Mypal/js/src/vm/HelperThreads.cpp

1896 lines
59 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "vm/HelperThreads.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Unused.h"
#include "jsnativestack.h"
#include "jsnum.h" // For FIX_FPU()
#include "builtin/Promise.h"
#include "frontend/BytecodeCompiler.h"
#include "gc/GCInternals.h"
#include "jit/IonBuilder.h"
#include "vm/Debugger.h"
#include "vm/SharedImmutableStringsCache.h"
#include "vm/Time.h"
#include "vm/TraceLogging.h"
#include "wasm/WasmIonCompile.h"
#include "jscntxtinlines.h"
#include "jscompartmentinlines.h"
#include "jsobjinlines.h"
#include "jsscriptinlines.h"
using namespace js;
using mozilla::ArrayLength;
using mozilla::DebugOnly;
using mozilla::Unused;
using mozilla::TimeDuration;
namespace js {
GlobalHelperThreadState* gHelperThreadState = nullptr;
} // namespace js
bool
js::CreateHelperThreadsState()
{
MOZ_ASSERT(!gHelperThreadState);
gHelperThreadState = js_new<GlobalHelperThreadState>();
return gHelperThreadState != nullptr;
}
void
js::DestroyHelperThreadsState()
{
MOZ_ASSERT(gHelperThreadState);
gHelperThreadState->finish();
js_delete(gHelperThreadState);
gHelperThreadState = nullptr;
}
bool
js::EnsureHelperThreadsInitialized()
{
MOZ_ASSERT(gHelperThreadState);
return gHelperThreadState->ensureInitialized();
}
static size_t
ThreadCountForCPUCount(size_t cpuCount)
{
// Create additional threads on top of the number of cores available, to
// provide some excess capacity in case threads pause each other.
static const uint32_t EXCESS_THREADS = 4;
return cpuCount + EXCESS_THREADS;
}
void
js::SetFakeCPUCount(size_t count)
{
// This must be called before the threads have been initialized.
MOZ_ASSERT(!HelperThreadState().threads);
HelperThreadState().cpuCount = count;
HelperThreadState().threadCount = ThreadCountForCPUCount(count);
}
bool
js::StartOffThreadWasmCompile(wasm::IonCompileTask* task)
{
AutoLockHelperThreadState lock;
// Don't append this task if another failed.
if (HelperThreadState().wasmFailed(lock))
return false;
if (!HelperThreadState().wasmWorklist(lock).append(task))
return false;
HelperThreadState().notifyOne(GlobalHelperThreadState::PRODUCER, lock);
return true;
}
bool
js::StartOffThreadIonCompile(JSContext* cx, jit::IonBuilder* builder)
{
AutoLockHelperThreadState lock;
if (!HelperThreadState().ionWorklist(lock).append(builder))
return false;
HelperThreadState().notifyOne(GlobalHelperThreadState::PRODUCER, lock);
return true;
}
/*
* Move an IonBuilder for which compilation has either finished, failed, or
* been cancelled into the global finished compilation list. All off thread
* compilations which are started must eventually be finished.
*/
static void
FinishOffThreadIonCompile(jit::IonBuilder* builder, const AutoLockHelperThreadState& lock)
{
AutoEnterOOMUnsafeRegion oomUnsafe;
if (!HelperThreadState().ionFinishedList(lock).append(builder))
oomUnsafe.crash("FinishOffThreadIonCompile");
}
static JSRuntime*
GetSelectorRuntime(CompilationSelector selector)
{
struct Matcher
{
JSRuntime* match(JSScript* script) { return script->runtimeFromMainThread(); }
JSRuntime* match(JSCompartment* comp) { return comp->runtimeFromMainThread(); }
JSRuntime* match(ZonesInState zbs) { return zbs.runtime; }
JSRuntime* match(JSRuntime* runtime) { return runtime; }
JSRuntime* match(AllCompilations all) { return nullptr; }
};
return selector.match(Matcher());
}
static bool
JitDataStructuresExist(CompilationSelector selector)
{
struct Matcher
{
bool match(JSScript* script) { return !!script->compartment()->jitCompartment(); }
bool match(JSCompartment* comp) { return !!comp->jitCompartment(); }
bool match(ZonesInState zbs) { return !!zbs.runtime->jitRuntime(); }
bool match(JSRuntime* runtime) { return !!runtime->jitRuntime(); }
bool match(AllCompilations all) { return true; }
};
return selector.match(Matcher());
}
static bool
CompiledScriptMatches(CompilationSelector selector, JSScript* target)
{
struct ScriptMatches
{
JSScript* target_;
bool match(JSScript* script) { return script == target_; }
bool match(JSCompartment* comp) { return comp == target_->compartment(); }
bool match(JSRuntime* runtime) { return runtime == target_->runtimeFromAnyThread(); }
bool match(AllCompilations all) { return true; }
bool match(ZonesInState zbs) {
return zbs.runtime == target_->runtimeFromAnyThread() &&
zbs.state == target_->zoneFromAnyThread()->gcState();
}
};
return selector.match(ScriptMatches{target});
}
void
js::CancelOffThreadIonCompile(CompilationSelector selector, bool discardLazyLinkList)
{
if (!JitDataStructuresExist(selector))
return;
AutoLockHelperThreadState lock;
if (!HelperThreadState().threads)
return;
/* Cancel any pending entries for which processing hasn't started. */
GlobalHelperThreadState::IonBuilderVector& worklist = HelperThreadState().ionWorklist(lock);
for (size_t i = 0; i < worklist.length(); i++) {
jit::IonBuilder* builder = worklist[i];
if (CompiledScriptMatches(selector, builder->script())) {
FinishOffThreadIonCompile(builder, lock);
HelperThreadState().remove(worklist, &i);
}
}
/* Wait for in progress entries to finish up. */
bool cancelled;
do {
cancelled = false;
bool unpaused = false;
for (auto& helper : *HelperThreadState().threads) {
if (helper.ionBuilder() &&
CompiledScriptMatches(selector, helper.ionBuilder()->script()))
{
helper.ionBuilder()->cancel();
if (helper.pause) {
helper.pause = false;
unpaused = true;
}
cancelled = true;
}
}
if (unpaused)
HelperThreadState().notifyAll(GlobalHelperThreadState::PAUSE, lock);
if (cancelled)
HelperThreadState().wait(lock, GlobalHelperThreadState::CONSUMER);
} while (cancelled);
/* Cancel code generation for any completed entries. */
GlobalHelperThreadState::IonBuilderVector& finished = HelperThreadState().ionFinishedList(lock);
for (size_t i = 0; i < finished.length(); i++) {
jit::IonBuilder* builder = finished[i];
if (CompiledScriptMatches(selector, builder->script())) {
jit::FinishOffThreadBuilder(nullptr, builder, lock);
HelperThreadState().remove(finished, &i);
}
}
/* Cancel lazy linking for pending builders (attached to the ionScript). */
if (discardLazyLinkList) {
MOZ_ASSERT(!selector.is<AllCompilations>());
JSRuntime* runtime = GetSelectorRuntime(selector);
jit::IonBuilder* builder = runtime->ionLazyLinkList().getFirst();
while (builder) {
jit::IonBuilder* next = builder->getNext();
if (CompiledScriptMatches(selector, builder->script()))
jit::FinishOffThreadBuilder(runtime, builder, lock);
