Mypal/js/src/jit/mips64/MacroAssembler-mips64.cpp

2432 lines
71 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/mips64/MacroAssembler-mips64.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/Bailouts.h"
#include "jit/BaselineFrame.h"
#include "jit/JitFrames.h"
#include "jit/MacroAssembler.h"
#include "jit/mips64/Simulator-mips64.h"
#include "jit/MoveEmitter.h"
#include "jit/SharedICRegisters.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace jit;
using mozilla::Abs;
static_assert(sizeof(intptr_t) == 8, "Not 32-bit clean.");
void
MacroAssemblerMIPS64Compat::convertBoolToInt32(Register src, Register dest)
{
// Note that C++ bool is only 1 byte, so zero extend it to clear the
// higher-order bits.
ma_and(dest, src, Imm32(0xff));
}
void
MacroAssemblerMIPS64Compat::convertInt32ToDouble(Register src, FloatRegister dest)
{
as_mtc1(src, dest);
as_cvtdw(dest, dest);
}
void
MacroAssemblerMIPS64Compat::convertInt32ToDouble(const Address& src, FloatRegister dest)
{
ma_ls(dest, src);
as_cvtdw(dest, dest);
}
void
MacroAssemblerMIPS64Compat::convertInt32ToDouble(const BaseIndex& src, FloatRegister dest)
{
computeScaledAddress(src, ScratchRegister);
convertInt32ToDouble(Address(ScratchRegister, src.offset), dest);
}
void
MacroAssemblerMIPS64Compat::convertUInt32ToDouble(Register src, FloatRegister dest)
{
// We use SecondScratchDoubleReg because MacroAssembler::loadFromTypedArray
// calls with ScratchDoubleReg as dest.
MOZ_ASSERT(dest != SecondScratchDoubleReg);
// Subtract INT32_MIN to get a positive number
ma_subu(ScratchRegister, src, Imm32(INT32_MIN));
// Convert value
as_mtc1(ScratchRegister, dest);
as_cvtdw(dest, dest);
// Add unsigned value of INT32_MIN
ma_lid(SecondScratchDoubleReg, 2147483648.0);
as_addd(dest, dest, SecondScratchDoubleReg);
}
void
MacroAssemblerMIPS64Compat::convertInt64ToDouble(Register src, FloatRegister dest)
{
as_dmtc1(src, dest);
as_cvtdl(dest, dest);
}
void
MacroAssemblerMIPS64Compat::convertInt64ToFloat32(Register src, FloatRegister dest)
{
as_dmtc1(src, dest);
as_cvtsl(dest, dest);
}
void
MacroAssemblerMIPS64Compat::convertUInt64ToDouble(Register src, FloatRegister dest)
{
Label positive, done;
ma_b(src, src, &positive, NotSigned, ShortJump);
MOZ_ASSERT(src!= ScratchRegister);
MOZ_ASSERT(src!= SecondScratchReg);
ma_and(ScratchRegister, src, Imm32(1));
ma_dsrl(SecondScratchReg, src, Imm32(1));
ma_or(ScratchRegister, SecondScratchReg);
as_dmtc1(ScratchRegister, dest);
as_cvtdl(dest, dest);
asMasm().addDouble(dest, dest);
ma_b(&done, ShortJump);
bind(&positive);
as_dmtc1(src, dest);
as_cvtdl(dest, dest);
bind(&done);
}
void
MacroAssemblerMIPS64Compat::convertUInt64ToFloat32(Register src, FloatRegister dest)
{
Label positive, done;
ma_b(src, src, &positive, NotSigned, ShortJump);
MOZ_ASSERT(src!= ScratchRegister);
MOZ_ASSERT(src!= SecondScratchReg);
ma_and(ScratchRegister, src, Imm32(1));
ma_dsrl(SecondScratchReg, src, Imm32(1));
ma_or(ScratchRegister, SecondScratchReg);
as_dmtc1(ScratchRegister, dest);
as_cvtsl(dest, dest);
asMasm().addFloat32(dest, dest);
ma_b(&done, ShortJump);
bind(&positive);
as_dmtc1(src, dest);
as_cvtsl(dest, dest);
bind(&done);
}
bool
MacroAssemblerMIPS64Compat::convertUInt64ToDoubleNeedsTemp()
{
return false;
}
void
MacroAssemblerMIPS64Compat::convertUInt64ToDouble(Register64 src, FloatRegister dest, Register temp)
{
convertUInt64ToDouble(src.reg, dest);
}
void
MacroAssemblerMIPS64Compat::convertUInt32ToFloat32(Register src, FloatRegister dest)
{
Label positive, done;
ma_b(src, src, &positive, NotSigned, ShortJump);
// We cannot do the same as convertUInt32ToDouble because float32 doesn't
// have enough precision.
