compartment()->unsafeUnbarrieredMaybeGlobal())
traverseEdge(group, static_cast<JSObject*>(global));
if (group->newScript())
group->newScript()->trace(this);
if (group->maybePreliminaryObjects())
group->maybePreliminaryObjects()->trace(this);
if (group->maybeUnboxedLayout())
group->unboxedLayout().trace(this);
if (ObjectGroup* unboxedGroup = group->maybeOriginalUnboxedGroup())
traverseEdge(group, unboxedGroup);
if (TypeDescr* descr = group->maybeTypeDescr())
traverseEdge(group, static_cast<JSObject*>(descr));
if (JSFunction* fun = group->maybeInterpretedFunction())
traverseEdge(group, static_cast<JSObject*>(fun));
}
struct TraverseObjectFunctor
{
template <typename T>
void operator()(T* thing, GCMarker* gcmarker, JSObject* src) {
gcmarker->traverseEdge(src, *thing);
}
};
// Call the trace hook set on the object, if present. If further tracing of
// NativeObject fields is required, this will return the native object.
enum class CheckGeneration { DoChecks, NoChecks};
template <typename Functor, typename... Args>
static inline NativeObject*
CallTraceHook(Functor f, JSTracer* trc, JSObject* obj, CheckGeneration check, Args&&... args)
{
const Class* clasp = obj->getClass();
MOZ_ASSERT(clasp);
MOZ_ASSERT(obj->isNative() == clasp->isNative());
if (!clasp->hasTrace())
return &obj->as<NativeObject>();
if (clasp->isTrace(InlineTypedObject::obj_trace)) {
Shape** pshape = obj->as<InlineTypedObject>().addressOfShapeFromGC();
f(pshape, mozilla::Forward<Args>(args)...);
InlineTypedObject& tobj = obj->as<InlineTypedObject>();
if (tobj.typeDescr().hasTraceList()) {
VisitTraceList(f, tobj.typeDescr().traceList(), tobj.inlineTypedMemForGC(),
mozilla::Forward<Args>(args)...);
}
return nullptr;
}
if (clasp == &UnboxedPlainObject::class_) {
JSObject** pexpando = obj->as<UnboxedPlainObject>().addressOfExpando();
if (*pexpando)
f(pexpando, mozilla::Forward<Args>(args)...);
UnboxedPlainObject& unboxed = obj->as<UnboxedPlainObject>();
const UnboxedLayout& layout = check == CheckGeneration::DoChecks
? unboxed.layout()
: unboxed.layoutDontCheckGeneration();
if (layout.traceList()) {
VisitTraceList(f, layout.traceList(), unboxed.data(),
mozilla::Forward<Args>(args)...);
}
return nullptr;
}
clasp->doTrace(trc, obj);
if (!clasp->isNative())
return nullptr;
return &obj->as<NativeObject>();
}
template <typename F, typename... Args>
static void
VisitTraceList(F f, const int32_t* traceList, uint8_t* memory, Args&&... args)
{
while (*traceList != -1) {
f(reinterpret_cast<JSString**>(memory + *traceList), mozilla::Forward<Args>(args)...);
traceList++;
}
traceList++;
while (*traceList != -1) {
JSObject** objp = reinterpret_cast<JSObject**>(memory + *traceList);
if (*objp)
f(objp, mozilla::Forward<Args>(args)...);
traceList++;
}
traceList++;
while (*traceList != -1) {
f(reinterpret_cast<Value*>(memory + *traceList), mozilla::Forward<Args>(args)...);
traceList++;
}
}
/*** Mark-stack Marking ***************************************************************************/
bool
GCMarker::drainMarkStack(SliceBudget& budget)
{
#ifdef DEBUG
MOZ_ASSERT(!strictCompartmentChecking);
strictCompartmentChecking = true;
auto acc = mozilla::MakeScopeExit([&] {strictCompartmentChecking = false;});
#endif
if (budget.isOverBudget())
return false;
for (;;) {
while (!stack.isEmpty()) {
processMarkStackTop(budget);
if (budget.isOverBudget()) {
saveValueRanges();
return false;
}
}
if (!hasDelayedChildren())
break;
/*
* Mark children of things that caused too deep recursion during the
* above tracing. Don't do this until we're done with everything
* else.
*/
if (!markDelayedChildren(budget)) {
saveValueRanges();
return false;
}
}
return true;
}
inline static bool
ObjectDenseElementsMayBeMarkable(NativeObject* nobj)
{
/*
* For arrays that are large enough it's worth checking the type information
* to see if the object's elements contain any GC pointers. If not, we
* don't need to trace them.
*/
const unsigned MinElementsLength = 32;
if (nobj->getDenseInitializedLength() < MinElementsLength || nobj->isSingleton())
return true;
ObjectGroup* group = nobj->group();
if (group->needsSweep() || group->unknownProperties())
return true;
HeapTypeSet* typeSet = group->maybeGetProperty(JSID_VOID);
if (!typeSet)
return true;
static const uint32_t flagMask =
TYPE_FLAG_STRING | TYPE_FLAG_SYMBOL | TYPE_FLAG_LAZYARGS | TYPE_FLAG_ANYOBJECT;
bool mayBeMarkable = typeSet->hasAnyFlag(flagMask) || typeSet->getObjectCount() != 0;
#ifdef DEBUG
if (!mayBeMarkable) {
const Value* elements = nobj->getDenseElementsAllowCopyOnWrite();
for (unsigned i = 0; i < nobj->getDenseInitializedLength(); i++)
MOZ_ASSERT(!elements[i].isGCThing());
}
#endif
return mayBeMarkable;
}
inline void
GCMarker::processMarkStackTop(SliceBudget& budget)
{
/*
* The function uses explicit goto and implements the scanning of the
* object directly. It allows to eliminate the tail recursion and
* significantly improve the marking performance, see bug 641025.
