Mypal/js/src/vm/Scope.h

1515 lines
43 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef vm_Scope_h
#define vm_Scope_h
#include "mozilla/Maybe.h"
#include "mozilla/Variant.h"
#include "jsobj.h"
#include "jsopcode.h"
#include "jsutil.h"
#include "gc/Heap.h"
#include "gc/Policy.h"
#include "js/UbiNode.h"
#include "js/UniquePtr.h"
#include "vm/Xdr.h"
namespace js {
class ModuleObject;
enum class BindingKind : uint8_t
{
Import,
FormalParameter,
Var,
Let,
Const,
// So you think named lambda callee names are consts? Nope! They don't
// throw when being assigned to in sloppy mode.
NamedLambdaCallee
};
static inline bool
BindingKindIsLexical(BindingKind kind)
{
return kind == BindingKind::Let || kind == BindingKind::Const;
}
enum class ScopeKind : uint8_t
{
// FunctionScope
Function,
// VarScope
FunctionBodyVar,
ParameterExpressionVar,
// LexicalScope
Lexical,
SimpleCatch,
Catch,
NamedLambda,
StrictNamedLambda,
// WithScope
With,
// EvalScope
Eval,
StrictEval,
// GlobalScope
Global,
NonSyntactic,
// ModuleScope
Module
};
static inline bool
ScopeKindIsCatch(ScopeKind kind)
{
return kind == ScopeKind::SimpleCatch || kind == ScopeKind::Catch;
}
const char* BindingKindString(BindingKind kind);
const char* ScopeKindString(ScopeKind kind);
class BindingName
{
// A JSAtom* with its low bit used as a tag for whether it is closed over
// (i.e., exists in the environment shape).
uintptr_t bits_;
static const uintptr_t ClosedOverFlag = 0x1;
static const uintptr_t FlagMask = 0x1;
public:
BindingName()
: bits_(0)
{ }
BindingName(JSAtom* name, bool closedOver)
: bits_(uintptr_t(name) | (closedOver ? ClosedOverFlag : 0x0))
{ }
JSAtom* name() const {
return reinterpret_cast<JSAtom*>(bits_ & ~FlagMask);
}
bool closedOver() const {
return bits_ & ClosedOverFlag;
}
void trace(JSTracer* trc);
};
/**
* The various {Global,Module,...}Scope::Data classes consist of always-present
* bits, then a trailing array of BindingNames. The various Data classes all
* end in a TrailingNamesArray that contains sized/aligned space for *one*
* BindingName. Data instances that contain N BindingNames, are then allocated
* in sizeof(Data) + (space for (N - 1) BindingNames). Because this class's
* |data_| field is properly sized/aligned, the N-BindingName array can start
* at |data_|.
*
* This is concededly a very low-level representation, but we want to only
* allocate once for data+bindings both, and this does so approximately as
* elegantly as C++ allows.
*/
class TrailingNamesArray
{
private:
alignas(BindingName) unsigned char data_[sizeof(BindingName)];
private:
// Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
// -Werror compile error) to reinterpret_cast<> |data_| to |T*|, even
// through |void*|. Placing the latter cast in these separate functions
// breaks the chain such that affected GCC versions no longer warn/error.
void* ptr() {
return data_;
}
public:
// Explicitly ensure no one accidentally allocates scope data without
// poisoning its trailing names.
TrailingNamesArray() = delete;
explicit TrailingNamesArray(size_t nameCount) {
if (nameCount)
JS_POISON(&data_, 0xCC, sizeof(BindingName) * nameCount);
}
BindingName* start() { return reinterpret_cast<BindingName*>(ptr()); }
BindingName& operator[](size_t i) { return start()[i]; }
};
class BindingLocation
{
public:
enum class Kind {
Global,
Argument,
Frame,
Environment,
Import,
NamedLambdaCallee
};
private:
Kind kind_;
uint32_t slot_;
BindingLocation(Kind kind, uint32_t slot)
: kind_(kind),
slot_(slot)
{ }
public:
static BindingLocation Global() {
return BindingLocation(Kind::Global, UINT32_MAX);
}
static BindingLocation Argument(uint16_t slot) {
return BindingLocation(Kind::Argument, slot);
}
static BindingLocation Frame(uint32_t slot) {
MOZ_ASSERT(slot < LOCALNO_LIMIT);
return BindingLocation(Kind::Frame, slot);
}
static BindingLocation Environment(uint32_t slot) {
MOZ_ASSERT(slot < ENVCOORD_SLOT_LIMIT);
return BindingLocation(Kind::Environment, slot);
}
static BindingLocation Import() {
return BindingLocation(Kind::Import, UINT32_MAX);
}
static BindingLocation NamedLambdaCallee() {
return BindingLocation(Kind::NamedLambdaCallee, UINT32_MAX);
}
bool operator==(const BindingLocation& other) const {
return kind_ == other.kind_ && slot_ == other.slot_;
}
bool operator!=(const BindingLocation& other) const {
return !operator==(other);
}
Kind kind() const {
return kind_;
}
uint32_t slot() const {
MOZ_ASSERT(kind_ == Kind::Frame || kind_ == Kind::Environment);
return slot_;
}
uint16_t argumentSlot() const {
MOZ_ASSERT(kind_ == Kind::Argument);
return mozilla::AssertedCast<uint16_t>(slot_);
}
};
//
// The base class of all Scopes.