convertUInt32ToDouble(src, dest);
convertDoubleToFloat32(dest, dest);
ma_b(&done, ShortJump);
bind(&positive);
convertInt32ToFloat32(src, dest);
bind(&done);
}
void
MacroAssemblerMIPS64Compat::convertDoubleToFloat32(FloatRegister src, FloatRegister dest)
{
as_cvtsd(dest, src);
}
// Checks whether a double is representable as a 32-bit integer. If so, the
// integer is written to the output register. Otherwise, a bailout is taken to
// the given snapshot. This function overwrites the scratch float register.
void
MacroAssemblerMIPS64Compat::convertDoubleToInt32(FloatRegister src, Register dest,
Label* fail, bool negativeZeroCheck)
{
if (negativeZeroCheck) {
moveFromDouble(src, dest);
ma_drol(dest, dest, Imm32(1));
ma_b(dest, Imm32(1), fail, Assembler::Equal);
}
// Convert double to int, then convert back and check if we have the
// same number.
as_cvtwd(ScratchDoubleReg, src);
as_mfc1(dest, ScratchDoubleReg);
as_cvtdw(ScratchDoubleReg, ScratchDoubleReg);
ma_bc1d(src, ScratchDoubleReg, fail, Assembler::DoubleNotEqualOrUnordered);
}
// Checks whether a float32 is representable as a 32-bit integer. If so, the
// integer is written to the output register. Otherwise, a bailout is taken to
// the given snapshot. This function overwrites the scratch float register.
void
MacroAssemblerMIPS64Compat::convertFloat32ToInt32(FloatRegister src, Register dest,
Label* fail, bool negativeZeroCheck)
{
if (negativeZeroCheck) {
moveFromFloat32(src, dest);
ma_b(dest, Imm32(INT32_MIN), fail, Assembler::Equal);
}
// Converting the floating point value to an integer and then converting it
// back to a float32 would not work, as float to int32 conversions are
// clamping (e.g. float(INT32_MAX + 1) would get converted into INT32_MAX
// and then back to float(INT32_MAX + 1)). If this ever happens, we just
// bail out.
as_cvtws(ScratchFloat32Reg, src);
as_mfc1(dest, ScratchFloat32Reg);
as_cvtsw(ScratchFloat32Reg, ScratchFloat32Reg);
ma_bc1s(src, ScratchFloat32Reg, fail, Assembler::DoubleNotEqualOrUnordered);
// Bail out in the clamped cases.
ma_b(dest, Imm32(INT32_MAX), fail, Assembler::Equal);
}
void
MacroAssemblerMIPS64Compat::convertFloat32ToDouble(FloatRegister src, FloatRegister dest)
{
as_cvtds(dest, src);
}
void
MacroAssemblerMIPS64Compat::convertInt32ToFloat32(Register src, FloatRegister dest)
{
as_mtc1(src, dest);
as_cvtsw(dest, dest);
}
void
MacroAssemblerMIPS64Compat::convertInt32ToFloat32(const Address& src, FloatRegister dest)
{
ma_ls(dest, src);
as_cvtsw(dest, dest);
}
void
MacroAssemblerMIPS64Compat::movq(Register rs, Register rd)
{
ma_move(rd, rs);
}
void
MacroAssemblerMIPS64::ma_li(Register dest, CodeOffset* label)
{
BufferOffset bo = m_buffer.nextOffset();
ma_liPatchable(dest, ImmWord(/* placeholder */ 0));
label->bind(bo.getOffset());
}
void
MacroAssemblerMIPS64::ma_li(Register dest, ImmWord imm)
{
int64_t value = imm.value;
if (-1 == (value >> 15) || 0 == (value >> 15)) {
as_addiu(dest, zero, value);
return;
}
if (0 == (value >> 16)) {
as_ori(dest, zero, value);
return;
}
if (-1 == (value >> 31) || 0 == (value >> 31)) {
as_lui(dest, uint16_t(value >> 16));
} else if (0 == (value >> 32)) {
as_lui(dest, uint16_t(value >> 16));
as_dinsu(dest, zero, 32, 32);
} else if (-1 == (value >> 47) || 0 == (value >> 47)) {
as_lui(dest, uint16_t(value >> 32));
if (uint16_t(value >> 16))
as_ori(dest, dest, uint16_t(value >> 16));
as_dsll(dest, dest, 16);
} else if (0 == (value >> 48)) {
as_lui(dest, uint16_t(value >> 32));
as_dinsu(dest, zero, 32, 32);
if (uint16_t(value >> 16))
as_ori(dest, dest, uint16_t(value >> 16));
as_dsll(dest, dest, 16);
} else {
as_lui(dest, uint16_t(value >> 48));
if (uint16_t(value >> 32))
as_ori(dest, dest, uint16_t(value >> 32));
if (uint16_t(value >> 16)) {
as_dsll(dest, dest, 16);
as_ori(dest, dest, uint16_t(value >> 16));
as_dsll(dest, dest, 16);
} else {
as_dsll32(dest, dest, 32);
}
}
if (uint16_t(value))
as_ori(dest, dest, uint16_t(value));
}
// This method generates lui, dsll and ori instruction block that can be modified
// by UpdateLoad64Value, either during compilation (eg. Assembler::bind), or
// during execution (eg. jit::PatchJump).