*/
HeapSlot* vp;
HeapSlot* end;
JSObject* obj;
// Decode
uintptr_t addr = stack.pop();
uintptr_t tag = addr & StackTagMask;
addr &= ~StackTagMask;
// Dispatch
switch (tag) {
case ValueArrayTag: {
JS_STATIC_ASSERT(ValueArrayTag == 0);
MOZ_ASSERT(!(addr & CellMask));
obj = reinterpret_cast<JSObject*>(addr);
uintptr_t addr2 = stack.pop();
uintptr_t addr3 = stack.pop();
MOZ_ASSERT(addr2 <= addr3);
MOZ_ASSERT((addr3 - addr2) % sizeof(Value) == 0);
vp = reinterpret_cast<HeapSlot*>(addr2);
end = reinterpret_cast<HeapSlot*>(addr3);
goto scan_value_array;
}
case ObjectTag: {
obj = reinterpret_cast<JSObject*>(addr);
AssertZoneIsMarking(obj);
goto scan_obj;
}
case GroupTag: {
return lazilyMarkChildren(reinterpret_cast<ObjectGroup*>(addr));
}
case JitCodeTag: {
return reinterpret_cast<jit::JitCode*>(addr)->traceChildren(this);
}
case ScriptTag: {
return reinterpret_cast<JSScript*>(addr)->traceChildren(this);
}
case SavedValueArrayTag: {
MOZ_ASSERT(!(addr & CellMask));
JSObject* obj = reinterpret_cast<JSObject*>(addr);
HeapSlot* vp;
HeapSlot* end;
if (restoreValueArray(obj, (void**)&vp, (void**)&end))
pushValueArray(&obj->as<NativeObject>(), vp, end);
else
repush(obj);
return;
}
default: MOZ_CRASH("Invalid tag in mark stack");
}
return;
scan_value_array:
MOZ_ASSERT(vp <= end);
while (vp != end) {
budget.step();
if (budget.isOverBudget()) {
pushValueArray(obj, vp, end);
return;
}
const Value& v = *vp++;
if (v.isString()) {
traverseEdge(obj, v.toString());
} else if (v.isObject()) {
JSObject* obj2 = &v.toObject();
MOZ_ASSERT(obj->compartment() == obj2->compartment());
if (mark(obj2)) {
// Save the rest of this value array for later and start scanning obj2's children.
pushValueArray(obj, vp, end);
obj = obj2;
goto scan_obj;
}
} else if (v.isSymbol()) {
traverseEdge(obj, v.toSymbol());
} else if (v.isPrivateGCThing()) {
traverseEdge(obj, v.toGCCellPtr());
}
}
return;
scan_obj:
{
AssertZoneIsMarking(obj);
budget.step();
if (budget.isOverBudget()) {
repush(obj);
return;
}
markImplicitEdges(obj);
ObjectGroup* group = obj->groupFromGC();
traverseEdge(obj, group);
NativeObject *nobj = CallTraceHook(TraverseObjectFunctor(), this, obj,
CheckGeneration::DoChecks, this, obj);
if (!nobj)
return;
Shape* shape = nobj->lastProperty();
traverseEdge(obj, shape);
unsigned nslots = nobj->slotSpan();
do {
if (nobj->hasEmptyElements())
break;
if (nobj->denseElementsAreCopyOnWrite()) {
JSObject* owner = nobj->getElementsHeader()->ownerObject();
if (owner != nobj) {
traverseEdge(obj, owner);
break;
}
}
if (!ObjectDenseElementsMayBeMarkable(nobj))
break;
vp = nobj->getDenseElementsAllowCopyOnWrite();
end = vp + nobj->getDenseInitializedLength();
if (!nslots)
goto scan_value_array;
pushValueArray(nobj, vp, end);
} while (false);
vp = nobj->fixedSlots();
if (nobj->slots_) {
unsigned nfixed = nobj->numFixedSlots();
if (nslots > nfixed) {
pushValueArray(nobj, vp, vp + nfixed);
vp = nobj->slots_;
end = vp + (nslots - nfixed);
goto scan_value_array;
}
}
MOZ_ASSERT(nslots <= nobj->numFixedSlots());
end = vp + nslots;
goto scan_value_array;
}
}
struct SlotArrayLayout
{
union {
HeapSlot* end;
uintptr_t kind;
};
union {
HeapSlot* start;
uintptr_t index;
};
NativeObject* obj;
static void staticAsserts() {
/* This should have the same layout as three mark stack items. */
JS_STATIC_ASSERT(sizeof(SlotArrayLayout) == 3 * sizeof(uintptr_t));
}
};
/*
* During incremental GC, we return from drainMarkStack without having processed
* the entire stack. At that point, JS code can run and reallocate slot arrays
* that are stored on the stack. To prevent this from happening, we replace all
* ValueArrayTag stack items with SavedValueArrayTag. In the latter, slots
* pointers are replaced with slot indexes, and slot array end pointers are
* replaced with the kind of index (properties vs. elements).
*/
void
GCMarker::saveValueRanges()
{
for (uintptr_t* p = stack.tos_; p > stack.stack_; ) {
uintptr_t tag = *--p & StackTagMask;
if (tag == ValueArrayTag) {
*p &= ~StackTagMask;
p -= 2;
SlotArrayLayout* arr = reinterpret_cast<SlotArrayLayout*>(p);
NativeObject* obj = arr->obj;
MOZ_ASSERT(obj->isNative());
HeapSlot* vp = obj->getDenseElementsAllowCopyOnWrite();
if (arr->end == vp + obj->getDenseInitializedLength()) {
MOZ_ASSERT(arr->start >= vp);
arr->index = arr->start - vp;
arr->kind = HeapSlot::Element;
} else {
HeapSlot* vp = obj->fixedSlots();
unsigned nfixed = obj->numFixedSlots();
if (arr->start == arr->end) {
arr->index = obj->slotSpan();
} else if (arr->start >= vp && arr->start < vp + nfixed) {
MOZ_ASSERT(arr->end == vp + Min(nfixed, obj->slotSpan()));
arr->index = arr->start - vp;
} else {
MOZ_ASSERT(arr->start >= obj->slots_ &&
arr->end == obj->slots_ + obj->slotSpan() - nfixed);
arr->index = (arr->start - obj->slots_) + nfixed;
}
arr->kind = HeapSlot::Slot;
}
p[2] |= SavedValueArrayTag;
} else if (tag == SavedValueArrayTag) {
p -= 2;
}
}
}
bool
GCMarker::restoreValueArray(JSObject* objArg, void** vpp, void** endp)
{
uintptr_t start = stack.pop();
HeapSlot::Kind kind = (HeapSlot::Kind) stack.pop();
if (!objArg->isNative())
return false;
NativeObject* obj = &objArg->as<NativeObject>();
if (kind == HeapSlot::Element) {
if (!obj->is<ArrayObject>())
return false;
uint32_t initlen = obj->getDenseInitializedLength();
HeapSlot* vp = obj->getDenseElementsAllowCopyOnWrite();
if (start < initlen) {
*vpp = vp + start;
*endp = vp + initlen;
} else {
/* The object shrunk, in which case no scanning is needed. */
*vpp = *endp = vp;
}
} else {
MOZ_ASSERT(kind == HeapSlot::Slot);
HeapSlot* vp = obj->fixedSlots();
unsigned nfixed = obj->numFixedSlots();
unsigned nslots = obj->slotSpan();
if (start < nslots) {
if (start < nfixed) {
*vpp = vp + start;
*endp = vp + Min(nfixed, nslots);
} else {
*vpp = obj->slots_ + start - nfixed;
*endp = obj->slots_ + nslots - nfixed;
}
} else {
/* The object shrunk, in which case no scanning is needed. */
*vpp = *endp = vp;
}
}
MOZ_ASSERT(*vpp <= *endp);
return true;
}
/*** Mark Stack ***********************************************************************************/
bool
MarkStack::init(JSGCMode gcMode)
{
setBaseCapacity(gcMode);
MOZ_ASSERT(!stack_);
uintptr_t* newStack = js_pod_malloc<uintptr_t>(baseCapacity_);
if (!newStack)
return false;
setStack(newStack, 0, baseCapacity_);
return true;
}
void
MarkStack::setBaseCapacity(JSGCMode mode)
{
switch (mode) {
case JSGC_MODE_GLOBAL:
case JSGC_MODE_ZONE:
baseCapacity_ = NON_INCREMENTAL_MARK_STACK_BASE_CAPACITY;
break;
case JSGC_MODE_INCREMENTAL:
baseCapacity_ = INCREMENTAL_MARK_STACK_BASE_CAPACITY;
break;
default:
MOZ_CRASH("bad gc mode");
}
if (baseCapacity_ > maxCapacity_)
baseCapacity_ = maxCapacity_;
}
void
MarkStack::setMaxCapacity(size_t maxCapacity)
{
MOZ_ASSERT(maxCapacity != 0);
MOZ_ASSERT(isEmpty());
maxCapacity_ = maxCapacity;
if (baseCapacity_ > maxCapacity_)
baseCapacity_ = maxCapacity_;
reset();
}
void
MarkStack::reset()
{
if (capacity() == baseCapacity_) {
// No size change; keep the current stack.