//
class Scope : public js::gc::TenuredCell
{
friend class GCMarker;
// The kind determines data_.
ScopeKind kind_;
// The enclosing scope or nullptr.
GCPtrScope enclosing_;
// If there are any aliased bindings, the shape for the
// EnvironmentObject. Otherwise nullptr.
GCPtrShape environmentShape_;
protected:
uintptr_t data_;
Scope(ScopeKind kind, Scope* enclosing, Shape* environmentShape)
: kind_(kind),
enclosing_(enclosing),
environmentShape_(environmentShape),
data_(0)
{ }
static Scope* create(ExclusiveContext* cx, ScopeKind kind, HandleScope enclosing,
HandleShape envShape);
template <typename T, typename D>
static Scope* create(ExclusiveContext* cx, ScopeKind kind, HandleScope enclosing,
HandleShape envShape, mozilla::UniquePtr<T, D> data);
template <typename ConcreteScope, XDRMode mode>
static bool XDRSizedBindingNames(XDRState<mode>* xdr, Handle<ConcreteScope*> scope,
MutableHandle<typename ConcreteScope::Data*> data);
Shape* maybeCloneEnvironmentShape(JSContext* cx);
template <typename T, typename D>
void initData(mozilla::UniquePtr<T, D> data) {
MOZ_ASSERT(!data_);
data_ = reinterpret_cast<uintptr_t>(data.release());
}
public:
static const JS::TraceKind TraceKind = JS::TraceKind::Scope;
template <typename T>
bool is() const {
return kind_ == T::classScopeKind_;
}
template <typename T>
T& as() {
MOZ_ASSERT(this->is<T>());
return *static_cast<T*>(this);
}
template <typename T>
const T& as() const {
MOZ_ASSERT(this->is<T>());
return *static_cast<const T*>(this);
}
ScopeKind kind() const {
return kind_;
}
Scope* enclosing() const {
return enclosing_;
}
Shape* environmentShape() const {
return environmentShape_;
}
bool hasEnvironment() const {
switch (kind()) {
case ScopeKind::With:
case ScopeKind::Global:
case ScopeKind::NonSyntactic:
return true;
default:
// If there's a shape, an environment must be created for this scope.
return environmentShape_ != nullptr;
}
}
uint32_t chainLength() const;
uint32_t environmentChainLength() const;
template <typename T>
bool hasOnChain() const {
for (const Scope* it = this; it; it = it->enclosing()) {
if (it->is<T>())
return true;
}
return false;
}
bool hasOnChain(ScopeKind kind) const {
for (const Scope* it = this; it; it = it->enclosing()) {
if (it->kind() == kind)
return true;
}
return false;
}
static Scope* clone(JSContext* cx, HandleScope scope, HandleScope enclosing);
void traceChildren(JSTracer* trc);
void finalize(FreeOp* fop);
size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const;
void dump();
};
//
// A lexical scope that holds let and const bindings. There are 4 kinds of
// LexicalScopes.
//
// Lexical
// A plain lexical scope.
//
// SimpleCatch
// Holds the single catch parameter of a catch block.
//
// Catch
// Holds the catch parameters (and only the catch parameters) of a catch
// block.
//
// NamedLambda
// StrictNamedLambda
// Holds the single name of the callee for a named lambda expression.
//
// All kinds of LexicalScopes correspond to LexicalEnvironmentObjects on the
// environment chain.
//
class LexicalScope : public Scope
{
friend class Scope;
friend class BindingIter;
public:
// Data is public because it is created by the frontend. See
// Parser<FullParseHandler>::newLexicalScopeData.
struct Data
{
// Bindings are sorted by kind in both frames and environments.
//
// lets - [0, constStart)
// consts - [constStart, length)
uint32_t constStart = 0;
uint32_t length = 0;
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// The array of tagged JSAtom* names, allocated beyond the end of the
// struct.
TrailingNamesArray trailingNames;
explicit Data(size_t nameCount) : trailingNames(nameCount) {}
Data() = delete;
void trace(JSTracer* trc);
};
static size_t sizeOfData(uint32_t length) {
return sizeof(Data) + (length ? length - 1 : 0) * sizeof(BindingName);
}
static LexicalScope* create(ExclusiveContext* cx, ScopeKind kind, Handle<Data*> data,
uint32_t firstFrameSlot, HandleScope enclosing);
template <XDRMode mode>
static bool XDR(XDRState<mode>* xdr, ScopeKind kind, HandleScope enclosing,
MutableHandleScope scope);
private:
static LexicalScope* createWithData(ExclusiveContext* cx, ScopeKind kind,
MutableHandle<UniquePtr<Data>> data,
uint32_t firstFrameSlot, HandleScope enclosing);
Data& data() {
return *reinterpret_cast<Data*>(data_);
}
const Data& data() const {
return *reinterpret_cast<Data*>(data_);
}
static uint32_t nextFrameSlot(Scope* start);
public:
uint32_t firstFrameSlot() const;
uint32_t nextFrameSlot() const {
return data().nextFrameSlot;
}
// Returns an empty shape for extensible global and non-syntactic lexical
// scopes.