builder = next;
}
}
}
#ifdef DEBUG
bool
js::HasOffThreadIonCompile(JSCompartment* comp)
{
AutoLockHelperThreadState lock;
if (!HelperThreadState().threads)
return false;
GlobalHelperThreadState::IonBuilderVector& worklist = HelperThreadState().ionWorklist(lock);
for (size_t i = 0; i < worklist.length(); i++) {
jit::IonBuilder* builder = worklist[i];
if (builder->script()->compartment() == comp)
return true;
}
for (auto& helper : *HelperThreadState().threads) {
if (helper.ionBuilder() && helper.ionBuilder()->script()->compartment() == comp)
return true;
}
GlobalHelperThreadState::IonBuilderVector& finished = HelperThreadState().ionFinishedList(lock);
for (size_t i = 0; i < finished.length(); i++) {
jit::IonBuilder* builder = finished[i];
if (builder->script()->compartment() == comp)
return true;
}
jit::IonBuilder* builder = comp->runtimeFromMainThread()->ionLazyLinkList().getFirst();
while (builder) {
if (builder->script()->compartment() == comp)
return true;
builder = builder->getNext();
}
return false;
}
#endif
static const JSClassOps parseTaskGlobalClassOps = {
nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr,
JS_GlobalObjectTraceHook
};
static const JSClass parseTaskGlobalClass = {
"internal-parse-task-global", JSCLASS_GLOBAL_FLAGS,
&parseTaskGlobalClassOps
};
ParseTask::ParseTask(ParseTaskKind kind, ExclusiveContext* cx, JSObject* exclusiveContextGlobal,
JSContext* initCx, const char16_t* chars, size_t length,
JS::OffThreadCompileCallback callback, void* callbackData)
: kind(kind), cx(cx), options(initCx), chars(chars), length(length),
alloc(JSRuntime::TEMP_LIFO_ALLOC_PRIMARY_CHUNK_SIZE),
exclusiveContextGlobal(exclusiveContextGlobal),
callback(callback), callbackData(callbackData),
script(nullptr), sourceObject(nullptr),
errors(cx), overRecursed(false), outOfMemory(false)
{
}
bool
ParseTask::init(JSContext* cx, const ReadOnlyCompileOptions& options)
{
if (!this->options.copy(cx, options))
return false;
return true;
}
void
ParseTask::activate(JSRuntime* rt)
{
rt->setUsedByExclusiveThread(exclusiveContextGlobal->zone());
cx->enterCompartment(exclusiveContextGlobal->compartment());
}
bool
ParseTask::finish(JSContext* cx)
{
if (sourceObject) {
RootedScriptSource sso(cx, sourceObject);
if (!ScriptSourceObject::initFromOptions(cx, sso, options))
return false;
}
return true;
}
ParseTask::~ParseTask()
{
// ParseTask takes over ownership of its input exclusive context.
js_delete(cx);
for (size_t i = 0; i < errors.length(); i++)
js_delete(errors[i]);
}
void
ParseTask::trace(JSTracer* trc)
{
if (!cx->runtimeMatches(trc->runtime()))
return;
TraceManuallyBarrieredEdge(trc, &exclusiveContextGlobal, "ParseTask::exclusiveContextGlobal");
if (script)
TraceManuallyBarrieredEdge(trc, &script, "ParseTask::script");
if (sourceObject)
TraceManuallyBarrieredEdge(trc, &sourceObject, "ParseTask::sourceObject");
}
ScriptParseTask::ScriptParseTask(ExclusiveContext* cx, JSObject* exclusiveContextGlobal,
JSContext* initCx, const char16_t* chars, size_t length,
JS::OffThreadCompileCallback callback, void* callbackData)
: ParseTask(ParseTaskKind::Script, cx, exclusiveContextGlobal, initCx, chars, length, callback,
callbackData)
{
}
void
ScriptParseTask::parse()
{
SourceBufferHolder srcBuf(chars, length, SourceBufferHolder::NoOwnership);
script = frontend::CompileGlobalScript(cx, alloc, ScopeKind::Global,
options, srcBuf,
/* extraSct = */ nullptr,
/* sourceObjectOut = */ &sourceObject);
}
ModuleParseTask::ModuleParseTask(ExclusiveContext* cx, JSObject* exclusiveContextGlobal,
JSContext* initCx, const char16_t* chars, size_t length,
JS::OffThreadCompileCallback callback, void* callbackData)
: ParseTask(ParseTaskKind::Module, cx, exclusiveContextGlobal, initCx, chars, length, callback,
callbackData)
{
}
void
ModuleParseTask::parse()
{
SourceBufferHolder srcBuf(chars, length, SourceBufferHolder::NoOwnership);
ModuleObject* module = frontend::CompileModule(cx, options, srcBuf, alloc, &sourceObject);
if (module)
script = module->script();
}
void
js::CancelOffThreadParses(JSRuntime* rt)
{
AutoLockHelperThreadState lock;
if (!HelperThreadState().threads)
return;
#ifdef DEBUG
GlobalHelperThreadState::ParseTaskVector& waitingOnGC =
HelperThreadState().parseWaitingOnGC(lock);
for (size_t i = 0; i < waitingOnGC.length(); i++)
MOZ_ASSERT(!waitingOnGC[i]->runtimeMatches(rt));
#endif
// Instead of forcibly canceling pending parse tasks, just wait for all scheduled
// and in progress ones to complete. Otherwise the final GC may not collect
// everything due to zones being used off thread.
while (true) {
bool pending = false;
GlobalHelperThreadState::ParseTaskVector& worklist = HelperThreadState().parseWorklist(lock);
for (size_t i = 0; i < worklist.length(); i++) {
ParseTask* task = worklist[i];
if (task->runtimeMatches(rt))
pending = true;
}
if (!pending) {
bool inProgress = false;
for (auto& thread : *HelperThreadState().threads) {
ParseTask* task = thread.parseTask();
if (task && task->runtimeMatches(rt))
inProgress = true;
}
if (!inProgress)
break;
}
HelperThreadState().wait(lock, GlobalHelperThreadState::CONSUMER);
}
// Clean up any parse tasks which haven't been finished by the main thread.
GlobalHelperThreadState::ParseTaskVector& finished = HelperThreadState().parseFinishedList(lock);
while (true) {
bool found = false;
for (size_t i = 0; i < finished.length(); i++) {
ParseTask* task = finished[i];
if (task->runtimeMatches(rt)) {
found = true;
AutoUnlockHelperThreadState unlock(lock);
HelperThreadState().cancelParseTask(rt->contextFromMainThread(), task->kind, task);
}
}
if (!found)
break;
}
}
bool
js::OffThreadParsingMustWaitForGC(JSRuntime* rt)
{
// Off thread parsing can't occur during incremental collections on the
// atoms compartment, to avoid triggering barriers. (Outside the atoms
// compartment, the compilation will use a new zone that is never
// collected.) If an atoms-zone GC is in progress, hold off on executing the
// parse task until the atoms-zone GC completes (see
// EnqueuePendingParseTasksAfterGC).
return rt->activeGCInAtomsZone();
}
static bool
EnsureConstructor(JSContext* cx, Handle<GlobalObject*> global, JSProtoKey key)
{
if (!GlobalObject::ensureConstructor(cx, global, key))
return false;
MOZ_ASSERT(global->getPrototype(key).toObject().isDelegate(),
"standard class prototype wasn't a delegate from birth");
return true;
}
// Initialize all classes potentially created during parsing for use in parser
// data structures, template objects, &c.