setStack(stack_, 0, baseCapacity_);
return;
}
MOZ_ASSERT(baseCapacity_ != 0);
uintptr_t* newStack = (uintptr_t*)js_realloc(stack_, sizeof(uintptr_t) * baseCapacity_);
if (!newStack) {
// If the realloc fails, just keep using the existing stack; it's
// not ideal but better than failing.
newStack = stack_;
baseCapacity_ = capacity();
}
setStack(newStack, 0, baseCapacity_);
}
bool
MarkStack::enlarge(unsigned count)
{
size_t newCapacity = Min(maxCapacity_, capacity() * 2);
if (newCapacity < capacity() + count)
return false;
size_t tosIndex = position();
MOZ_ASSERT(newCapacity != 0);
uintptr_t* newStack = (uintptr_t*)js_realloc(stack_, sizeof(uintptr_t) * newCapacity);
if (!newStack)
return false;
setStack(newStack, tosIndex, newCapacity);
return true;
}
void
MarkStack::setGCMode(JSGCMode gcMode)
{
// The mark stack won't be resized until the next call to reset(), but
// that will happen at the end of the next GC.
setBaseCapacity(gcMode);
}
size_t
MarkStack::sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const
{
return mallocSizeOf(stack_);
}
/*** GCMarker *************************************************************************************/
/*
* ExpandWeakMaps: the GC is recomputing the liveness of WeakMap entries by
* expanding each live WeakMap into its constituent key->value edges, a table
* of which will be consulted in a later phase whenever marking a potential
* key.
*/
GCMarker::GCMarker(JSRuntime* rt)
: JSTracer(rt, JSTracer::TracerKindTag::Marking, ExpandWeakMaps),
stack(size_t(-1)),
color(BLACK),
unmarkedArenaStackTop(nullptr)
#ifdef DEBUG
, markLaterArenas(0)
, started(false)
, strictCompartmentChecking(false)
#endif
{
}
bool
GCMarker::init(JSGCMode gcMode)
{
return stack.init(gcMode);
}
void
GCMarker::start()
{
#ifdef DEBUG
MOZ_ASSERT(!started);
started = true;
#endif
color = BLACK;
linearWeakMarkingDisabled_ = false;
MOZ_ASSERT(!unmarkedArenaStackTop);
MOZ_ASSERT(markLaterArenas == 0);
}
void
GCMarker::stop()
{
#ifdef DEBUG
MOZ_ASSERT(isDrained());
MOZ_ASSERT(started);
started = false;
MOZ_ASSERT(!unmarkedArenaStackTop);
MOZ_ASSERT(markLaterArenas == 0);
#endif
/* Free non-ballast stack memory. */
stack.reset();
AutoEnterOOMUnsafeRegion oomUnsafe;
for (GCZonesIter zone(runtime()); !zone.done(); zone.next()) {
if (!zone->gcWeakKeys.clear())
oomUnsafe.crash("clearing weak keys in GCMarker::stop()");
}
}
void
GCMarker::reset()
{
color = BLACK;
stack.reset();
MOZ_ASSERT(isMarkStackEmpty());
while (unmarkedArenaStackTop) {
Arena* arena = unmarkedArenaStackTop;
MOZ_ASSERT(arena->hasDelayedMarking);
MOZ_ASSERT(markLaterArenas);
unmarkedArenaStackTop = arena->getNextDelayedMarking();
arena->unsetDelayedMarking();
arena->markOverflow = 0;
arena->allocatedDuringIncremental = 0;
#ifdef DEBUG
markLaterArenas--;
#endif
}
MOZ_ASSERT(isDrained());
MOZ_ASSERT(!markLaterArenas);
}
void
GCMarker::enterWeakMarkingMode()
{
MOZ_ASSERT(tag_ == TracerKindTag::Marking);
if (linearWeakMarkingDisabled_)
return;
// During weak marking mode, we maintain a table mapping weak keys to
// entries in known-live weakmaps. Initialize it with the keys of marked
// weakmaps -- or more precisely, the keys of marked weakmaps that are
// mapped to not yet live values. (Once bug 1167452 implements incremental
// weakmap marking, this initialization step will become unnecessary, as
// the table will already hold all such keys.)
if (weakMapAction() == ExpandWeakMaps) {
tag_ = TracerKindTag::WeakMarking;
for (GCZoneGroupIter zone(runtime()); !zone.done(); zone.next()) {
for (WeakMapBase* m : zone->gcWeakMapList) {
if (m->marked)
(void) m->traceEntries(this);
}
}
}
}
void
GCMarker::leaveWeakMarkingMode()
{
MOZ_ASSERT_IF(weakMapAction() == ExpandWeakMaps && !linearWeakMarkingDisabled_,
tag_ == TracerKindTag::WeakMarking);
tag_ = TracerKindTag::Marking;
// Table is expensive to maintain when not in weak marking mode, so we'll
// rebuild it upon entry rather than allow it to contain stale data.