static Shape* getEmptyExtensibleEnvironmentShape(ExclusiveContext* cx);
};
template <>
inline bool
Scope::is<LexicalScope>() const
{
return kind_ == ScopeKind::Lexical ||
kind_ == ScopeKind::SimpleCatch ||
kind_ == ScopeKind::Catch ||
kind_ == ScopeKind::NamedLambda ||
kind_ == ScopeKind::StrictNamedLambda;
}
//
// Scope corresponding to a function. Holds formal parameter names, special
// internal names (see FunctionScope::isSpecialName), and, if the function
// parameters contain no expressions that might possibly be evaluated, the
// function's var bindings. For example, in these functions, the FunctionScope
// will store a/b/c bindings but not d/e/f bindings:
//
// function f1(a, b) {
// var c;
// let e;
// const f = 3;
// }
// function f2([a], b = 4, ...c) {
// var d, e, f; // stored in VarScope
// }
//
// Corresponds to CallObject on environment chain.
//
class FunctionScope : public Scope
{
friend class GCMarker;
friend class BindingIter;
friend class PositionalFormalParameterIter;
friend class Scope;
static const ScopeKind classScopeKind_ = ScopeKind::Function;
public:
// Data is public because it is created by the
// frontend. See Parser<FullParseHandler>::newFunctionScopeData.
struct Data
{
// The canonical function of the scope, as during a scope walk we
// often query properties of the JSFunction (e.g., is the function an
// arrow).
GCPtrFunction canonicalFunction = {};
// If parameter expressions are present, parameters act like lexical
// bindings.
bool hasParameterExprs = false;
// Bindings are sorted by kind in both frames and environments.
//
// Positional formal parameter names are those that are not
// destructured. They may be referred to by argument slots if
// !script()->hasParameterExprs().
//
// An argument slot that needs to be skipped due to being destructured
// or having defaults will have a nullptr name in the name array to
// advance the argument slot.
//
// positional formals - [0, nonPositionalFormalStart)
// other formals - [nonPositionalParamStart, varStart)
// vars - [varStart, length)
uint16_t nonPositionalFormalStart = 0;
uint16_t varStart = 0;
uint32_t length = 0;
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// The array of tagged JSAtom* names, allocated beyond the end of the
// struct.
TrailingNamesArray trailingNames;
explicit Data(size_t nameCount) : trailingNames(nameCount) {}
Data() = delete;
void trace(JSTracer* trc);
};
static size_t sizeOfData(uint32_t length) {
return sizeof(Data) + (length ? length - 1 : 0) * sizeof(BindingName);
}
static FunctionScope* create(ExclusiveContext* cx, Handle<Data*> data,
bool hasParameterExprs, bool needsEnvironment,
HandleFunction fun, HandleScope enclosing);
static FunctionScope* clone(JSContext* cx, Handle<FunctionScope*> scope, HandleFunction fun,
HandleScope enclosing);
template <XDRMode mode>
static bool XDR(XDRState<mode>* xdr, HandleFunction fun, HandleScope enclosing,
MutableHandleScope scope);
private:
static FunctionScope* createWithData(ExclusiveContext* cx, MutableHandle<UniquePtr<Data>> data,
bool hasParameterExprs, bool needsEnvironment,
HandleFunction fun, HandleScope enclosing);
Data& data() {
return *reinterpret_cast<Data*>(data_);
}
const Data& data() const {
return *reinterpret_cast<Data*>(data_);
}
public:
uint32_t nextFrameSlot() const {
return data().nextFrameSlot;
}
JSFunction* canonicalFunction() const {
return data().canonicalFunction;
}
JSScript* script() const;
bool hasParameterExprs() const {
return data().hasParameterExprs;
}
uint32_t numPositionalFormalParameters() const {
return data().nonPositionalFormalStart;
}
static bool isSpecialName(ExclusiveContext* cx, JSAtom* name);
static Shape* getEmptyEnvironmentShape(ExclusiveContext* cx, bool hasParameterExprs);
};
//
// Scope holding only vars. There are 2 kinds of VarScopes.
//
// FunctionBodyVar
// Corresponds to the extra var scope present in functions with parameter
// expressions. See examples in comment above FunctionScope.
//
// ParameterExpressionVar
// Each parameter expression is evaluated in its own var environment. For
// example, f() below will print 'fml', then 'global'. That's right.
//
// var a = 'global';
// function f(x = (eval(`var a = 'fml'`), a), y = a) {
// print(x);
// print(y);
// };
//
// Corresponds to VarEnvironmentObject on environment chain.
//
class VarScope : public Scope
{
friend class GCMarker;
friend class BindingIter;
friend class Scope;
public:
// Data is public because it is created by the
// frontend. See Parser<FullParseHandler>::newVarScopeData.
struct Data
{
// All bindings are vars.
uint32_t length = 0;
// Frame slots [firstFrameSlot(), nextFrameSlot) are live when this is
// the innermost scope.
uint32_t nextFrameSlot = 0;
// The array of tagged JSAtom* names, allocated beyond the end of the
// struct.