static bool
EnsureParserCreatedClasses(JSContext* cx, ParseTaskKind kind)
{
Handle<GlobalObject*> global = cx->global();
if (!EnsureConstructor(cx, global, JSProto_Function))
return false; // needed by functions, also adds object literals' proto
if (!EnsureConstructor(cx, global, JSProto_Array))
return false; // needed by array literals
if (!EnsureConstructor(cx, global, JSProto_RegExp))
return false; // needed by regular expression literals
if (!EnsureConstructor(cx, global, JSProto_Iterator))
return false; // needed by ???
if (!GlobalObject::initStarGenerators(cx, global))
return false; // needed by function*() {} and generator comprehensions
if (kind == ParseTaskKind::Module && !GlobalObject::ensureModulePrototypesCreated(cx, global))
return false;
return true;
}
static JSObject*
CreateGlobalForOffThreadParse(JSContext* cx, ParseTaskKind kind, const gc::AutoSuppressGC& nogc)
{
JSCompartment* currentCompartment = cx->compartment();
JS::CompartmentOptions compartmentOptions(currentCompartment->creationOptions(),
currentCompartment->behaviors());
auto& creationOptions = compartmentOptions.creationOptions();
creationOptions.setInvisibleToDebugger(true)
.setMergeable(true)
.setZone(JS::FreshZone);
// Don't falsely inherit the host's global trace hook.
creationOptions.setTrace(nullptr);
JSObject* global = JS_NewGlobalObject(cx, &parseTaskGlobalClass, nullptr,
JS::FireOnNewGlobalHook, compartmentOptions);
if (!global)
return nullptr;
JS_SetCompartmentPrincipals(global->compartment(), currentCompartment->principals());
// Initialize all classes required for parsing while still on the main
// thread, for both the target and the new global so that prototype
// pointers can be changed infallibly after parsing finishes.
if (!EnsureParserCreatedClasses(cx, kind))
return nullptr;
{
AutoCompartment ac(cx, global);
if (!EnsureParserCreatedClasses(cx, kind))
return nullptr;
}
return global;
}
static bool
QueueOffThreadParseTask(JSContext* cx, ParseTask* task)
{
if (OffThreadParsingMustWaitForGC(cx->runtime())) {
AutoLockHelperThreadState lock;
if (!HelperThreadState().parseWaitingOnGC(lock).append(task)) {
ReportOutOfMemory(cx);
return false;
}
} else {
AutoLockHelperThreadState lock;
if (!HelperThreadState().parseWorklist(lock).append(task)) {
ReportOutOfMemory(cx);
return false;
}
task->activate(cx->runtime());
HelperThreadState().notifyOne(GlobalHelperThreadState::PRODUCER, lock);
}
return true;
}
bool
js::StartOffThreadParseScript(JSContext* cx, const ReadOnlyCompileOptions& options,
const char16_t* chars, size_t length,
JS::OffThreadCompileCallback callback, void* callbackData)
{
// Suppress GC so that calls below do not trigger a new incremental GC
// which could require barriers on the atoms compartment.
gc::AutoSuppressGC nogc(cx);
gc::AutoAssertNoNurseryAlloc noNurseryAlloc(cx->runtime());
AutoSuppressAllocationMetadataBuilder suppressMetadata(cx);
JSObject* global = CreateGlobalForOffThreadParse(cx, ParseTaskKind::Script, nogc);
if (!global)
return false;
ScopedJSDeletePtr<ExclusiveContext> helpercx(
cx->new_<ExclusiveContext>(cx->runtime(), (PerThreadData*) nullptr,
ExclusiveContext::Context_Exclusive, cx->options()));
if (!helpercx)
return false;
ScopedJSDeletePtr<ParseTask> task(
cx->new_<ScriptParseTask>(helpercx.get(), global, cx, chars, length,
callback, callbackData));
if (!task)
return false;
helpercx.forget();
if (!task->init(cx, options) || !QueueOffThreadParseTask(cx, task))
return false;
task.forget();
return true;
}
bool
js::StartOffThreadParseModule(JSContext* cx, const ReadOnlyCompileOptions& options,
const char16_t* chars, size_t length,
JS::OffThreadCompileCallback callback, void* callbackData)
{
// Suppress GC so that calls below do not trigger a new incremental GC
// which could require barriers on the atoms compartment.
gc::AutoSuppressGC nogc(cx);
gc::AutoAssertNoNurseryAlloc noNurseryAlloc(cx->runtime());
AutoSuppressAllocationMetadataBuilder suppressMetadata(cx);
JSObject* global = CreateGlobalForOffThreadParse(cx, ParseTaskKind::Module, nogc);
if (!global)
return false;
ScopedJSDeletePtr<ExclusiveContext> helpercx(
cx->new_<ExclusiveContext>(cx->runtime(), (PerThreadData*) nullptr,
ExclusiveContext::Context_Exclusive, cx->options()));
if (!helpercx)
return false;
ScopedJSDeletePtr<ParseTask> task(
cx->new_<ModuleParseTask>(helpercx.get(), global, cx, chars, length,
callback, callbackData));
if (!task)
return false;
helpercx.forget();
if (!task->init(cx, options) || !QueueOffThreadParseTask(cx, task))
return false;
task.forget();
return true;
}
void
js::EnqueuePendingParseTasksAfterGC(JSRuntime* rt)
{
MOZ_ASSERT(!OffThreadParsingMustWaitForGC(rt));
GlobalHelperThreadState::ParseTaskVector newTasks;
{
AutoLockHelperThreadState lock;
GlobalHelperThreadState::ParseTaskVector& waiting =
HelperThreadState().parseWaitingOnGC(lock);
for (size_t i = 0; i < waiting.length(); i++) {
ParseTask* task = waiting[i];
if (task->runtimeMatches(rt)) {
AutoEnterOOMUnsafeRegion oomUnsafe;
if (!newTasks.append(task))
oomUnsafe.crash("EnqueuePendingParseTasksAfterGC");
HelperThreadState().remove(waiting, &i);
}
}
}
if (newTasks.empty())
return;
// This logic should mirror the contents of the !activeGCInAtomsZone()
// branch in StartOffThreadParseScript:
for (size_t i = 0; i < newTasks.length(); i++)
newTasks[i]->activate(rt);
AutoLockHelperThreadState lock;
{
AutoEnterOOMUnsafeRegion oomUnsafe;
if (!HelperThreadState().parseWorklist(lock).appendAll(newTasks))
oomUnsafe.crash("EnqueuePendingParseTasksAfterGC");
}
HelperThreadState().notifyAll(GlobalHelperThreadState::PRODUCER, lock);
}
static const uint32_t kDefaultHelperStackSize = 2048 * 1024;
static const uint32_t kDefaultHelperStackQuota = 1800 * 1024;
// TSan enforces a minimum stack size that's just slightly larger than our
// default helper stack size. It does this to store blobs of TSan-specific
// data on each thread's stack. Unfortunately, that means that even though
// we'll actually receive a larger stack than we requested, the effective
// usable space of that stack is significantly less than what we expect.
// To offset TSan stealing our stack space from underneath us, double the
// default.
//
// Note that we don't need this for ASan/MOZ_ASAN because ASan doesn't
// require all the thread-specific state that TSan does.