AutoEnterOOMUnsafeRegion oomUnsafe;
for (GCZonesIter zone(runtime()); !zone.done(); zone.next()) {
if (!zone->gcWeakKeys.clear())
oomUnsafe.crash("clearing weak keys in GCMarker::leaveWeakMarkingMode()");
}
}
void
GCMarker::markDelayedChildren(Arena* arena)
{
if (arena->markOverflow) {
bool always = arena->allocatedDuringIncremental;
arena->markOverflow = 0;
for (ArenaCellIterUnderGC i(arena); !i.done(); i.next()) {
TenuredCell* t = i.getCell();
if (always || t->isMarked()) {
t->markIfUnmarked();
js::TraceChildren(this, t, MapAllocToTraceKind(arena->getAllocKind()));
}
}
} else {
MOZ_ASSERT(arena->allocatedDuringIncremental);
PushArena(this, arena);
}
arena->allocatedDuringIncremental = 0;
/*
* Note that during an incremental GC we may still be allocating into
* the arena. However, prepareForIncrementalGC sets the
* allocatedDuringIncremental flag if we continue marking.
*/
}
bool
GCMarker::markDelayedChildren(SliceBudget& budget)
{
GCRuntime& gc = runtime()->gc;
gcstats::AutoPhase ap(gc.stats, gc.state() == State::Mark, gcstats::PHASE_MARK_DELAYED);
MOZ_ASSERT(unmarkedArenaStackTop);
do {
/*
* If marking gets delayed at the same arena again, we must repeat
* marking of its things. For that we pop arena from the stack and
* clear its hasDelayedMarking flag before we begin the marking.
*/
Arena* arena = unmarkedArenaStackTop;
MOZ_ASSERT(arena->hasDelayedMarking);
MOZ_ASSERT(markLaterArenas);
unmarkedArenaStackTop = arena->getNextDelayedMarking();
arena->unsetDelayedMarking();
#ifdef DEBUG
markLaterArenas--;
#endif
markDelayedChildren(arena);
budget.step(150);
if (budget.isOverBudget())
return false;
} while (unmarkedArenaStackTop);
MOZ_ASSERT(!markLaterArenas);
return true;
}
template<typename T>
static void
PushArenaTyped(GCMarker* gcmarker, Arena* arena)
{
for (ArenaCellIterUnderGC i(arena); !i.done(); i.next())
gcmarker->traverse(i.get<T>());
}
struct PushArenaFunctor {
template <typename T> void operator()(GCMarker* gcmarker, Arena* arena) {
PushArenaTyped<T>(gcmarker, arena);
}
};
void
gc::PushArena(GCMarker* gcmarker, Arena* arena)
{
DispatchTraceKindTyped(PushArenaFunctor(),
MapAllocToTraceKind(arena->getAllocKind()), gcmarker, arena);
}
#ifdef DEBUG
void
GCMarker::checkZone(void* p)
{
MOZ_ASSERT(started);
DebugOnly<Cell*> cell = static_cast<Cell*>(p);
MOZ_ASSERT_IF(cell->isTenured(), cell->asTenured().zone()->isCollecting());
}
#endif
size_t
GCMarker::sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const
{
size_t size = stack.sizeOfExcludingThis(mallocSizeOf);
for (ZonesIter zone(runtime(), WithAtoms); !zone.done(); zone.next())
size += zone->gcGrayRoots.sizeOfExcludingThis(mallocSizeOf);
return size;
}
/*** Tenuring Tracer *****************************************************************************/
namespace js {
template <typename T>
void
TenuringTracer::traverse(T** tp)
{
}
template <>
void
TenuringTracer::traverse(JSObject** objp)
{
// We only ever visit the internals of objects after moving them to tenured.
MOZ_ASSERT(!nursery().isInside(objp));
if (IsInsideNursery(*objp) && !nursery().getForwardedPointer(objp))
*objp = moveToTenured(*objp);
}
template <typename S>
struct TenuringTraversalFunctor : public IdentityDefaultAdaptor<S> {
template <typename T> S operator()(T* t, TenuringTracer* trc) {
trc->traverse(&t);
return js::gc::RewrapTaggedPointer<S, T>::wrap(t);
}
};
template <typename T>
void
TenuringTracer::traverse(T* thingp)
{
*thingp = DispatchTyped(TenuringTraversalFunctor<T>(), *thingp, this);
}
} // namespace js
template <typename T>
void
js::gc::StoreBuffer::MonoTypeBuffer<T>::trace(StoreBuffer* owner, TenuringTracer& mover)
{
mozilla::ReentrancyGuard g(*owner);
MOZ_ASSERT(owner->isEnabled());
MOZ_ASSERT(stores_.initialized());
if (last_)
last_.trace(mover);
for (typename StoreSet::Range r = stores_.all(); !r.empty(); r.popFront())
r.front().trace(mover);
}
namespace js {
namespace gc {
template void
StoreBuffer::MonoTypeBuffer<StoreBuffer::ValueEdge>::trace(StoreBuffer*, TenuringTracer&);
template void
StoreBuffer::MonoTypeBuffer<StoreBuffer::SlotsEdge>::trace(StoreBuffer*, TenuringTracer&);
template void
StoreBuffer::MonoTypeBuffer<StoreBuffer::CellPtrEdge>::trace(StoreBuffer*, TenuringTracer&);
} // namespace gc
} // namespace js
void
js::gc::StoreBuffer::SlotsEdge::trace(TenuringTracer& mover) const
{
NativeObject* obj = object();
if(!IsCellPointerValid(obj))
return;
// Beware JSObject::swap exchanging a native object for a non-native one.
if (!obj->isNative())
return;
if (IsInsideNursery(obj))
return;
if (kind() == ElementKind) {
int32_t initLen = obj->getDenseInitializedLength();
int32_t clampedStart = Min(start_, initLen);
int32_t clampedEnd = Min(start_ + count_, initLen);
mover.traceSlots(static_cast<HeapSlot*>(obj->getDenseElements() + clampedStart)
->unsafeUnbarrieredForTracing(), clampedEnd - clampedStart);
} else {
int32_t start = Min(uint32_t(start_), obj->slotSpan());
int32_t end = Min(uint32_t(start_) + count_, obj->slotSpan());
MOZ_ASSERT(end >= start);
mover.traceObjectSlots(obj, start, end - start);
}
}
static inline void
TraceWholeCell(TenuringTracer& mover, JSObject* object)
{
mover.traceObject(object);
// Additionally trace the expando object attached to any unboxed plain
// objects. Baseline and Ion can write properties to the expando while
// only adding a post barrier to the owning unboxed object. Note that
// it isn't possible for a nursery unboxed object to have a tenured
// expando, so that adding a post barrier on the original object will
// capture any tenured->nursery edges in the expando as well.