TrailingNamesArray trailingNames;
explicit Data(size_t nameCount) : trailingNames(nameCount) {}
Data() = delete;
void trace(JSTracer* trc);
};
static size_t sizeOfData(uint32_t length) {
return sizeof(Data) + (length ? length - 1 : 0) * sizeof(BindingName);
}
static VarScope* create(ExclusiveContext* cx, ScopeKind kind, Handle<Data*> data,
uint32_t firstFrameSlot, bool needsEnvironment,
HandleScope enclosing);
template <XDRMode mode>
static bool XDR(XDRState<mode>* xdr, ScopeKind kind, HandleScope enclosing,
MutableHandleScope scope);
private:
static VarScope* createWithData(ExclusiveContext* cx, ScopeKind kind, MutableHandle<UniquePtr<Data>> data,
uint32_t firstFrameSlot, bool needsEnvironment,
HandleScope enclosing);
Data& data() {
return *reinterpret_cast<Data*>(data_);
}
const Data& data() const {
return *reinterpret_cast<Data*>(data_);
}
public:
uint32_t firstFrameSlot() const;
uint32_t nextFrameSlot() const {
return data().nextFrameSlot;
}
static Shape* getEmptyEnvironmentShape(ExclusiveContext* cx);
};
template <>
inline bool
Scope::is<VarScope>() const
{
return kind_ == ScopeKind::FunctionBodyVar || kind_ == ScopeKind::ParameterExpressionVar;
}
//
// Scope corresponding to both the global object scope and the global lexical
// scope.
//
// Both are extensible and are singletons across <script> tags, so these
// scopes are a fragment of the names in global scope. In other words, two
// global scripts may have two different GlobalScopes despite having the same
// GlobalObject.
//
// There are 2 kinds of GlobalScopes.
//
// Global
// Corresponds to a GlobalObject and its global LexicalEnvironmentObject on
// the environment chain.
//
// NonSyntactic
// Corresponds to a non-GlobalObject created by the embedding on the
// environment chain. This distinction is important for optimizations.
//
class GlobalScope : public Scope
{
friend class Scope;
friend class BindingIter;
public:
// Data is public because it is created by the frontend. See
// Parser<FullParseHandler>::newGlobalScopeData.
struct Data
{
// Bindings are sorted by kind.
//
// top-level funcs - [0, varStart)
// vars - [varStart, letStart)
// lets - [letStart, constStart)
// consts - [constStart, length)
uint32_t varStart = 0;
uint32_t letStart = 0;
uint32_t constStart = 0;
uint32_t length = 0;
// The array of tagged JSAtom* names, allocated beyond the end of the
// struct.
TrailingNamesArray trailingNames;
explicit Data(size_t nameCount) : trailingNames(nameCount) {}
Data() = delete;
void trace(JSTracer* trc);
};
static size_t sizeOfData(uint32_t length) {
return sizeof(Data) + (length ? length - 1 : 0) * sizeof(BindingName);
}
static GlobalScope* create(ExclusiveContext* cx, ScopeKind kind, Handle<Data*> data);
static GlobalScope* createEmpty(ExclusiveContext* cx, ScopeKind kind) {
return create(cx, kind, nullptr);
}
static GlobalScope* clone(JSContext* cx, Handle<GlobalScope*> scope, ScopeKind kind);
template <XDRMode mode>
static bool XDR(XDRState<mode>* xdr, ScopeKind kind, MutableHandleScope scope);
private:
static GlobalScope* createWithData(ExclusiveContext* cx, ScopeKind kind,
MutableHandle<UniquePtr<Data>> data);
Data& data() {
return *reinterpret_cast<Data*>(data_);
}
const Data& data() const {
return *reinterpret_cast<Data*>(data_);
}
public:
bool isSyntactic() const {
return kind() != ScopeKind::NonSyntactic;
}
bool hasBindings() const {
return data().length > 0;
}
};
template <>
inline bool
Scope::is<GlobalScope>() const
{
return kind_ == ScopeKind::Global || kind_ == ScopeKind::NonSyntactic;
}
//
// Scope of a 'with' statement. Has no bindings.
//
// Corresponds to a WithEnvironmentObject on the environment chain.
class WithScope : public Scope
{
friend class Scope;
static const ScopeKind classScopeKind_ = ScopeKind::With;
public:
static WithScope* create(ExclusiveContext* cx, HandleScope enclosing);
};
//
// Scope of an eval. Holds var bindings. There are 2 kinds of EvalScopes.
//
// StrictEval
// A strict eval. Corresponds to a VarEnvironmentObject, where its var
// bindings lives.
//
// Eval
// A sloppy eval. This is an empty scope, used only in the frontend, to
// detect redeclaration errors. It has no Environment. Any `var`s declared
// in the eval code are bound on the nearest enclosing var environment.
//
class EvalScope : public Scope
{
friend class Scope;
friend class BindingIter;
public:
// Data is public because it is created by the frontend. See
// Parser<FullParseHandler>::newEvalScopeData.
struct Data
{
// All bindings in an eval script are 'var' bindings. The implicit
// lexical scope around the eval is present regardless of strictness
// and is its own LexicalScope. However, we need to track top-level
// functions specially for redeclaration checks.