#if defined(MOZ_TSAN)
static const uint32_t HELPER_STACK_SIZE = 2 * kDefaultHelperStackSize;
static const uint32_t HELPER_STACK_QUOTA = 2 * kDefaultHelperStackQuota;
#else
static const uint32_t HELPER_STACK_SIZE = kDefaultHelperStackSize;
static const uint32_t HELPER_STACK_QUOTA = kDefaultHelperStackQuota;
#endif
bool
GlobalHelperThreadState::ensureInitialized()
{
MOZ_ASSERT(CanUseExtraThreads());
MOZ_ASSERT(this == &HelperThreadState());
AutoLockHelperThreadState lock;
if (threads)
return true;
threads = js::UniquePtr<HelperThreadVector>(js_new<HelperThreadVector>());
if (!threads || !threads->initCapacity(threadCount))
return false;
for (size_t i = 0; i < threadCount; i++) {
threads->infallibleEmplaceBack();
HelperThread& helper = (*threads)[i];
helper.threadData.emplace(static_cast<JSRuntime*>(nullptr));
if (!helper.threadData->init())
goto error;
helper.thread = mozilla::Some(Thread(Thread::Options().setStackSize(HELPER_STACK_SIZE)));
if (!helper.thread->init(HelperThread::ThreadMain, &helper))
goto error;
continue;
error:
// Ensure that we do not leave uninitialized threads in the `threads`
// vector.
threads->popBack();
finishThreads();
return false;
}
return true;
}
GlobalHelperThreadState::GlobalHelperThreadState()
: cpuCount(0),
threadCount(0),
threads(nullptr),
wasmCompilationInProgress(false),
numWasmFailedJobs(0),
helperLock(mutexid::GlobalHelperThreadState)
{
cpuCount = GetCPUCount();
threadCount = ThreadCountForCPUCount(cpuCount);
MOZ_ASSERT(cpuCount > 0, "GetCPUCount() seems broken");
}
void
GlobalHelperThreadState::finish()
{
finishThreads();
}
void
GlobalHelperThreadState::finishThreads()
{
if (!threads)
return;
MOZ_ASSERT(CanUseExtraThreads());
for (auto& thread : *threads)
thread.destroy();
threads.reset(nullptr);
}
void
GlobalHelperThreadState::lock()
{
helperLock.lock();
}
void
GlobalHelperThreadState::unlock()
{
helperLock.unlock();
}
void
GlobalHelperThreadState::wait(AutoLockHelperThreadState& locked, CondVar which,
TimeDuration timeout /* = TimeDuration::Forever() */)
{
whichWakeup(which).wait_for(locked, timeout);
}
void
GlobalHelperThreadState::notifyAll(CondVar which, const AutoLockHelperThreadState&)
{
whichWakeup(which).notify_all();
}
void
GlobalHelperThreadState::notifyOne(CondVar which, const AutoLockHelperThreadState&)
{
whichWakeup(which).notify_one();
}
bool
GlobalHelperThreadState::hasActiveThreads(const AutoLockHelperThreadState&)
{
if (!threads)
return false;
for (auto& thread : *threads) {
if (!thread.idle())
return true;
}
return false;
}
void
GlobalHelperThreadState::waitForAllThreads()
{
CancelOffThreadIonCompile();
AutoLockHelperThreadState lock;
while (hasActiveThreads(lock))
wait(lock, CONSUMER);
}
template <typename T>
bool
GlobalHelperThreadState::checkTaskThreadLimit(size_t maxThreads) const
{
if (maxThreads >= threadCount)
return true;
size_t count = 0;
for (auto& thread : *threads) {
if (thread.currentTask.isSome() && thread.currentTask->is<T>())
count++;
if (count >= maxThreads)
return false;
}
return true;
}
static inline bool
IsHelperThreadSimulatingOOM(js::oom::ThreadType threadType)
{
#if defined(DEBUG) || defined(JS_OOM_BREAKPOINT)
return js::oom::targetThread == threadType;
#else
return false;
#endif
}
size_t
GlobalHelperThreadState::maxIonCompilationThreads() const
{
if (IsHelperThreadSimulatingOOM(js::oom::THREAD_TYPE_ION))
return 1;
return threadCount;
}
size_t
GlobalHelperThreadState::maxUnpausedIonCompilationThreads() const
{
return 1;
}
size_t
GlobalHelperThreadState::maxWasmCompilationThreads() const
{
if (IsHelperThreadSimulatingOOM(js::oom::THREAD_TYPE_ASMJS))
return 1;
if (cpuCount < 2)
return 2;
return cpuCount;
}
size_t
GlobalHelperThreadState::maxParseThreads() const
{
if (IsHelperThreadSimulatingOOM(js::oom::THREAD_TYPE_PARSE))
return 1;
// Don't allow simultaneous off thread parses, to reduce contention on the
// atoms table. Note that wasm compilation depends on this to avoid
// stalling the helper thread, as off thread parse tasks can trigger and
// block on other off thread wasm compilation tasks.
return 1;
}
size_t
GlobalHelperThreadState::maxCompressionThreads() const
{
if (IsHelperThreadSimulatingOOM(js::oom::THREAD_TYPE_COMPRESS))
return 1;
return threadCount;
}
size_t
GlobalHelperThreadState::maxGCHelperThreads() const
{
if (IsHelperThreadSimulatingOOM(js::oom::THREAD_TYPE_GCHELPER))
return 1;
return threadCount;
}
size_t
GlobalHelperThreadState::maxGCParallelThreads() const
{
if (IsHelperThreadSimulatingOOM(js::oom::THREAD_TYPE_GCPARALLEL))
return 1;
return threadCount;
}
bool
GlobalHelperThreadState::canStartWasmCompile(const AutoLockHelperThreadState& lock)
{
// Don't execute an wasm job if an earlier one failed.
if (wasmWorklist(lock).empty() || numWasmFailedJobs)
return false;
// Honor the maximum allowed threads to compile wasm jobs at once,
// to avoid oversaturating the machine.
if (!checkTaskThreadLimit<wasm::IonCompileTask*>(maxWasmCompilationThreads()))
return false;
return true;
}
bool
GlobalHelperThreadState::canStartPromiseTask(const AutoLockHelperThreadState& lock)
{
return !promiseTasks(lock).empty();
}
static bool
IonBuilderHasHigherPriority(jit::IonBuilder* first, jit::IonBuilder* second)
{
// This method can return whatever it wants, though it really ought to be a
// total order. The ordering is allowed to race (change on the fly), however.
// A lower optimization level indicates a higher priority.
if (first->optimizationInfo().level() != second->optimizationInfo().level())
return first->optimizationInfo().level() < second->optimizationInfo().level();
// A script without an IonScript has precedence on one with.
if (first->scriptHasIonScript() != second->scriptHasIonScript())
return !first->scriptHasIonScript();
// A higher warm-up counter indicates a higher priority.
return first->script()->getWarmUpCount() / first->script()->length() >
second->script()->getWarmUpCount() / second->script()->length();
}
bool
GlobalHelperThreadState::canStartIonCompile(const AutoLockHelperThreadState& lock)
{
return !ionWorklist(lock).empty() &&
checkTaskThreadLimit<jit::IonBuilder*>(maxIonCompilationThreads());
}
jit::IonBuilder*
GlobalHelperThreadState::highestPriorityPendingIonCompile(const AutoLockHelperThreadState& lock,
bool remove /* = false */)
{
auto& worklist = ionWorklist(lock);
if (worklist.empty()) {
MOZ_ASSERT(!remove);
return nullptr;
}
// Get the highest priority IonBuilder which has not started compilation yet.