if (object->is<UnboxedPlainObject>()) {
if (UnboxedExpandoObject* expando = object->as<UnboxedPlainObject>().maybeExpando())
expando->traceChildren(&mover);
}
}
static inline void
TraceWholeCell(TenuringTracer& mover, JSScript* script)
{
script->traceChildren(&mover);
}
static inline void
TraceWholeCell(TenuringTracer& mover, jit::JitCode* jitcode)
{
jitcode->traceChildren(&mover);
}
template <typename T>
static void
TraceBufferedCells(TenuringTracer& mover, Arena* arena, ArenaCellSet* cells)
{
for (size_t i = 0; i < ArenaCellCount; i++) {
if (cells->hasCell(i)) {
auto cell = reinterpret_cast<T*>(uintptr_t(arena) + CellSize * i);
TraceWholeCell(mover, cell);
}
}
}
void
js::gc::StoreBuffer::traceWholeCells(TenuringTracer& mover)
{
for (ArenaCellSet* cells = bufferWholeCell; cells; cells = cells->next) {
Arena* arena = cells->arena;
if(!IsCellPointerValid(arena))
continue;
MOZ_ASSERT(arena->bufferedCells == cells);
arena->bufferedCells = &ArenaCellSet::Empty;
JS::TraceKind kind = MapAllocToTraceKind(arena->getAllocKind());
switch (kind) {
case JS::TraceKind::Object:
TraceBufferedCells<JSObject>(mover, arena, cells);
break;
case JS::TraceKind::Script:
TraceBufferedCells<JSScript>(mover, arena, cells);
break;
case JS::TraceKind::JitCode:
TraceBufferedCells<jit::JitCode>(mover, arena, cells);
break;
default:
MOZ_CRASH("Unexpected trace kind");
}
}
bufferWholeCell = nullptr;
}
void
js::gc::StoreBuffer::CellPtrEdge::trace(TenuringTracer& mover) const
{
if (!*edge)
return;
// XXX: We should check if the cell pointer is valid here too
MOZ_ASSERT((*edge)->getTraceKind() == JS::TraceKind::Object);
mover.traverse(reinterpret_cast<JSObject**>(edge));
}
void
js::gc::StoreBuffer::ValueEdge::trace(TenuringTracer& mover) const
{
if (deref())
mover.traverse(edge);
}
/* Insert the given relocation entry into the list of things to visit. */
void
js::TenuringTracer::insertIntoFixupList(RelocationOverlay* entry) {
*tail = entry;
tail = &entry->nextRef();
*tail = nullptr;
}
JSObject*
js::TenuringTracer::moveToTenured(JSObject* src)
{
MOZ_ASSERT(IsInsideNursery(src));
MOZ_ASSERT(!src->zone()->usedByExclusiveThread);
AllocKind dstKind = src->allocKindForTenure(nursery());
Zone* zone = src->zone();
TenuredCell* t = zone->arenas.allocateFromFreeList(dstKind, Arena::thingSize(dstKind));
if (!t) {
AutoEnterOOMUnsafeRegion oomUnsafe;
t = runtime()->gc.refillFreeListInGC(zone, dstKind);
if (!t)
oomUnsafe.crash(ChunkSize, "Failed to allocate object while tenuring.");
}
JSObject* dst = reinterpret_cast<JSObject*>(t);
tenuredSize += moveObjectToTenured(dst, src, dstKind);
RelocationOverlay* overlay = RelocationOverlay::fromCell(src);
overlay->forwardTo(dst);
insertIntoFixupList(overlay);
TracePromoteToTenured(src, dst);
MemProfiler::MoveNurseryToTenured(src, dst);
return dst;
}
void
js::Nursery::collectToFixedPoint(TenuringTracer& mover, TenureCountCache& tenureCounts)
{
for (RelocationOverlay* p = mover.head; p; p = p->next()) {
JSObject* obj = static_cast<JSObject*>(p->forwardingAddress());
mover.traceObject(obj);
TenureCount& entry = tenureCounts.findEntry(obj->groupRaw());
if (entry.group == obj->groupRaw()) {
entry.count++;
} else if (!entry.group) {
entry.group = obj->groupRaw();
entry.count = 1;
}
}
}
struct TenuringFunctor
{
template <typename T>
void operator()(T* thing, TenuringTracer& mover) {
mover.traverse(thing);
}
};
// Visit all object children of the object and trace them.
void
js::TenuringTracer::traceObject(JSObject* obj)
{
NativeObject *nobj = CallTraceHook(TenuringFunctor(), this, obj,
CheckGeneration::NoChecks, *this);
if (!nobj)
return;
// Note: the contents of copy on write elements pointers are filled in
// during parsing and cannot contain nursery pointers.
if (!nobj->hasEmptyElements() &&
!nobj->denseElementsAreCopyOnWrite() &&
ObjectDenseElementsMayBeMarkable(nobj))
{
Value* elems = static_cast<HeapSlot*>(nobj->getDenseElements())->unsafeUnbarrieredForTracing();
traceSlots(elems, elems + nobj->getDenseInitializedLength());
}
traceObjectSlots(nobj, 0, nobj->slotSpan());
}
void
js::TenuringTracer::traceObjectSlots(NativeObject* nobj, uint32_t start, uint32_t length)
{
HeapSlot* fixedStart;
HeapSlot* fixedEnd;
HeapSlot* dynStart;
HeapSlot* dynEnd;
nobj->getSlotRange(start, length, &fixedStart, &fixedEnd, &dynStart, &dynEnd);
if (fixedStart)
traceSlots(fixedStart->unsafeUnbarrieredForTracing(), fixedEnd->unsafeUnbarrieredForTracing());
if (dynStart)
traceSlots(dynStart->unsafeUnbarrieredForTracing(), dynEnd->unsafeUnbarrieredForTracing());
}
void
js::TenuringTracer::traceSlots(Value* vp, Value* end)
{
for (; vp != end; ++vp)
traverse(vp);
}
#ifdef DEBUG
static inline ptrdiff_t
OffsetToChunkEnd(void* p)
{
return ChunkLocationOffset - (uintptr_t(p) & gc::ChunkMask);
}
#endif
size_t
js::TenuringTracer::moveObjectToTenured(JSObject* dst, JSObject* src, AllocKind dstKind)
{
size_t srcSize = Arena::thingSize(dstKind);
size_t tenuredSize = srcSize;
/*
* Arrays do not necessarily have the same AllocKind between src and dst.