//
// top-level funcs - [0, varStart)
// vars - [varStart, length)
uint32_t varStart = 0;
uint32_t length = 0;
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// The array of tagged JSAtom* names, allocated beyond the end of the
// struct.
TrailingNamesArray trailingNames;
explicit Data(size_t nameCount) : trailingNames(nameCount) {}
Data() = delete;
void trace(JSTracer* trc);
};
static size_t sizeOfData(uint32_t length) {
return sizeof(Data) + (length ? length - 1 : 0) * sizeof(BindingName);
}
static EvalScope* create(ExclusiveContext* cx, ScopeKind kind, Handle<Data*> data,
HandleScope enclosing);
template <XDRMode mode>
static bool XDR(XDRState<mode>* xdr, ScopeKind kind, HandleScope enclosing,
MutableHandleScope scope);
private:
static EvalScope* createWithData(ExclusiveContext* cx, ScopeKind kind, MutableHandle<UniquePtr<Data>> data,
HandleScope enclosing);
Data& data() {
return *reinterpret_cast<Data*>(data_);
}
const Data& data() const {
return *reinterpret_cast<Data*>(data_);
}
public:
// Starting a scope, the nearest var scope that a direct eval can
// introduce vars on.
static Scope* nearestVarScopeForDirectEval(Scope* scope);
uint32_t nextFrameSlot() const {
return data().nextFrameSlot;
}
bool strict() const {
return kind() == ScopeKind::StrictEval;
}
bool hasBindings() const {
return data().length > 0;
}
bool isNonGlobal() const {
if (strict())
return true;
return !nearestVarScopeForDirectEval(enclosing())->is<GlobalScope>();
}
static Shape* getEmptyEnvironmentShape(ExclusiveContext* cx);
};
template <>
inline bool
Scope::is<EvalScope>() const
{
return kind_ == ScopeKind::Eval || kind_ == ScopeKind::StrictEval;
}
//
// Scope corresponding to the toplevel script in an ES module.
//
// Like GlobalScopes, these scopes contain both vars and lexical bindings, as
// the treating of imports and exports requires putting them in one scope.
//
// Corresponds to a ModuleEnvironmentObject on the environment chain.
//
class ModuleScope : public Scope
{
friend class GCMarker;
friend class BindingIter;
friend class Scope;
static const ScopeKind classScopeKind_ = ScopeKind::Module;
public:
// Data is public because it is created by the frontend. See
// Parser<FullParseHandler>::newModuleScopeData.
struct Data
{
// The module of the scope.
GCPtr<ModuleObject*> module = {};
// Bindings are sorted by kind.
//
// imports - [0, varStart)
// vars - [varStart, letStart)
// lets - [letStart, constStart)
// consts - [constStart, length)
uint32_t varStart = 0;
uint32_t letStart = 0;
uint32_t constStart = 0;
uint32_t length = 0;
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// The array of tagged JSAtom* names, allocated beyond the end of the
// struct.
TrailingNamesArray trailingNames;
explicit Data(size_t nameCount) : trailingNames(nameCount) {}
Data() = delete;
void trace(JSTracer* trc);
};
static size_t sizeOfData(uint32_t length) {
return sizeof(Data) + (length ? length - 1 : 0) * sizeof(BindingName);
}
static ModuleScope* create(ExclusiveContext* cx, Handle<Data*> data,
Handle<ModuleObject*> module, HandleScope enclosing);
private:
static ModuleScope* createWithData(ExclusiveContext* cx, MutableHandle<UniquePtr<Data>> data,
Handle<ModuleObject*> module, HandleScope enclosing);
Data& data() {
return *reinterpret_cast<Data*>(data_);
}
const Data& data() const {
return *reinterpret_cast<Data*>(data_);
}
public:
uint32_t nextFrameSlot() const {
return data().nextFrameSlot;
}
ModuleObject* module() const {
return data().module;
}
JSScript* script() const;
static Shape* getEmptyEnvironmentShape(ExclusiveContext* cx);
};
//
// An iterator for a Scope's bindings. This is the source of truth for frame
// and environment object layout.
//
// It may be placed in GC containers; for example:
//
// for (Rooted<BindingIter> bi(cx, BindingIter(scope)); bi; bi++) {
// use(bi);
// SomeMayGCOperation();
// use(bi);
// }
//
class BindingIter
{
protected:
// Bindings are sorted by kind. Because different Scopes have differently
// laid out Data for packing, BindingIter must handle all binding kinds.