size_t index = 0;
for (size_t i = 1; i < worklist.length(); i++) {
if (IonBuilderHasHigherPriority(worklist[i], worklist[index]))
index = i;
}
jit::IonBuilder* builder = worklist[index];
if (remove)
worklist.erase(&worklist[index]);
return builder;
}
HelperThread*
GlobalHelperThreadState::lowestPriorityUnpausedIonCompileAtThreshold(
const AutoLockHelperThreadState& lock)
{
// Get the lowest priority IonBuilder which has started compilation and
// isn't paused, unless there are still fewer than the maximum number of
// such builders permitted.
size_t numBuilderThreads = 0;
HelperThread* thread = nullptr;
for (auto& thisThread : *threads) {
if (thisThread.ionBuilder() && !thisThread.pause) {
numBuilderThreads++;
if (!thread ||
IonBuilderHasHigherPriority(thread->ionBuilder(), thisThread.ionBuilder()))
{
thread = &thisThread;
}
}
}
if (numBuilderThreads < maxUnpausedIonCompilationThreads())
return nullptr;
return thread;
}
HelperThread*
GlobalHelperThreadState::highestPriorityPausedIonCompile(const AutoLockHelperThreadState& lock)
{
// Get the highest priority IonBuilder which has started compilation but
// which was subsequently paused.
HelperThread* thread = nullptr;
for (auto& thisThread : *threads) {
if (thisThread.pause) {
// Currently, only threads with IonBuilders can be paused.
MOZ_ASSERT(thisThread.ionBuilder());
if (!thread ||
IonBuilderHasHigherPriority(thisThread.ionBuilder(), thread->ionBuilder()))
{
thread = &thisThread;
}
}
}
return thread;
}
bool
GlobalHelperThreadState::pendingIonCompileHasSufficientPriority(
const AutoLockHelperThreadState& lock)
{
// Can't compile anything if there are no scripts to compile.
if (!canStartIonCompile(lock))
return false;
// Count the number of threads currently compiling scripts, and look for
// the thread with the lowest priority.
HelperThread* lowestPriorityThread = lowestPriorityUnpausedIonCompileAtThreshold(lock);
// If the number of threads building scripts is less than the maximum, the
// compilation can start immediately.
if (!lowestPriorityThread)
return true;
// If there is a builder in the worklist with higher priority than some
// builder currently being compiled, then that current compilation can be
// paused, so allow the compilation.
if (IonBuilderHasHigherPriority(highestPriorityPendingIonCompile(lock),
lowestPriorityThread->ionBuilder()))
return true;
// Compilation will have to wait until one of the active compilations finishes.
return false;
}
bool
GlobalHelperThreadState::canStartParseTask(const AutoLockHelperThreadState& lock)
{
return !parseWorklist(lock).empty() && checkTaskThreadLimit<ParseTask*>(maxParseThreads());
}
bool
GlobalHelperThreadState::canStartCompressionTask(const AutoLockHelperThreadState& lock)
{
return !compressionWorklist(lock).empty() &&
checkTaskThreadLimit<SourceCompressionTask*>(maxCompressionThreads());
}
bool
GlobalHelperThreadState::canStartGCHelperTask(const AutoLockHelperThreadState& lock)
{
return !gcHelperWorklist(lock).empty() &&
checkTaskThreadLimit<GCHelperState*>(maxGCHelperThreads());
}
bool
GlobalHelperThreadState::canStartGCParallelTask(const AutoLockHelperThreadState& lock)
{
return !gcParallelWorklist(lock).empty() &&
checkTaskThreadLimit<GCParallelTask*>(maxGCParallelThreads());
}
js::GCParallelTask::~GCParallelTask()
{
// Only most-derived classes' destructors may do the join: base class
// destructors run after those for derived classes' members, so a join in a
// base class can't ensure that the task is done using the members. All we
// can do now is check that someone has previously stopped the task.
#ifdef DEBUG
AutoLockHelperThreadState helperLock;
MOZ_ASSERT(state == NotStarted);
#endif
}
bool
js::GCParallelTask::startWithLockHeld(AutoLockHelperThreadState& lock)
{
// Tasks cannot be started twice.
MOZ_ASSERT(state == NotStarted);
// If we do the shutdown GC before running anything, we may never
// have initialized the helper threads. Just use the serial path
// since we cannot safely intialize them at this point.
if (!HelperThreadState().threads)
return false;
if (!HelperThreadState().gcParallelWorklist(lock).append(this))
return false;
state = Dispatched;
HelperThreadState().notifyOne(GlobalHelperThreadState::PRODUCER, lock);
return true;
}
bool
js::GCParallelTask::start()
{
AutoLockHelperThreadState helperLock;
return startWithLockHeld(helperLock);
}
void
js::GCParallelTask::joinWithLockHeld(AutoLockHelperThreadState& locked)
{
if (state == NotStarted)
return;
while (state != Finished)
HelperThreadState().wait(locked, GlobalHelperThreadState::CONSUMER);
state = NotStarted;
cancel_ = false;
}
void
js::GCParallelTask::join()
{
AutoLockHelperThreadState helperLock;
joinWithLockHeld(helperLock);
}
void
js::GCParallelTask::runFromMainThread(JSRuntime* rt)
{
MOZ_ASSERT(state == NotStarted);
MOZ_ASSERT(js::CurrentThreadCanAccessRuntime(rt));
uint64_t timeStart = PRMJ_Now();
runTask();
duration_ = PRMJ_Now() - timeStart;
}
void
js::GCParallelTask::runFromHelperThread(AutoLockHelperThreadState& locked)
{
{
AutoUnlockHelperThreadState parallelSection(locked);
gc::AutoSetThreadIsPerformingGC performingGC;
uint64_t timeStart = PRMJ_Now();
runTask();
duration_ = PRMJ_Now() - timeStart;
}
state = Finished;
HelperThreadState().notifyAll(GlobalHelperThreadState::CONSUMER, locked);
}
bool
js::GCParallelTask::isRunningWithLockHeld(const AutoLockHelperThreadState& locked) const
{
return state == Dispatched;
}
bool
js::GCParallelTask::isRunning() const
{
AutoLockHelperThreadState helperLock;
return isRunningWithLockHeld(helperLock);
}
void
HelperThread::handleGCParallelWorkload(AutoLockHelperThreadState& locked)
{
MOZ_ASSERT(HelperThreadState().canStartGCParallelTask(locked));
MOZ_ASSERT(idle());
TraceLoggerThread* logger = TraceLoggerForCurrentThread();
AutoTraceLog logCompile(logger, TraceLogger_GC);
currentTask.emplace(HelperThreadState().gcParallelWorklist(locked).popCopy());
gcParallelTask()->runFromHelperThread(locked);
currentTask.reset();
HelperThreadState().notifyAll(GlobalHelperThreadState::CONSUMER, locked);
}
static void
LeaveParseTaskZone(JSRuntime* rt, ParseTask* task)
{
// Mark the zone as no longer in use by an ExclusiveContext, and available
// to be collected by the GC.
task->cx->leaveCompartment(task->cx->compartment());
rt->clearUsedByExclusiveThread(task->cx->zone());
}
ParseTask*
GlobalHelperThreadState::removeFinishedParseTask(ParseTaskKind kind, void* token)
{
// The token is a ParseTask* which should be in the finished list.
// Find and remove its entry.