* We deal with this by copying elements manually, possibly re-inlining
* them if there is adequate room inline in dst.
*
* For Arrays we're reducing tenuredSize to the smaller srcSize
* because moveElementsToTenured() accounts for all Array elements,
* even if they are inlined.
*/
if (src->is<ArrayObject>()) {
tenuredSize = srcSize = sizeof(NativeObject);
} else if (src->is<TypedArrayObject>()) {
TypedArrayObject* tarray = &src->as<TypedArrayObject>();
// Typed arrays with inline data do not necessarily have the same
// AllocKind between src and dst. The nursery does not allocate an
// inline data buffer that has the same size as the slow path will do.
// In the slow path, the Typed Array Object stores the inline data
// in the allocated space that fits the AllocKind. In the fast path,
// the nursery will allocate another buffer that is directly behind the
// minimal JSObject. That buffer size plus the JSObject size is not
// necessarily as large as the slow path's AllocKind size.
if (tarray->hasInlineElements()) {
AllocKind srcKind = GetGCObjectKind(TypedArrayObject::FIXED_DATA_START);
size_t headerSize = Arena::thingSize(srcKind);
srcSize = headerSize + tarray->byteLength();
}
}
// Copy the Cell contents.
MOZ_ASSERT(OffsetToChunkEnd(src) >= ptrdiff_t(srcSize));
js_memcpy(dst, src, srcSize);
// Move any hash code attached to the object.
src->zone()->transferUniqueId(dst, src);
// Move the slots and elements, if we need to.
if (src->isNative()) {
NativeObject* ndst = &dst->as<NativeObject>();
NativeObject* nsrc = &src->as<NativeObject>();
tenuredSize += moveSlotsToTenured(ndst, nsrc, dstKind);
tenuredSize += moveElementsToTenured(ndst, nsrc, dstKind);
// The shape's list head may point into the old object. This can only
// happen for dictionaries, which are native objects.
if (&nsrc->shape_ == ndst->shape_->listp) {
MOZ_ASSERT(nsrc->shape_->inDictionary());
ndst->shape_->listp = &ndst->shape_;
}
}
if (src->is<InlineTypedObject>()) {
InlineTypedObject::objectMovedDuringMinorGC(this, dst, src);
} else if (src->is<TypedArrayObject>()) {
tenuredSize += TypedArrayObject::objectMovedDuringMinorGC(this, dst, src, dstKind);
} else if (src->is<UnboxedArrayObject>()) {
tenuredSize += UnboxedArrayObject::objectMovedDuringMinorGC(this, dst, src, dstKind);
} else if (src->is<ArgumentsObject>()) {
tenuredSize += ArgumentsObject::objectMovedDuringMinorGC(this, dst, src);
} else if (src->is<ProxyObject>()) {
tenuredSize += ProxyObject::objectMovedDuringMinorGC(this, dst, src);
} else if (JSObjectMovedOp op = dst->getClass()->extObjectMovedOp()) {
op(dst, src);
} else if (src->getClass()->hasFinalize()) {
// Such objects need to be handled specially above to ensure any
// additional nursery buffers they hold are moved.
MOZ_RELEASE_ASSERT(CanNurseryAllocateFinalizedClass(src->getClass()));
MOZ_CRASH("Unhandled JSCLASS_SKIP_NURSERY_FINALIZE Class");
}
return tenuredSize;
}
size_t
js::TenuringTracer::moveSlotsToTenured(NativeObject* dst, NativeObject* src, AllocKind dstKind)
{
/* Fixed slots have already been copied over. */
if (!src->hasDynamicSlots())
return 0;
if (!nursery().isInside(src->slots_)) {
nursery().removeMallocedBuffer(src->slots_);
return 0;
}
Zone* zone = src->zone();
size_t count = src->numDynamicSlots();
{
AutoEnterOOMUnsafeRegion oomUnsafe;
dst->slots_ = zone->pod_malloc<HeapSlot>(count);
if (!dst->slots_)
oomUnsafe.crash(sizeof(HeapSlot) * count, "Failed to allocate slots while tenuring.");
}
PodCopy(dst->slots_, src->slots_, count);
nursery().setSlotsForwardingPointer(src->slots_, dst->slots_, count);
return count * sizeof(HeapSlot);
}
size_t
js::TenuringTracer::moveElementsToTenured(NativeObject* dst, NativeObject* src, AllocKind dstKind)
{
if (src->hasEmptyElements() || src->denseElementsAreCopyOnWrite())
return 0;
Zone* zone = src->zone();
ObjectElements* srcHeader = src->getElementsHeader();
ObjectElements* dstHeader;
/* TODO Bug 874151: Prefer to put element data inline if we have space. */
if (!nursery().isInside(srcHeader)) {
MOZ_ASSERT(src->elements_ == dst->elements_);
nursery().removeMallocedBuffer(srcHeader);
return 0;
}
size_t nslots = ObjectElements::VALUES_PER_HEADER + srcHeader->capacity;
/* Unlike other objects, Arrays can have fixed elements. */
if (src->is<ArrayObject>() && nslots <= GetGCKindSlots(dstKind)) {
dst->as<ArrayObject>().setFixedElements();
dstHeader = dst->as<ArrayObject>().getElementsHeader();
js_memcpy(dstHeader, srcHeader, nslots * sizeof(HeapSlot));
nursery().setElementsForwardingPointer(srcHeader, dstHeader, nslots);
return nslots * sizeof(HeapSlot);
}
MOZ_ASSERT(nslots >= 2);
{
AutoEnterOOMUnsafeRegion oomUnsafe;
dstHeader = reinterpret_cast<ObjectElements*>(zone->pod_malloc<HeapSlot>(nslots));
if (!dstHeader) {
oomUnsafe.crash(sizeof(HeapSlot) * nslots,
"Failed to allocate elements while tenuring.");
}
}
js_memcpy(dstHeader, srcHeader, nslots * sizeof(HeapSlot));
nursery().setElementsForwardingPointer(srcHeader, dstHeader, nslots);
dst->elements_ = dstHeader->elements();
return nslots * sizeof(HeapSlot);
}
/*** IsMarked / IsAboutToBeFinalized **************************************************************/
template <typename T>
static inline void
CheckIsMarkedThing(T* thingp)
{
#define IS_SAME_TYPE_OR(name, type, _) mozilla::IsSame<type*, T>::value ||
static_assert(
JS_FOR_EACH_TRACEKIND(IS_SAME_TYPE_OR)
false, "Only the base cell layout types are allowed into marking/tracing internals");
#undef IS_SAME_TYPE_OR
#ifdef DEBUG
MOZ_ASSERT(thingp);