//
// Kind ranges:
//
// imports - [0, positionalFormalStart)
// positional formals - [positionalFormalStart, nonPositionalFormalStart)
// other formals - [nonPositionalParamStart, topLevelFunctionStart)
// top-level funcs - [topLevelFunctionStart, varStart)
// vars - [varStart, letStart)
// lets - [letStart, constStart)
// consts - [constStart, length)
//
// Access method when not closed over:
//
// imports - name
// positional formals - argument slot
// other formals - frame slot
// top-level funcs - frame slot
// vars - frame slot
// lets - frame slot
// consts - frame slot
//
// Access method when closed over:
//
// imports - name
// positional formals - environment slot or name
// other formals - environment slot or name
// top-level funcs - environment slot or name
// vars - environment slot or name
// lets - environment slot or name
// consts - environment slot or name
uint32_t positionalFormalStart_;
uint32_t nonPositionalFormalStart_;
uint32_t topLevelFunctionStart_;
uint32_t varStart_;
uint32_t letStart_;
uint32_t constStart_;
uint32_t length_;
uint32_t index_;
enum Flags : uint8_t {
CannotHaveSlots = 0,
CanHaveArgumentSlots = 1 << 0,
CanHaveFrameSlots = 1 << 1,
CanHaveEnvironmentSlots = 1 << 2,
// See comment in settle below.
HasFormalParameterExprs = 1 << 3,
IgnoreDestructuredFormalParameters = 1 << 4,
// Truly I hate named lambdas.
IsNamedLambda = 1 << 5
};
static const uint8_t CanHaveSlotsMask = 0x7;
uint8_t flags_;
uint16_t argumentSlot_;
uint32_t frameSlot_;
uint32_t environmentSlot_;
BindingName* names_;
void init(uint32_t positionalFormalStart, uint32_t nonPositionalFormalStart,
uint32_t topLevelFunctionStart, uint32_t varStart,
uint32_t letStart, uint32_t constStart,
uint8_t flags, uint32_t firstFrameSlot, uint32_t firstEnvironmentSlot,
BindingName* names, uint32_t length)
{
positionalFormalStart_ = positionalFormalStart;
nonPositionalFormalStart_ = nonPositionalFormalStart;
topLevelFunctionStart_ = topLevelFunctionStart;
varStart_ = varStart;
letStart_ = letStart;
constStart_ = constStart;
length_ = length;
index_ = 0;
flags_ = flags;
argumentSlot_ = 0;
frameSlot_ = firstFrameSlot;
environmentSlot_ = firstEnvironmentSlot;
names_ = names;
settle();
}
void init(LexicalScope::Data& data, uint32_t firstFrameSlot, uint8_t flags);
void init(FunctionScope::Data& data, uint8_t flags);
void init(VarScope::Data& data, uint32_t firstFrameSlot);
void init(GlobalScope::Data& data);
void init(EvalScope::Data& data, bool strict);
void init(ModuleScope::Data& data);
bool hasFormalParameterExprs() const {
return flags_ & HasFormalParameterExprs;
}
bool ignoreDestructuredFormalParameters() const {
return flags_ & IgnoreDestructuredFormalParameters;
}
bool isNamedLambda() const {
return flags_ & IsNamedLambda;
}
void increment() {
MOZ_ASSERT(!done());
if (flags_ & CanHaveSlotsMask) {
if (canHaveArgumentSlots()) {
if (index_ < nonPositionalFormalStart_) {
MOZ_ASSERT(index_ >= positionalFormalStart_);
argumentSlot_++;
}
}
if (closedOver()) {
// Imports must not be given known slots. They are
// indirect bindings.
MOZ_ASSERT(kind() != BindingKind::Import);
MOZ_ASSERT(canHaveEnvironmentSlots());
environmentSlot_++;
} else if (canHaveFrameSlots()) {
// Usually positional formal parameters don't have frame
// slots, except when there are parameter expressions, in
// which case they act like lets.
if (index_ >= nonPositionalFormalStart_ || (hasFormalParameterExprs() && name()))
frameSlot_++;
}
}
index_++;
}
void settle() {
if (ignoreDestructuredFormalParameters()) {
while (!done() && !name())
increment();
}
}
public:
explicit BindingIter(Scope* scope);
explicit BindingIter(JSScript* script);
BindingIter(LexicalScope::Data& data, uint32_t firstFrameSlot, bool isNamedLambda) {
init(data, firstFrameSlot, isNamedLambda ? IsNamedLambda : 0);
}
BindingIter(FunctionScope::Data& data, bool hasParameterExprs) {
init(data,
IgnoreDestructuredFormalParameters |
(hasParameterExprs ? HasFormalParameterExprs : 0));
}
BindingIter(VarScope::Data& data, uint32_t firstFrameSlot) {
init(data, firstFrameSlot);
}
explicit BindingIter(GlobalScope::Data& data) {
init(data);
}
explicit BindingIter(ModuleScope::Data& data) {
init(data);
}
BindingIter(EvalScope::Data& data, bool strict) {
init(data, strict);
}
explicit BindingIter(const BindingIter& bi) = default;
bool done() const {
return index_ == length_;
}
explicit operator bool() const {
return !done();
}
void operator++(int) {
increment();
settle();
}
bool isLast() const {
MOZ_ASSERT(!done());
return index_ + 1 == length_;
}
bool canHaveArgumentSlots() const {
return flags_ & CanHaveArgumentSlots;
}
bool canHaveFrameSlots() const {
return flags_ & CanHaveFrameSlots;
}
bool canHaveEnvironmentSlots() const {
return flags_ & CanHaveEnvironmentSlots;
}
JSAtom* name() const {
MOZ_ASSERT(!done());
return names_[index_].name();
}
bool closedOver() const {
MOZ_ASSERT(!done());
return names_[index_].closedOver();
}
BindingLocation location() const {
MOZ_ASSERT(!done());
if (!(flags_ & CanHaveSlotsMask))
return BindingLocation::Global();
if (index_ < positionalFormalStart_)
return BindingLocation::Import();
if (closedOver()) {
MOZ_ASSERT(canHaveEnvironmentSlots());
return BindingLocation::Environment(environmentSlot_);
}
if (index_ < nonPositionalFormalStart_ && canHaveArgumentSlots())
return BindingLocation::Argument(argumentSlot_);
if (canHaveFrameSlots())
return BindingLocation::Frame(frameSlot_);
MOZ_ASSERT(isNamedLambda());
return BindingLocation::NamedLambdaCallee();
}
BindingKind kind() const {
MOZ_ASSERT(!done());
if (index_ < positionalFormalStart_)
return BindingKind::Import;
if (index_ < topLevelFunctionStart_) {
// When the parameter list has expressions, the parameters act
// like lexical bindings and have TDZ.