void
MacroAssemblerMIPS64::ma_liPatchable(Register dest, ImmPtr imm)
{
return ma_liPatchable(dest, ImmWord(uintptr_t(imm.value)));
}
void
MacroAssemblerMIPS64::ma_liPatchable(Register dest, ImmWord imm, LiFlags flags)
{
if (Li64 == flags) {
m_buffer.ensureSpace(6 * sizeof(uint32_t));
as_lui(dest, Imm16::Upper(Imm32(imm.value >> 32)).encode());
as_ori(dest, dest, Imm16::Lower(Imm32(imm.value >> 32)).encode());
as_dsll(dest, dest, 16);
as_ori(dest, dest, Imm16::Upper(Imm32(imm.value)).encode());
as_dsll(dest, dest, 16);
as_ori(dest, dest, Imm16::Lower(Imm32(imm.value)).encode());
} else {
m_buffer.ensureSpace(4 * sizeof(uint32_t));
as_lui(dest, Imm16::Lower(Imm32(imm.value >> 32)).encode());
as_ori(dest, dest, Imm16::Upper(Imm32(imm.value)).encode());
as_drotr32(dest, dest, 48);
as_ori(dest, dest, Imm16::Lower(Imm32(imm.value)).encode());
}
}
void
MacroAssemblerMIPS64::ma_dnegu(Register rd, Register rs)
{
as_dsubu(rd, zero, rs);
}
// Shifts
void
MacroAssemblerMIPS64::ma_dsll(Register rd, Register rt, Imm32 shift)
{
if (31 < shift.value)
as_dsll32(rd, rt, shift.value);
else
as_dsll(rd, rt, shift.value);
}
void
MacroAssemblerMIPS64::ma_dsrl(Register rd, Register rt, Imm32 shift)
{
if (31 < shift.value)
as_dsrl32(rd, rt, shift.value);
else
as_dsrl(rd, rt, shift.value);
}
void
MacroAssemblerMIPS64::ma_dsra(Register rd, Register rt, Imm32 shift)
{
if (31 < shift.value)
as_dsra32(rd, rt, shift.value);
else
as_dsra(rd, rt, shift.value);
}
void
MacroAssemblerMIPS64::ma_dror(Register rd, Register rt, Imm32 shift)
{
if (31 < shift.value)
as_drotr32(rd, rt, shift.value);
else
as_drotr(rd, rt, shift.value);
}
void
MacroAssemblerMIPS64::ma_drol(Register rd, Register rt, Imm32 shift)
{
uint32_t s = 64 - shift.value;
if (31 < s)
as_drotr32(rd, rt, s);
else
as_drotr(rd, rt, s);
}
void
MacroAssemblerMIPS64::ma_dsll(Register rd, Register rt, Register shift)
{
as_dsllv(rd, rt, shift);
}
void
MacroAssemblerMIPS64::ma_dsrl(Register rd, Register rt, Register shift)
{
as_dsrlv(rd, rt, shift);
}
void
MacroAssemblerMIPS64::ma_dsra(Register rd, Register rt, Register shift)
{
as_dsrav(rd, rt, shift);
}
void
MacroAssemblerMIPS64::ma_dror(Register rd, Register rt, Register shift)
{
as_drotrv(rd, rt, shift);
}
void
MacroAssemblerMIPS64::ma_drol(Register rd, Register rt, Register shift)
{
ma_negu(ScratchRegister, shift);
as_drotrv(rd, rt, ScratchRegister);
}
void
MacroAssemblerMIPS64::ma_dins(Register rt, Register rs, Imm32 pos, Imm32 size)
{
if (pos.value >= 0 && pos.value < 32) {
if (pos.value + size.value > 32)
as_dinsm(rt, rs, pos.value, size.value);
else
as_dins(rt, rs, pos.value, size.value);
} else {
as_dinsu(rt, rs, pos.value, size.value);
}
}
void
MacroAssemblerMIPS64::ma_dext(Register rt, Register rs, Imm32 pos, Imm32 size)
{
if (pos.value >= 0 && pos.value < 32) {