MOZ_ASSERT(*thingp);
JSRuntime* rt = (*thingp)->runtimeFromAnyThread();
MOZ_ASSERT_IF(!ThingIsPermanentAtomOrWellKnownSymbol(*thingp),
CurrentThreadCanAccessRuntime(rt) ||
(rt->isHeapCollecting() && rt->gc.state() == State::Sweep));
#endif
}
template <typename T>
static bool
IsMarkedInternalCommon(T* thingp)
{
CheckIsMarkedThing(thingp);
MOZ_ASSERT(!IsInsideNursery(*thingp));
Zone* zone = (*thingp)->asTenured().zoneFromAnyThread();
if (!zone->isCollectingFromAnyThread() || zone->isGCFinished())
return true;
if (zone->isGCCompacting() && IsForwarded(*thingp))
*thingp = Forwarded(*thingp);
return (*thingp)->asTenured().isMarked();
}
template <typename T>
static bool
IsMarkedInternal(JSRuntime* rt, T** thingp)
{
if (IsOwnedByOtherRuntime(rt, *thingp))
return true;
return IsMarkedInternalCommon(thingp);
}
template <>
/* static */ bool
IsMarkedInternal(JSRuntime* rt, JSObject** thingp)
{
if (IsOwnedByOtherRuntime(rt, *thingp))
return true;
if (IsInsideNursery(*thingp)) {
MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));
return rt->gc.nursery.getForwardedPointer(thingp);
}
return IsMarkedInternalCommon(thingp);
}
template <typename S>
struct IsMarkedFunctor : public IdentityDefaultAdaptor<S> {
template <typename T> S operator()(T* t, JSRuntime* rt, bool* rv) {
*rv = IsMarkedInternal(rt, &t);
return js::gc::RewrapTaggedPointer<S, T>::wrap(t);
}
};
template <typename T>
static bool
IsMarkedInternal(JSRuntime* rt, T* thingp)
{
bool rv = true;
*thingp = DispatchTyped(IsMarkedFunctor<T>(), *thingp, rt, &rv);
return rv;
}
bool
js::gc::IsAboutToBeFinalizedDuringSweep(TenuredCell& tenured)
{
MOZ_ASSERT(!IsInsideNursery(&tenured));
MOZ_ASSERT(tenured.zoneFromAnyThread()->isGCSweeping());
if (tenured.arena()->allocatedDuringIncremental)
return false;
return !tenured.isMarked();
}
template <typename T>
static bool
IsAboutToBeFinalizedInternal(T** thingp)
{
CheckIsMarkedThing(thingp);
T* thing = *thingp;
JSRuntime* rt = thing->runtimeFromAnyThread();
/* Permanent atoms are never finalized by non-owning runtimes. */
if (ThingIsPermanentAtomOrWellKnownSymbol(thing) && !TlsPerThreadData.get()->associatedWith(rt))
return false;
Nursery& nursery = rt->gc.nursery;
if (IsInsideNursery(thing)) {
MOZ_ASSERT(rt->isHeapMinorCollecting());
return !nursery.getForwardedPointer(reinterpret_cast<JSObject**>(thingp));
}
Zone* zone = thing->asTenured().zoneFromAnyThread();
if (zone->isGCSweeping()) {
return IsAboutToBeFinalizedDuringSweep(thing->asTenured());
} else if (zone->isGCCompacting() && IsForwarded(thing)) {
*thingp = Forwarded(thing);
return false;
}
return false;
}
template <typename S>
struct IsAboutToBeFinalizedFunctor : public IdentityDefaultAdaptor<S> {
template <typename T> S operator()(T* t, bool* rv) {
*rv = IsAboutToBeFinalizedInternal(&t);
return js::gc::RewrapTaggedPointer<S, T>::wrap(t);
}
};
template <typename T>
static bool
IsAboutToBeFinalizedInternal(T* thingp)
{
bool rv = false;
*thingp = DispatchTyped(IsAboutToBeFinalizedFunctor<T>(), *thingp, &rv);
return rv;
}
namespace js {
namespace gc {
template <typename T>
bool
IsMarkedUnbarriered(JSRuntime* rt, T* thingp)
{
return IsMarkedInternal(rt, ConvertToBase(thingp));
}
template <typename T>
bool
IsMarked(JSRuntime* rt, WriteBarrieredBase<T>* thingp)
{
return IsMarkedInternal(rt, ConvertToBase(thingp->unsafeUnbarrieredForTracing()));
}
template <typename T>
bool
IsAboutToBeFinalizedUnbarriered(T* thingp)
{
return IsAboutToBeFinalizedInternal(ConvertToBase(thingp));
}
template <typename T>
bool
IsAboutToBeFinalized(WriteBarrieredBase<T>* thingp)
{
return IsAboutToBeFinalizedInternal(ConvertToBase(thingp->unsafeUnbarrieredForTracing()));
}
template <typename T>
bool
IsAboutToBeFinalized(ReadBarrieredBase<T>* thingp)
{
return IsAboutToBeFinalizedInternal(ConvertToBase(thingp->unsafeUnbarrieredForTracing()));
}
template <typename T>
JS_PUBLIC_API(bool)
EdgeNeedsSweep(JS::Heap<T>* thingp)
{
return IsAboutToBeFinalizedInternal(ConvertToBase(thingp->unsafeGet()));
}
// Instantiate a copy of the Tracing templates for each derived type.
#define INSTANTIATE_ALL_VALID_TRACE_FUNCTIONS(type) \
template bool IsMarkedUnbarriered<type>(JSRuntime*, type*); \
template bool IsMarked<type>(JSRuntime*, WriteBarrieredBase<type>*); \
template bool IsAboutToBeFinalizedUnbarriered<type>(type*); \
template bool IsAboutToBeFinalized<type>(WriteBarrieredBase<type>*); \
template bool IsAboutToBeFinalized<type>(ReadBarrieredBase<type>*);
#define INSTANTIATE_ALL_VALID_HEAP_TRACE_FUNCTIONS(type) \
template JS_PUBLIC_API(bool) EdgeNeedsSweep<type>(JS::Heap<type>*);
FOR_EACH_GC_POINTER_TYPE(INSTANTIATE_ALL_VALID_TRACE_FUNCTIONS)
FOR_EACH_PUBLIC_GC_POINTER_TYPE(INSTANTIATE_ALL_VALID_HEAP_TRACE_FUNCTIONS)
FOR_EACH_PUBLIC_TAGGED_GC_POINTER_TYPE(INSTANTIATE_ALL_VALID_HEAP_TRACE_FUNCTIONS)
#undef INSTANTIATE_ALL_VALID_TRACE_FUNCTIONS
} /* namespace gc */
} /* namespace js */
/*** Cycle Collector Barrier Implementation *******************************************************/
#ifdef DEBUG
struct AssertNonGrayTracer : public JS::CallbackTracer {
explicit AssertNonGrayTracer(JSRuntime* rt) : JS::CallbackTracer(rt) {}
void onChild(const JS::GCCellPtr& thing) override {
MOZ_ASSERT_IF(thing.asCell()->isTenured(),
!thing.asCell()->asTenured().isMarked(js::gc::GRAY));
}
};
#endif
struct UnmarkGrayTracer : public JS::CallbackTracer
{
/*
* We set weakMapAction to DoNotTraceWeakMaps because the cycle collector
* will fix up any color mismatches involving weakmaps when it runs.