if (hasFormalParameterExprs())
return BindingKind::Let;
return BindingKind::FormalParameter;
}
if (index_ < letStart_)
return BindingKind::Var;
if (index_ < constStart_)
return BindingKind::Let;
if (isNamedLambda())
return BindingKind::NamedLambdaCallee;
return BindingKind::Const;
}
bool isTopLevelFunction() const {
MOZ_ASSERT(!done());
return index_ >= topLevelFunctionStart_ && index_ < varStart_;
}
bool hasArgumentSlot() const {
MOZ_ASSERT(!done());
if (hasFormalParameterExprs())
return false;
return index_ >= positionalFormalStart_ && index_ < nonPositionalFormalStart_;
}
uint16_t argumentSlot() const {
MOZ_ASSERT(canHaveArgumentSlots());
return mozilla::AssertedCast<uint16_t>(index_);
}
uint32_t nextFrameSlot() const {
MOZ_ASSERT(canHaveFrameSlots());
return frameSlot_;
}
uint32_t nextEnvironmentSlot() const {
MOZ_ASSERT(canHaveEnvironmentSlots());
return environmentSlot_;
}
void trace(JSTracer* trc);
};
void DumpBindings(JSContext* cx, Scope* scope);
JSAtom* FrameSlotName(JSScript* script, jsbytecode* pc);
//
// A refinement BindingIter that only iterates over positional formal
// parameters of a function.
//
class PositionalFormalParameterIter : public BindingIter
{
void settle() {
if (index_ >= nonPositionalFormalStart_)
index_ = length_;
}
public:
explicit PositionalFormalParameterIter(JSScript* script);
void operator++(int) {
BindingIter::operator++(1);
settle();
}
bool isDestructured() const {
return !name();
}
};
//
// Iterator for walking the scope chain.
//
// It may be placed in GC containers; for example:
//
// for (Rooted<ScopeIter> si(cx, ScopeIter(scope)); si; si++) {
// use(si);
// SomeMayGCOperation();
// use(si);
// }
//
class MOZ_STACK_CLASS ScopeIter
{
Scope* scope_;
public:
explicit ScopeIter(Scope* scope)
: scope_(scope)
{ }
explicit ScopeIter(JSScript* script);
explicit ScopeIter(const ScopeIter& si)
: scope_(si.scope_)
{ }
bool done() const {
return !scope_;
}
explicit operator bool() const {
return !done();
}
void operator++(int) {
MOZ_ASSERT(!done());
scope_ = scope_->enclosing();
}
Scope* scope() const {
MOZ_ASSERT(!done());
return scope_;
}
ScopeKind kind() const {
MOZ_ASSERT(!done());
return scope_->kind();
}
// Returns the shape of the environment if it is known. It is possible to
// hasSyntacticEnvironment and to have no known shape, e.g., eval.
Shape* environmentShape() const {
return scope()->environmentShape();
}
// Returns whether this scope has a syntactic environment (i.e., an
// Environment that isn't a non-syntactic With or NonSyntacticVariables)
// on the environment chain.
bool hasSyntacticEnvironment() const;
void trace(JSTracer* trc) {
if (scope_)
TraceRoot(trc, &scope_, "scope iter scope");
}
};
//
// Specializations of Rooted containers for the iterators.