if (size.value > 32)
as_dextm(rt, rs, pos.value, size.value);
else
as_dext(rt, rs, pos.value, size.value);
} else {
as_dextu(rt, rs, pos.value, size.value);
}
}
void
MacroAssemblerMIPS64::ma_dctz(Register rd, Register rs)
{
ma_dnegu(ScratchRegister, rs);
as_and(rd, ScratchRegister, rs);
as_dclz(rd, rd);
ma_dnegu(SecondScratchReg, rd);
ma_daddu(SecondScratchReg, Imm32(0x3f));
as_movn(rd, SecondScratchReg, ScratchRegister);
}
// Arithmetic-based ops.
// Add.
void
MacroAssemblerMIPS64::ma_daddu(Register rd, Register rs, Imm32 imm)
{
if (Imm16::IsInSignedRange(imm.value)) {
as_daddiu(rd, rs, imm.value);
} else {
ma_li(ScratchRegister, imm);
as_daddu(rd, rs, ScratchRegister);
}
}
void
MacroAssemblerMIPS64::ma_daddu(Register rd, Register rs)
{
as_daddu(rd, rd, rs);
}
void
MacroAssemblerMIPS64::ma_daddu(Register rd, Imm32 imm)
{
ma_daddu(rd, rd, imm);
}
template <typename L>
void
MacroAssemblerMIPS64::ma_addTestOverflow(Register rd, Register rs, Register rt, L overflow)
{
as_daddu(SecondScratchReg, rs, rt);
as_addu(rd, rs, rt);
ma_b(rd, SecondScratchReg, overflow, Assembler::NotEqual);
}
template void
MacroAssemblerMIPS64::ma_addTestOverflow<Label*>(Register rd, Register rs,
Register rt, Label* overflow);
template void
MacroAssemblerMIPS64::ma_addTestOverflow<wasm::TrapDesc>(Register rd, Register rs, Register rt,
wasm::TrapDesc overflow);
template <typename L>
void
MacroAssemblerMIPS64::ma_addTestOverflow(Register rd, Register rs, Imm32 imm, L overflow)
{
// Check for signed range because of as_daddiu
if (Imm16::IsInSignedRange(imm.value)) {
as_daddiu(SecondScratchReg, rs, imm.value);
as_addiu(rd, rs, imm.value);
ma_b(rd, SecondScratchReg, overflow, Assembler::NotEqual);
} else {
ma_li(ScratchRegister, imm);
ma_addTestOverflow(rd, rs, ScratchRegister, overflow);
}
}
template void
MacroAssemblerMIPS64::ma_addTestOverflow<Label*>(Register rd, Register rs,
Imm32 imm, Label* overflow);
template void
MacroAssemblerMIPS64::ma_addTestOverflow<wasm::TrapDesc>(Register rd, Register rs, Imm32 imm,
wasm::TrapDesc overflow);
// Subtract.
void
MacroAssemblerMIPS64::ma_dsubu(Register rd, Register rs, Imm32 imm)
{
if (Imm16::IsInSignedRange(-imm.value)) {
as_daddiu(rd, rs, -imm.value);
} else {
ma_li(ScratchRegister, imm);
as_dsubu(rd, rs, ScratchRegister);
}
}
void
MacroAssemblerMIPS64::ma_dsubu(Register rd, Register rs)
{
as_dsubu(rd, rd, rs);
}
void
MacroAssemblerMIPS64::ma_dsubu(Register rd, Imm32 imm)
{
ma_dsubu(rd, rd, imm);
}
void
MacroAssemblerMIPS64::ma_subTestOverflow(Register rd, Register rs, Register rt, Label* overflow)
{
as_dsubu(SecondScratchReg, rs, rt);
as_subu(rd, rs, rt);
ma_b(rd, SecondScratchReg, overflow, Assembler::NotEqual);
}
void
MacroAssemblerMIPS64::ma_dmult(Register rs, Imm32 imm)
{
ma_li(ScratchRegister, imm);
as_dmult(rs, ScratchRegister);
}
// Memory.