*/
explicit UnmarkGrayTracer(JSRuntime *rt, bool tracingShape = false)
: JS::CallbackTracer(rt, DoNotTraceWeakMaps)
, tracingShape(tracingShape)
, previousShape(nullptr)
, unmarkedAny(false)
{}
void onChild(const JS::GCCellPtr& thing) override;
/* True iff we are tracing the immediate children of a shape. */
bool tracingShape;
/* If tracingShape, shape child or nullptr. Otherwise, nullptr. */
Shape* previousShape;
/* Whether we unmarked anything. */
bool unmarkedAny;
};
/*
* The GC and CC are run independently. Consequently, the following sequence of
* events can occur:
* 1. GC runs and marks an object gray.
* 2. The mutator runs (specifically, some C++ code with access to gray
* objects) and creates a pointer from a JS root or other black object to
* the gray object. If we re-ran a GC at this point, the object would now be
* black.
* 3. Now we run the CC. It may think it can collect the gray object, even
* though it's reachable from the JS heap.
*
* To prevent this badness, we unmark the gray bit of an object when it is
* accessed by callers outside XPConnect. This would cause the object to go
* black in step 2 above. This must be done on everything reachable from the
* object being returned. The following code takes care of the recursive
* re-coloring.
*
* There is an additional complication for certain kinds of edges that are not
* contained explicitly in the source object itself, such as from a weakmap key
* to its value. These "implicit edges" are represented in some other
* container object, such as the weakmap itself. In these cases, calling unmark
* gray on an object won't find all of its children.
*
* Handling these implicit edges has two parts:
* - A special pass enumerating all of the containers that know about the
* implicit edges to fix any black-gray edges that have been created. This
* is implemented in nsXPConnect::FixWeakMappingGrayBits.
* - To prevent any incorrectly gray objects from escaping to live JS outside
* of the containers, we must add unmark-graying read barriers to these
* containers.
*/
void
UnmarkGrayTracer::onChild(const JS::GCCellPtr& thing)
{
int stackDummy;
JSContext* cx = runtime()->contextFromMainThread();
if (!JS_CHECK_STACK_SIZE(cx->nativeStackLimit[StackForSystemCode], &stackDummy)) {
/*
* If we run out of stack, we take a more drastic measure: require that
* we GC again before the next CC.
*/
runtime()->setGCGrayBitsValid(false);
return;
}
Cell* cell = thing.asCell();
// Cells in the nursery cannot be gray, and therefore must necessarily point
// to only black edges.
if (!cell->isTenured()) {
#ifdef DEBUG
AssertNonGrayTracer nongray(runtime());
TraceChildren(&nongray, cell, thing.kind());
#endif
return;
}
TenuredCell& tenured = cell->asTenured();
if (!tenured.isMarked(js::gc::GRAY))
return;
tenured.unmark(js::gc::GRAY);
unmarkedAny = true;
// Trace children of |tenured|. If |tenured| and its parent are both
// shapes, |tenured| will get saved to mPreviousShape without being traced.
// The parent will later trace |tenured|. This is done to avoid increasing
// the stack depth during shape tracing. It is safe to do because a shape
// can only have one child that is a shape.
UnmarkGrayTracer childTracer(runtime(), thing.kind() == JS::TraceKind::Shape);
if (thing.kind() != JS::TraceKind::Shape) {
TraceChildren(&childTracer, &tenured, thing.kind());
MOZ_ASSERT(!childTracer.previousShape);
unmarkedAny |= childTracer.unmarkedAny;
return;
}
MOZ_ASSERT(thing.kind() == JS::TraceKind::Shape);
Shape* shape = static_cast<Shape*>(&tenured);
if (tracingShape) {
MOZ_ASSERT(!previousShape);
previousShape = shape;
return;
}
do {
MOZ_ASSERT(!shape->isMarked(js::gc::GRAY));
shape->traceChildren(&childTracer);
shape = childTracer.previousShape;
childTracer.previousShape = nullptr;
} while (shape);
unmarkedAny |= childTracer.unmarkedAny;
}
template <typename T>
static bool
TypedUnmarkGrayCellRecursively(T* t)
{
MOZ_ASSERT(t);
JSRuntime* rt = t->runtimeFromMainThread();
MOZ_ASSERT(!rt->isHeapCollecting());
MOZ_ASSERT(!rt->isCycleCollecting());
bool unmarkedArg = false;
if (t->isTenured()) {
if (!t->asTenured().isMarked(GRAY))
return false;
t->asTenured().unmark(GRAY);
unmarkedArg = true;
}
UnmarkGrayTracer trc(rt);
gcstats::AutoPhase outerPhase(rt->gc.stats, gcstats::PHASE_BARRIER);
gcstats::AutoPhase innerPhase(rt->gc.stats, gcstats::PHASE_UNMARK_GRAY);
t->traceChildren(&trc);
return unmarkedArg || trc.unmarkedAny;
}
struct UnmarkGrayCellRecursivelyFunctor {
template <typename T> bool operator()(T* t) { return TypedUnmarkGrayCellRecursively(t); }
};
bool
js::UnmarkGrayCellRecursively(Cell* cell, JS::TraceKind kind)
{
return DispatchTraceKindTyped(UnmarkGrayCellRecursivelyFunctor(), cell, kind);
}
bool
js::UnmarkGrayShapeRecursively(Shape* shape)
{
return TypedUnmarkGrayCellRecursively(shape);
}
JS_FRIEND_API(bool)
JS::UnmarkGrayGCThingRecursively(JS::GCCellPtr thing)
{
return js::UnmarkGrayCellRecursively(thing.asCell(), thing.kind());
}