AutoLockHelperThreadState lock;
ParseTaskVector& finished = parseFinishedList(lock);
for (size_t i = 0; i < finished.length(); i++) {
if (finished[i] == token) {
ParseTask* parseTask = finished[i];
remove(finished, &i);
MOZ_ASSERT(parseTask);
MOZ_ASSERT(parseTask->kind == kind);
return parseTask;
}
}
MOZ_CRASH("Invalid ParseTask token");
}
JSScript*
GlobalHelperThreadState::finishParseTask(JSContext* cx, ParseTaskKind kind, void* token)
{
MOZ_ASSERT(cx->compartment());
ScopedJSDeletePtr<ParseTask> parseTask(removeFinishedParseTask(kind, token));
// Make sure we have all the constructors we need for the prototype
// remapping below, since we can't GC while that's happening.
Rooted<GlobalObject*> global(cx, &cx->global()->as<GlobalObject>());
if (!EnsureParserCreatedClasses(cx, kind)) {
LeaveParseTaskZone(cx, parseTask);
return nullptr;
}
mergeParseTaskCompartment(cx, parseTask, global, cx->compartment());
RootedScript script(cx, parseTask->script);
releaseAssertSameCompartment(cx, script);
if (!parseTask->finish(cx))
return nullptr;
// Report out of memory errors eagerly, or errors could be malformed.
if (parseTask->outOfMemory) {
ReportOutOfMemory(cx);
return nullptr;
}
// Report any error or warnings generated during the parse, and inform the
// debugger about the compiled scripts.
for (size_t i = 0; i < parseTask->errors.length(); i++)
parseTask->errors[i]->throwError(cx);
if (parseTask->overRecursed)
ReportOverRecursed(cx);
if (cx->isExceptionPending())
return nullptr;
if (!script) {
// No error was reported, but no script produced. Assume we hit out of
// memory.
ReportOutOfMemory(cx);
return nullptr;
}
// The Debugger only needs to be told about the topmost script that was compiled.
Debugger::onNewScript(cx, script);
return script;
}
JSScript*
GlobalHelperThreadState::finishScriptParseTask(JSContext* cx, void* token)
{
JSScript* script = finishParseTask(cx, ParseTaskKind::Script, token);
MOZ_ASSERT_IF(script, script->isGlobalCode());
return script;
}
JSObject*
GlobalHelperThreadState::finishModuleParseTask(JSContext* cx, void* token)
{
JSScript* script = finishParseTask(cx, ParseTaskKind::Module, token);
if (!script)
return nullptr;
MOZ_ASSERT(script->module());
RootedModuleObject module(cx, script->module());
module->fixEnvironmentsAfterCompartmentMerge();
if (!ModuleObject::Freeze(cx, module))
return nullptr;
return module;
}
void
GlobalHelperThreadState::cancelParseTask(JSContext* cx, ParseTaskKind kind, void* token)
{
ScopedJSDeletePtr<ParseTask> parseTask(removeFinishedParseTask(kind, token));
LeaveParseTaskZone(cx, parseTask);
}
JSObject*
GlobalObject::getStarGeneratorFunctionPrototype()
{
const Value& v = getReservedSlot(STAR_GENERATOR_FUNCTION_PROTO);
return v.isObject() ? &v.toObject() : nullptr;
}
void
GlobalHelperThreadState::mergeParseTaskCompartment(JSContext* cx, ParseTask* parseTask,
Handle<GlobalObject*> global,
JSCompartment* dest)
{
// After we call LeaveParseTaskZone() it's not safe to GC until we have
// finished merging the contents of the parse task's compartment into the
// destination compartment. Finish any ongoing incremental GC first and
// assert that no allocation can occur.
gc::FinishGC(cx);
JS::AutoAssertNoGC nogc(cx);
LeaveParseTaskZone(cx, parseTask);
{
// Generator functions don't have Function.prototype as prototype but a
// different function object, so the IdentifyStandardPrototype trick
// below won't work. Just special-case it.
GlobalObject* parseGlobal = &parseTask->exclusiveContextGlobal->as<GlobalObject>();
JSObject* parseTaskStarGenFunctionProto = parseGlobal->getStarGeneratorFunctionPrototype();
// Module objects don't have standard prototypes either.
JSObject* moduleProto = parseGlobal->maybeGetModulePrototype();
JSObject* importEntryProto = parseGlobal->maybeGetImportEntryPrototype();
JSObject* exportEntryProto = parseGlobal->maybeGetExportEntryPrototype();
// Point the prototypes of any objects in the script's compartment to refer
// to the corresponding prototype in the new compartment. This will briefly
// create cross compartment pointers, which will be fixed by the
// MergeCompartments call below.
for (auto group = parseTask->cx->zone()->cellIter<ObjectGroup>(); !group.done(); group.next()) {
TaggedProto proto(group->proto());
if (!proto.isObject())
continue;
JSObject* protoObj = proto.toObject();
JSObject* newProto;
JSProtoKey key = JS::IdentifyStandardPrototype(protoObj);
if (key != JSProto_Null) {
MOZ_ASSERT(key == JSProto_Object || key == JSProto_Array ||
key == JSProto_Function || key == JSProto_RegExp ||
key == JSProto_Iterator);
newProto = GetBuiltinPrototypePure(global, key);
} else if (protoObj == parseTaskStarGenFunctionProto) {
newProto = global->getStarGeneratorFunctionPrototype();
} else if (protoObj == moduleProto) {
newProto = global->getModulePrototype();
} else if (protoObj == importEntryProto) {
newProto = global->getImportEntryPrototype();
} else if (protoObj == exportEntryProto) {
newProto = global->getExportEntryPrototype();
} else {
continue;
}
group->setProtoUnchecked(TaggedProto(newProto));
}
}
// Move the parsed script and all its contents into the desired compartment.
gc::MergeCompartments(parseTask->cx->compartment(), dest);
}
void
HelperThread::destroy()
{
if (thread.isSome()) {
{
AutoLockHelperThreadState lock;
terminate = true;
/* Notify all helpers, to ensure that this thread wakes up. */
HelperThreadState().notifyAll(GlobalHelperThreadState::PRODUCER, lock);
}
thread->join();
thread.reset();
}
threadData.reset();
}
/* static */
void
HelperThread::ThreadMain(void* arg)
{
ThisThread::SetName("JS Helper");
//See bug 1104658.
//Set the FPU control word to be the same as the main thread's, or math
//computations on this thread may use incorrect precision rules during
//Ion compilation.
FIX_FPU();
static_cast<HelperThread*>(arg)->threadLoop();
}
void
HelperThread::handleWasmWorkload(AutoLockHelperThreadState& locked)
{
MOZ_ASSERT(HelperThreadState().canStartWasmCompile(locked));
MOZ_ASSERT(idle());
currentTask.emplace(HelperThreadState().wasmWorklist(locked).popCopy());
bool success = false;
wasm::IonCompileTask* task = wasmTask();
{
AutoUnlockHelperThreadState unlock(locked);
success = wasm::CompileFunction(task);
}
// On success, try to move work to the finished list.
if (success)
success = HelperThreadState().wasmFinishedList(locked).append(task);
// On failure, note the failure for harvesting by the parent.
if (!success)
HelperThreadState().noteWasmFailure(locked);
// Notify the main thread in case it's waiting.
HelperThreadState().notifyAll(GlobalHelperThreadState::CONSUMER, locked);
currentTask.reset();
}
void
HelperThread::handlePromiseTaskWorkload(AutoLockHelperThreadState& locked)
{
MOZ_ASSERT(HelperThreadState().canStartPromiseTask(locked));
MOZ_ASSERT(idle());
PromiseTask* task = HelperThreadState().promiseTasks(locked).popCopy();
currentTask.emplace(task);
{
AutoUnlockHelperThreadState unlock(locked);
task->execute();
if (!task->runtime()->finishAsyncTaskCallback(task)) {
// We cannot simply delete the task now because the PromiseTask must
// be destroyed on its runtime's thread. Add it to a list of tasks
// to delete before the next GC.