void
MacroAssemblerMIPS64::ma_load(Register dest, Address address,
LoadStoreSize size, LoadStoreExtension extension)
{
int16_t encodedOffset;
Register base;
if (isLoongson() && ZeroExtend != extension &&
!Imm16::IsInSignedRange(address.offset))
{
ma_li(ScratchRegister, Imm32(address.offset));
base = address.base;
switch (size) {
case SizeByte:
as_gslbx(dest, base, ScratchRegister, 0);
break;
case SizeHalfWord:
as_gslhx(dest, base, ScratchRegister, 0);
break;
case SizeWord:
as_gslwx(dest, base, ScratchRegister, 0);
break;
case SizeDouble:
as_gsldx(dest, base, ScratchRegister, 0);
break;
default:
MOZ_CRASH("Invalid argument for ma_load");
}
return;
}
if (!Imm16::IsInSignedRange(address.offset)) {
ma_li(ScratchRegister, Imm32(address.offset));
as_daddu(ScratchRegister, address.base, ScratchRegister);
base = ScratchRegister;
encodedOffset = Imm16(0).encode();
} else {
encodedOffset = Imm16(address.offset).encode();
base = address.base;
}
switch (size) {
case SizeByte:
if (ZeroExtend == extension)
as_lbu(dest, base, encodedOffset);
else
as_lb(dest, base, encodedOffset);
break;
case SizeHalfWord:
if (ZeroExtend == extension)
as_lhu(dest, base, encodedOffset);
else
as_lh(dest, base, encodedOffset);
break;
case SizeWord:
if (ZeroExtend == extension)
as_lwu(dest, base, encodedOffset);
else
as_lw(dest, base, encodedOffset);
break;
case SizeDouble:
as_ld(dest, base, encodedOffset);
break;
default:
MOZ_CRASH("Invalid argument for ma_load");
}
}
void
MacroAssemblerMIPS64::ma_store(Register data, Address address, LoadStoreSize size,
LoadStoreExtension extension)
{
int16_t encodedOffset;
Register base;
if (isLoongson() && !Imm16::IsInSignedRange(address.offset)) {
ma_li(ScratchRegister, Imm32(address.offset));
base = address.base;
switch (size) {
case SizeByte:
as_gssbx(data, base, ScratchRegister, 0);
break;
case SizeHalfWord:
as_gsshx(data, base, ScratchRegister, 0);
break;
case SizeWord:
as_gsswx(data, base, ScratchRegister, 0);
break;
case SizeDouble:
as_gssdx(data, base, ScratchRegister, 0);
break;
default:
MOZ_CRASH("Invalid argument for ma_store");
}
return;
}
if (!Imm16::IsInSignedRange(address.offset)) {
ma_li(ScratchRegister, Imm32(address.offset));
as_daddu(ScratchRegister, address.base, ScratchRegister);
base = ScratchRegister;
encodedOffset = Imm16(0).encode();
} else {
encodedOffset = Imm16(address.offset).encode();
base = address.base;
}
switch (size) {
case SizeByte:
as_sb(data, base, encodedOffset);
break;
case SizeHalfWord:
as_sh(data, base, encodedOffset);
break;
case SizeWord:
as_sw(data, base, encodedOffset);
break;
case SizeDouble:
as_sd(data, base, encodedOffset);
break;
default:
MOZ_CRASH("Invalid argument for ma_store");
}
}
void
MacroAssemblerMIPS64Compat::computeScaledAddress(const BaseIndex& address, Register dest)
{
int32_t shift = Imm32::ShiftOf(address.scale).value;
if (shift) {
ma_dsll(ScratchRegister, address.index, Imm32(shift));
as_daddu(dest, address.base, ScratchRegister);
} else {
as_daddu(dest, address.base, address.index);
}
}
// Shortcut for when we know we're transferring 32 bits of data.
void
MacroAssemblerMIPS64::ma_pop(Register r)
{
as_ld(r, StackPointer, 0);
as_daddiu(StackPointer, StackPointer, sizeof(intptr_t));
}
void
MacroAssemblerMIPS64::ma_push(Register r)
{
if (r == sp) {
// Pushing sp requires one more instruction.