//
template <typename Outer>
class BindingIterOperations
{
const BindingIter& iter() const { return static_cast<const Outer*>(this)->get(); }
public:
bool done() const { return iter().done(); }
explicit operator bool() const { return !done(); }
bool isLast() const { return iter().isLast(); }
bool canHaveArgumentSlots() const { return iter().canHaveArgumentSlots(); }
bool canHaveFrameSlots() const { return iter().canHaveFrameSlots(); }
bool canHaveEnvironmentSlots() const { return iter().canHaveEnvironmentSlots(); }
JSAtom* name() const { return iter().name(); }
bool closedOver() const { return iter().closedOver(); }
BindingLocation location() const { return iter().location(); }
BindingKind kind() const { return iter().kind(); }
bool isTopLevelFunction() const { return iter().isTopLevelFunction(); }
bool hasArgumentSlot() const { return iter().hasArgumentSlot(); }
uint16_t argumentSlot() const { return iter().argumentSlot(); }
uint32_t nextFrameSlot() const { return iter().nextFrameSlot(); }
uint32_t nextEnvironmentSlot() const { return iter().nextEnvironmentSlot(); }
};
template <typename Outer>
class MutableBindingIterOperations : public BindingIterOperations<Outer>
{
BindingIter& iter() { return static_cast<Outer*>(this)->get(); }
public:
void operator++(int) { iter().operator++(1); }
};
template <typename Outer>
class ScopeIterOperations
{
const ScopeIter& iter() const { return static_cast<const Outer*>(this)->get(); }
public:
bool done() const { return iter().done(); }
explicit operator bool() const { return !done(); }
Scope* scope() const { return iter().scope(); }
ScopeKind kind() const { return iter().kind(); }
Shape* environmentShape() const { return iter().environmentShape(); }
bool hasSyntacticEnvironment() const { return iter().hasSyntacticEnvironment(); }
};
template <typename Outer>
class MutableScopeIterOperations : public ScopeIterOperations<Outer>
{
ScopeIter& iter() { return static_cast<Outer*>(this)->get(); }
public:
void operator++(int) { iter().operator++(1); }
};
#define SPECIALIZE_ROOTING_CONTAINERS(Iter, BaseIter) \
template <> \
class RootedBase<Iter> \
: public Mutable##BaseIter##Operations<JS::Rooted<Iter>> \
{ }; \
\
template <> \
class MutableHandleBase<Iter> \
: public Mutable##BaseIter##Operations<JS::MutableHandle<Iter>> \
{ }; \
\
template <> \
class HandleBase<Iter> \
: public BaseIter##Operations<JS::Handle<Iter>> \
{ }; \
\
template <> \
class PersistentRootedBase<Iter> \
: public Mutable##BaseIter##Operations<JS::PersistentRooted<Iter>> \
{ }
SPECIALIZE_ROOTING_CONTAINERS(BindingIter, BindingIter);
SPECIALIZE_ROOTING_CONTAINERS(PositionalFormalParameterIter, BindingIter);
SPECIALIZE_ROOTING_CONTAINERS(ScopeIter, ScopeIter);
#undef SPECIALIZE_ROOTING_CONTAINERS
//
// Allow using is<T> and as<T> on Rooted<Scope*> and Handle<Scope*>.
//
template <typename Outer>
struct ScopeCastOperation
{
template <class U>
JS::Handle<U*> as() const {
const Outer& self = *static_cast<const Outer*>(this);
MOZ_ASSERT_IF(self, self->template is<U>());
return Handle<U*>::fromMarkedLocation(reinterpret_cast<U* const*>(self.address()));
}
};
template <>
class RootedBase<Scope*> : public ScopeCastOperation<JS::Rooted<Scope*>>
{ };
template <>
class HandleBase<Scope*> : public ScopeCastOperation<JS::Handle<Scope*>>
{ };
template <>
class MutableHandleBase<Scope*> : public ScopeCastOperation<JS::MutableHandle<Scope*>>
{ };
} // namespace js
namespace JS {
template <>
struct GCPolicy<js::ScopeKind> : public IgnoreGCPolicy<js::ScopeKind>
{ };
template <typename T>
struct ScopeDataGCPolicy
{
static T initial() {
return nullptr;
}
static void trace(JSTracer* trc, T* vp, const char* name) {
if (*vp)
(*vp)->trace(trc);
}
};
#define DEFINE_SCOPE_DATA_GCPOLICY(Data) \
template <> \
struct MapTypeToRootKind<Data*> { \
static const RootKind kind = RootKind::Traceable; \
}; \
template <> \
struct GCPolicy<Data*> : public ScopeDataGCPolicy<Data*> \
{ }
DEFINE_SCOPE_DATA_GCPOLICY(js::LexicalScope::Data);
DEFINE_SCOPE_DATA_GCPOLICY(js::FunctionScope::Data);
DEFINE_SCOPE_DATA_GCPOLICY(js::VarScope::Data);
DEFINE_SCOPE_DATA_GCPOLICY(js::GlobalScope::Data);
DEFINE_SCOPE_DATA_GCPOLICY(js::EvalScope::Data);
DEFINE_SCOPE_DATA_GCPOLICY(js::ModuleScope::Data);
#undef DEFINE_SCOPE_DATA_GCPOLICY
namespace ubi {
template <>
class Concrete<js::Scope> : TracerConcrete<js::Scope>
{
protected:
explicit Concrete(js::Scope* ptr) : TracerConcrete<js::Scope>(ptr) { }
public:
static void construct(void* storage, js::Scope* ptr) {
new (storage) Concrete(ptr);
}
CoarseType coarseType() const final { return CoarseType::Script; }
Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
const char16_t* typeName() const override { return concreteTypeName; }
static const char16_t concreteTypeName[];
};
} // namespace ubi
} // namespace JS
#endif // vm_Scope_h