AutoEnterOOMUnsafeRegion oomUnsafe;
if (!task->runtime()->promiseTasksToDestroy.lock()->append(task))
oomUnsafe.crash("handlePromiseTaskWorkload");
}
}
// Notify the main thread in case it's waiting.
HelperThreadState().notifyAll(GlobalHelperThreadState::CONSUMER, locked);
currentTask.reset();
}
void
HelperThread::handleIonWorkload(AutoLockHelperThreadState& locked)
{
MOZ_ASSERT(HelperThreadState().canStartIonCompile(locked));
MOZ_ASSERT(idle());
// Find the IonBuilder in the worklist with the highest priority, and
// remove it from the worklist.
jit::IonBuilder* builder =
HelperThreadState().highestPriorityPendingIonCompile(locked, /* remove = */ true);
// If there are now too many threads with active IonBuilders, indicate to
// the one with the lowest priority that it should pause. Note that due to
// builder priorities changing since pendingIonCompileHasSufficientPriority
// was called, the builder we are pausing may actually be higher priority
// than the one we are about to start. Oh well.
HelperThread* other = HelperThreadState().lowestPriorityUnpausedIonCompileAtThreshold(locked);
if (other) {
MOZ_ASSERT(other->ionBuilder() && !other->pause);
other->pause = true;
}
currentTask.emplace(builder);
builder->setPauseFlag(&pause);
JSRuntime* rt = builder->script()->compartment()->runtimeFromAnyThread();
{
AutoUnlockHelperThreadState unlock(locked);
TraceLoggerThread* logger = TraceLoggerForCurrentThread();
TraceLoggerEvent event(logger, TraceLogger_AnnotateScripts, builder->script());
AutoTraceLog logScript(logger, event);
AutoTraceLog logCompile(logger, TraceLogger_IonCompilation);
PerThreadData::AutoEnterRuntime enter(threadData.ptr(),
builder->script()->runtimeFromAnyThread());
jit::JitContext jctx(jit::CompileRuntime::get(rt),
jit::CompileCompartment::get(builder->script()->compartment()),
&builder->alloc());
builder->setBackgroundCodegen(jit::CompileBackEnd(builder));
}
FinishOffThreadIonCompile(builder, locked);
currentTask.reset();
pause = false;
// Ping the main thread so that the compiled code can be incorporated
// at the next interrupt callback. Don't interrupt Ion code for this, as
// this incorporation can be delayed indefinitely without affecting
// performance as long as the main thread is actually executing Ion code.
rt->requestInterrupt(JSRuntime::RequestInterruptCanWait);
// Notify the main thread in case it is waiting for the compilation to finish.
HelperThreadState().notifyAll(GlobalHelperThreadState::CONSUMER, locked);
// When finishing Ion compilation jobs, we can start unpausing compilation
// threads that were paused to restrict the number of active compilations.
// Only unpause one at a time, to make sure we don't exceed the restriction.
// Since threads are currently only paused for Ion compilations, this
// strategy will eventually unpause all paused threads, regardless of how
// many there are, since each thread we unpause will eventually finish and
// end up back here.
if (HelperThread* other = HelperThreadState().highestPriorityPausedIonCompile(locked)) {
MOZ_ASSERT(other->ionBuilder() && other->pause);
// Only unpause the other thread if there isn't a higher priority
// builder which this thread or another can start on.
jit::IonBuilder* builder = HelperThreadState().highestPriorityPendingIonCompile(locked);
if (!builder || IonBuilderHasHigherPriority(other->ionBuilder(), builder)) {
other->pause = false;
// Notify all paused threads, to make sure the one we just
// unpaused wakes up.
HelperThreadState().notifyAll(GlobalHelperThreadState::PAUSE, locked);
}
}
}
static HelperThread*
CurrentHelperThread()
{
auto threadId = ThisThread::GetId();
HelperThread* thread = nullptr;
for (auto& thisThread : *HelperThreadState().threads) {
if (thisThread.thread.isSome() && threadId == thisThread.thread->get_id()) {
thread = &thisThread;
break;
}
}
MOZ_ASSERT(thread);
return thread;
}
void
js::PauseCurrentHelperThread()
{
TraceLoggerThread* logger = TraceLoggerForCurrentThread();
AutoTraceLog logPaused(logger, TraceLogger_IonCompilationPaused);
HelperThread* thread = CurrentHelperThread();
AutoLockHelperThreadState lock;
while (thread->pause)
HelperThreadState().wait(lock, GlobalHelperThreadState::PAUSE);
}
void
ExclusiveContext::setHelperThread(HelperThread* thread)
{
helperThread_ = thread;
perThreadData = thread->threadData.ptr();
}
bool
ExclusiveContext::addPendingCompileError(frontend::CompileError** error)
{
UniquePtr<frontend::CompileError> errorPtr(new_<frontend::CompileError>());
if (!errorPtr)
return false;
if (!helperThread()->parseTask()->errors.append(errorPtr.get()))
return false;
*error = errorPtr.release();
return true;
}
void
ExclusiveContext::addPendingOverRecursed()
{
if (helperThread()->parseTask())
helperThread()->parseTask()->overRecursed = true;
}
void
ExclusiveContext::addPendingOutOfMemory()
{
// Keep in sync with recoverFromOutOfMemory.
if (helperThread()->parseTask())
helperThread()->parseTask()->outOfMemory = true;
}
void
HelperThread::handleParseWorkload(AutoLockHelperThreadState& locked, uintptr_t stackLimit)
{
MOZ_ASSERT(HelperThreadState().canStartParseTask(locked));
MOZ_ASSERT(idle());
currentTask.emplace(HelperThreadState().parseWorklist(locked).popCopy());
ParseTask* task = parseTask();
task->cx->setHelperThread(this);
for (size_t i = 0; i < ArrayLength(task->cx->nativeStackLimit); i++)
task->cx->nativeStackLimit[i] = stackLimit;
{
AutoUnlockHelperThreadState unlock(locked);
PerThreadData::AutoEnterRuntime enter(threadData.ptr(),
task->exclusiveContextGlobal->runtimeFromAnyThread());
task->parse();
}
// The callback is invoked while we are still off the main thread.
task->callback(task, task->callbackData);
// FinishOffThreadScript will need to be called on the script to
// migrate it into the correct compartment.
{
AutoEnterOOMUnsafeRegion oomUnsafe;
if (!HelperThreadState().parseFinishedList(locked).append(task))
oomUnsafe.crash("handleParseWorkload");
}
currentTask.reset();
// Notify the main thread in case it is waiting for the parse/emit to finish.
HelperThreadState().notifyAll(GlobalHelperThreadState::CONSUMER, locked);
}
void
HelperThread::handleCompressionWorkload(AutoLockHelperThreadState& locked)
{
MOZ_ASSERT(HelperThreadState().canStartCompressionTask(locked));
MOZ_ASSERT(idle());
currentTask.emplace(HelperThreadState().compressionWorklist(locked).popCopy());
SourceCompressionTask* task = compressionTask();
task->helperThread = this;
{
AutoUnlockHelperThreadState unlock(locked);
TraceLoggerThread* logger = TraceLoggerForCurrentThread();
AutoTraceLog logCompile(logger, TraceLogger_CompressSource);
task->result = task->work();
}
task->helperThread = nullptr;
currentTask.reset();
// Notify the main thread in case it is waiting for the compression to finish.