ma_move(ScratchRegister, sp);
r = ScratchRegister;
}
as_daddiu(StackPointer, StackPointer, (int32_t)-sizeof(intptr_t));
as_sd(r, StackPointer, 0);
}
// Branches when done from within mips-specific code.
void
MacroAssemblerMIPS64::ma_b(Register lhs, ImmWord imm, Label* label, Condition c, JumpKind jumpKind)
{
if (imm.value <= INT32_MAX) {
ma_b(lhs, Imm32(uint32_t(imm.value)), label, c, jumpKind);
} else {
MOZ_ASSERT(lhs != ScratchRegister);
ma_li(ScratchRegister, imm);
ma_b(lhs, ScratchRegister, label, c, jumpKind);
}
}
void
MacroAssemblerMIPS64::ma_b(Register lhs, Address addr, Label* label, Condition c, JumpKind jumpKind)
{
MOZ_ASSERT(lhs != ScratchRegister);
ma_load(ScratchRegister, addr, SizeDouble);
ma_b(lhs, ScratchRegister, label, c, jumpKind);
}
void
MacroAssemblerMIPS64::ma_b(Address addr, Imm32 imm, Label* label, Condition c, JumpKind jumpKind)
{
ma_load(SecondScratchReg, addr, SizeDouble);
ma_b(SecondScratchReg, imm, label, c, jumpKind);
}
void
MacroAssemblerMIPS64::ma_b(Address addr, ImmGCPtr imm, Label* label, Condition c, JumpKind jumpKind)
{
ma_load(SecondScratchReg, addr, SizeDouble);
ma_b(SecondScratchReg, imm, label, c, jumpKind);
}
void
MacroAssemblerMIPS64::ma_cmp_set(Register rd, Register rs, ImmWord imm, Condition c)
{
if (imm.value <= INT32_MAX) {
ma_cmp_set(rd, rs, Imm32(uint32_t(imm.value)), c);
} else {
ma_li(ScratchRegister, imm);
ma_cmp_set(rd, rs, ScratchRegister, c);
}
}
void
MacroAssemblerMIPS64::ma_cmp_set(Register rd, Register rs, ImmPtr imm, Condition c)
{
ma_cmp_set(rd, rs, ImmWord(uintptr_t(imm.value)), c);
}
// fp instructions
void
MacroAssemblerMIPS64::ma_lid(FloatRegister dest, double value)
{
ImmWord imm(mozilla::BitwiseCast<uint64_t>(value));
if (imm.value == 0) {
moveToDouble(zero, dest);
return;
}
ma_li(ScratchRegister, imm);
moveToDouble(ScratchRegister, dest);
}
void
MacroAssemblerMIPS64::ma_mv(FloatRegister src, ValueOperand dest)
{
as_dmfc1(dest.valueReg(), src);
}
void
MacroAssemblerMIPS64::ma_mv(ValueOperand src, FloatRegister dest)
{
as_dmtc1(src.valueReg(), dest);
}
void
MacroAssemblerMIPS64::ma_ls(FloatRegister ft, Address address)
{
if (Imm16::IsInSignedRange(address.offset)) {
as_ls(ft, address.base, address.offset);
} else {
MOZ_ASSERT(address.base != ScratchRegister);
ma_li(ScratchRegister, Imm32(address.offset));
if (isLoongson()) {
as_gslsx(ft, address.base, ScratchRegister, 0);
} else {
as_daddu(ScratchRegister, address.base, ScratchRegister);
as_ls(ft, ScratchRegister, 0);
}
}
}
void
MacroAssemblerMIPS64::ma_ld(FloatRegister ft, Address address)
{
if (Imm16::IsInSignedRange(address.offset)) {
as_ld(ft, address.base, address.offset);
} else {
MOZ_ASSERT(address.base != ScratchRegister);
ma_li(ScratchRegister, Imm32(address.offset));
if (isLoongson()) {
as_gsldx(ft, address.base, ScratchRegister, 0);
} else {
as_daddu(ScratchRegister, address.base, ScratchRegister);
as_ld(ft, ScratchRegister, 0);
}
}
}
void
MacroAssemblerMIPS64::ma_sd(FloatRegister ft, Address address)
{
if (Imm16::IsInSignedRange(address.offset)) {
as_sd(ft, address.base, address.offset);
} else {
MOZ_ASSERT(address.base != ScratchRegister);
ma_li(ScratchRegister, Imm32(address.offset));
if (isLoongson()) {
as_gssdx(ft, address.base, ScratchRegister, 0);
} else {
as_daddu(ScratchRegister, address.base, ScratchRegister);