HelperThreadState().notifyAll(GlobalHelperThreadState::CONSUMER, locked);
}
bool
js::StartOffThreadCompression(ExclusiveContext* cx, SourceCompressionTask* task)
{
AutoLockHelperThreadState lock;
if (!HelperThreadState().compressionWorklist(lock).append(task)) {
if (JSContext* maybecx = cx->maybeJSContext())
ReportOutOfMemory(maybecx);
return false;
}
HelperThreadState().notifyOne(GlobalHelperThreadState::PRODUCER, lock);
return true;
}
bool
js::StartPromiseTask(JSContext* cx, UniquePtr<PromiseTask> task)
{
// Execute synchronously if there are no helper threads.
if (!CanUseExtraThreads())
return task->executeAndFinish(cx);
// If we fail to start, by interface contract, it is because the JSContext
// is in the process of shutting down. Since promise handlers are not
// necessarily run while shutting down *anyway*, we simply ignore the error.
// This is symmetric with the handling of errors in finishAsyncTaskCallback
// which, since it is off the JSContext's owner thread, cannot report an
// error anyway.
if (!cx->startAsyncTaskCallback(cx, task.get())) {
MOZ_ASSERT(!cx->isExceptionPending());
return true;
}
// Per interface contract, after startAsyncTaskCallback succeeds,
// finishAsyncTaskCallback *must* be called on all paths.
AutoLockHelperThreadState lock;
if (!HelperThreadState().promiseTasks(lock).append(task.get())) {
Unused << cx->finishAsyncTaskCallback(task.get());
ReportOutOfMemory(cx);
return false;
}
Unused << task.release();
HelperThreadState().notifyOne(GlobalHelperThreadState::PRODUCER, lock);
return true;
}
bool
GlobalHelperThreadState::compressionInProgress(SourceCompressionTask* task,
const AutoLockHelperThreadState& lock)
{
for (size_t i = 0; i < compressionWorklist(lock).length(); i++) {
if (compressionWorklist(lock)[i] == task)
return true;
}
for (auto& thread : *threads) {
if (thread.compressionTask() == task)
return true;
}
return false;
}
bool
SourceCompressionTask::complete()
{
if (!active())
return true;
{
AutoLockHelperThreadState lock;
while (HelperThreadState().compressionInProgress(this, lock))
HelperThreadState().wait(lock, GlobalHelperThreadState::CONSUMER);
}
if (result == Success) {
MOZ_ASSERT(resultString);
ss->setCompressedSource(mozilla::Move(*resultString), ss->length());
} else {
if (result == OOM)
ReportOutOfMemory(cx);
}
ss = nullptr;
MOZ_ASSERT(!active());
return result != OOM;
}
SourceCompressionTask*
GlobalHelperThreadState::compressionTaskForSource(ScriptSource* ss,
const AutoLockHelperThreadState& lock)
{
for (size_t i = 0; i < compressionWorklist(lock).length(); i++) {
SourceCompressionTask* task = compressionWorklist(lock)[i];
if (task->source() == ss)
return task;
}
for (auto& thread : *threads) {
SourceCompressionTask* task = thread.compressionTask();
if (task && task->source() == ss)
return task;
}
return nullptr;
}
void
GlobalHelperThreadState::trace(JSTracer* trc)
{
AutoLockHelperThreadState lock;
for (auto builder : ionWorklist(lock))
builder->trace(trc);
for (auto builder : ionFinishedList(lock))
builder->trace(trc);
if (HelperThreadState().threads) {
for (auto& helper : *HelperThreadState().threads) {
if (auto builder = helper.ionBuilder())
builder->trace(trc);
}
}
jit::IonBuilder* builder = trc->runtime()->ionLazyLinkList().getFirst();
while (builder) {
builder->trace(trc);
builder = builder->getNext();
}
for (auto parseTask : parseWorklist_)
parseTask->trace(trc);
for (auto parseTask : parseFinishedList_)
parseTask->trace(trc);
for (auto parseTask : parseWaitingOnGC_)
parseTask->trace(trc);
}
void
HelperThread::handleGCHelperWorkload(AutoLockHelperThreadState& locked)
{
MOZ_ASSERT(HelperThreadState().canStartGCHelperTask(locked));
MOZ_ASSERT(idle());
currentTask.emplace(HelperThreadState().gcHelperWorklist(locked).popCopy());
GCHelperState* task = gcHelperTask();
{
AutoUnlockHelperThreadState unlock(locked);
task->work();
}
currentTask.reset();
HelperThreadState().notifyAll(GlobalHelperThreadState::CONSUMER, locked);
}
void
HelperThread::threadLoop()
{
MOZ_ASSERT(CanUseExtraThreads());
JS::AutoSuppressGCAnalysis nogc;
AutoLockHelperThreadState lock;
js::TlsPerThreadData.set(threadData.ptr());
// Compute the thread's stack limit, for over-recursed checks.
uintptr_t stackLimit = GetNativeStackBase();
#if JS_STACK_GROWTH_DIRECTION > 0
stackLimit += HELPER_STACK_QUOTA;
#else
stackLimit -= HELPER_STACK_QUOTA;
#endif
while (true) {
MOZ_ASSERT(idle());
// Block until a task is available. Save the value of whether we are
// going to do an Ion compile, in case the value returned by the method
// changes.
bool ionCompile = false;
while (true) {
if (terminate)
return;
if ((ionCompile = HelperThreadState().pendingIonCompileHasSufficientPriority(lock)) ||
HelperThreadState().canStartWasmCompile(lock) ||
HelperThreadState().canStartPromiseTask(lock) ||
HelperThreadState().canStartParseTask(lock) ||
HelperThreadState().canStartCompressionTask(lock) ||
HelperThreadState().canStartGCHelperTask(lock) ||
HelperThreadState().canStartGCParallelTask(lock))
{
break;
}
HelperThreadState().wait(lock, GlobalHelperThreadState::PRODUCER);
}
if (ionCompile) {
js::oom::SetThreadType(js::oom::THREAD_TYPE_ION);
handleIonWorkload(lock);
} else if (HelperThreadState().canStartWasmCompile(lock)) {
js::oom::SetThreadType(js::oom::THREAD_TYPE_ASMJS);
handleWasmWorkload(lock);
} else if (HelperThreadState().canStartPromiseTask(lock)) {
js::oom::SetThreadType(js::oom::THREAD_TYPE_PROMISE_TASK);
handlePromiseTaskWorkload(lock);
} else if (HelperThreadState().canStartParseTask(lock)) {
js::oom::SetThreadType(js::oom::THREAD_TYPE_PARSE);
handleParseWorkload(lock, stackLimit);
} else if (HelperThreadState().canStartCompressionTask(lock)) {
js::oom::SetThreadType(js::oom::THREAD_TYPE_COMPRESS);
handleCompressionWorkload(lock);
} else if (HelperThreadState().canStartGCHelperTask(lock)) {
js::oom::SetThreadType(js::oom::THREAD_TYPE_GCHELPER);
handleGCHelperWorkload(lock);
} else if (HelperThreadState().canStartGCParallelTask(lock)) {
js::oom::SetThreadType(js::oom::THREAD_TYPE_GCPARALLEL);
handleGCParallelWorkload(lock);
} else {
MOZ_CRASH("No task to perform");
}
}
}