as_sd(ft, ScratchRegister, 0);
}
}
}
void
MacroAssemblerMIPS64::ma_ss(FloatRegister ft, Address address)
{
if (Imm16::IsInSignedRange(address.offset)) {
as_ss(ft, address.base, address.offset);
} else {
MOZ_ASSERT(address.base != ScratchRegister);
ma_li(ScratchRegister, Imm32(address.offset));
if (isLoongson()) {
as_gsssx(ft, address.base, ScratchRegister, 0);
} else {
as_daddu(ScratchRegister, address.base, ScratchRegister);
as_ss(ft, ScratchRegister, 0);
}
}
}
void
MacroAssemblerMIPS64::ma_pop(FloatRegister fs)
{
ma_ld(fs, Address(StackPointer, 0));
as_daddiu(StackPointer, StackPointer, sizeof(double));
}
void
MacroAssemblerMIPS64::ma_push(FloatRegister fs)
{
as_daddiu(StackPointer, StackPointer, (int32_t)-sizeof(double));
ma_sd(fs, Address(StackPointer, 0));
}
bool
MacroAssemblerMIPS64Compat::buildOOLFakeExitFrame(void* fakeReturnAddr)
{
uint32_t descriptor = MakeFrameDescriptor(asMasm().framePushed(), JitFrame_IonJS,
ExitFrameLayout::Size());
asMasm().Push(Imm32(descriptor)); // descriptor_
asMasm().Push(ImmPtr(fakeReturnAddr));
return true;
}
void
MacroAssemblerMIPS64Compat::move32(Imm32 imm, Register dest)
{
ma_li(dest, imm);
}
void
MacroAssemblerMIPS64Compat::move32(Register src, Register dest)
{
ma_move(dest, src);
}
void
MacroAssemblerMIPS64Compat::movePtr(Register src, Register dest)
{
ma_move(dest, src);
}
void
MacroAssemblerMIPS64Compat::movePtr(ImmWord imm, Register dest)
{
ma_li(dest, imm);
}
void
MacroAssemblerMIPS64Compat::movePtr(ImmGCPtr imm, Register dest)
{
ma_li(dest, imm);
}
void
MacroAssemblerMIPS64Compat::movePtr(ImmPtr imm, Register dest)
{
movePtr(ImmWord(uintptr_t(imm.value)), dest);
}
void
MacroAssemblerMIPS64Compat::movePtr(wasm::SymbolicAddress imm, Register dest)
{
append(wasm::SymbolicAccess(CodeOffset(nextOffset().getOffset()), imm));
ma_liPatchable(dest, ImmWord(-1));
}
void
MacroAssemblerMIPS64Compat::load8ZeroExtend(const Address& address, Register dest)
{
ma_load(dest, address, SizeByte, ZeroExtend);
}
void
MacroAssemblerMIPS64Compat::load8ZeroExtend(const BaseIndex& src, Register dest)
{
ma_load(dest, src, SizeByte, ZeroExtend);
}
void
MacroAssemblerMIPS64Compat::load8SignExtend(const Address& address, Register dest)
{
ma_load(dest, address, SizeByte, SignExtend);
}
void
MacroAssemblerMIPS64Compat::load8SignExtend(const BaseIndex& src, Register dest)
{
ma_load(dest, src, SizeByte, SignExtend);
}
void
MacroAssemblerMIPS64Compat::load16ZeroExtend(const Address& address, Register dest)
{
ma_load(dest, address, SizeHalfWord, ZeroExtend);
}
void
MacroAssemblerMIPS64Compat::load16ZeroExtend(const BaseIndex& src, Register dest)
{
ma_load(dest, src, SizeHalfWord, ZeroExtend);
}
void
MacroAssemblerMIPS64Compat::load16SignExtend(const Address& address, Register dest)
{
ma_load(dest, address, SizeHalfWord, SignExtend);
}
void
MacroAssemblerMIPS64Compat::load16SignExtend(const BaseIndex& src, Register dest)
{
ma_load(dest, src, SizeHalfWord, SignExtend);
}
void
MacroAssemblerMIPS64Compat::load32(const Address& address, Register dest)
{
ma_load(dest, address, SizeWord);
}
void
MacroAssemblerMIPS64Compat::load32(const BaseIndex& address, Register dest)
{
ma_load(dest, address, SizeWord);
}
void
MacroAssemblerMIPS64Compat::load32(AbsoluteAddress address, Register dest)
{
movePtr(ImmPtr(address.addr), ScratchRegister);
load32(Address(ScratchRegister, 0), dest);
}
void
MacroAssemblerMIPS64Compat::load32(wasm::SymbolicAddress address, Register dest)
{
movePtr(address, ScratchRegister);
load32(Address(ScratchRegister, 0), dest);
}
void
MacroAssemblerMIPS64Compat::loadPtr(const Address& address, Register dest)
{
ma_load(dest, address, SizeDouble);
}
void
MacroAssemblerMIPS64Compat::loadPtr(const BaseIndex& src, Register dest)
{
ma_load(dest, src, SizeDouble);
}
void
MacroAssemblerMIPS64Compat::loadPtr(AbsoluteAddress address, Register dest)
{
movePtr(ImmPtr(address.addr), ScratchRegister);
loadPtr(Address(ScratchRegister, 0), dest);
}
void
MacroAssemblerMIPS64Compat::loadPtr(wasm::SymbolicAddress address, Register dest)
{
movePtr(address, ScratchRegister);
loadPtr(Address(ScratchRegister, 0), dest);
}
void
MacroAssemblerMIPS64Compat::loadPrivate(const Address& address, Register dest)
{
loadPtr(address, dest);
ma_dsll(dest, dest, Imm32(1));
}
void
MacroAssemblerMIPS64Compat::loadDouble(const Address& address, FloatRegister dest)
{
ma_ld(dest, address);
}
void
MacroAssemblerMIPS64Compat::loadDouble(const BaseIndex& src, FloatRegister dest)
{
computeScaledAddress(src, SecondScratchReg);
ma_ld(dest, Address(SecondScratchReg, src.offset));
}
void
MacroAssemblerMIPS64Compat::loadUnalignedDouble(const wasm::MemoryAccessDesc& access,
const BaseIndex& src, Register temp, FloatRegister dest)
{
computeScaledAddress(src, SecondScratchReg);
BufferOffset load;
if (Imm16::IsInSignedRange(src.offset) && Imm16::IsInSignedRange(src.offset + 7)) {
load = as_ldl(temp, SecondScratchReg, src.offset + 7);
as_ldr(temp, SecondScratchReg, src.offset);
} else {
ma_li(ScratchRegister, Imm32(src.offset));
as_daddu(ScratchRegister, SecondScratchReg, ScratchRegister);
load = as_ldl(temp, ScratchRegister, 7);
as_ldr(temp, ScratchRegister, 0);
}
append(access, load.getOffset(), asMasm().framePushed());
moveToDouble(temp, dest);
}
void
MacroAssemblerMIPS64Compat::loadFloatAsDouble(const Address& address, FloatRegister dest)
{
ma_ls(dest, address);
as_cvtds(dest, dest);
}
void
MacroAssemblerMIPS64Compat::loadFloatAsDouble(const BaseIndex& src, FloatRegister dest)
{
loadFloat32(src, dest);
as_cvtds(dest, dest);
}
void
MacroAssemblerMIPS64Compat::loadFloat32(const Address& address, FloatRegister dest)
{
ma_ls(dest, address);
}
void
MacroAssemblerMIPS64Compat::loadFloat32(const BaseIndex& src, FloatRegister dest)
{
computeScaledAddress(src, SecondScratchReg);
ma_ls(dest, Address(SecondScratchReg, src.offset));
}
void
MacroAssemblerMIPS64Compat::loadUnalignedFloat32(const wasm::MemoryAccessDesc& access,
const BaseIndex& src, Register temp, FloatRegister dest)
{
computeScaledAddress(src, SecondScratchReg);
BufferOffset load;
if (Imm16::IsInSignedRange(src.offset) && Imm16::IsInSignedRange(src.offset + 3)) {
load = as_lwl(temp, SecondScratchReg, src.offset + 3);
as_lwr(temp, SecondScratchReg, src.offset);
} else {
ma_li(ScratchRegister, Imm32(src.offset));
as_daddu(ScratchRegister, SecondScratchReg, ScratchRegister);
load = as_lwl(temp, ScratchRegister, 3);
as_lwr(temp, ScratchRegister, 0);
}
append(access, load.getOffset(), asMasm().framePushed());
moveToFloat32(temp, dest);
}
void
MacroAssemblerMIPS64Compat::store8(Imm32 imm, const Address& address)
{
ma_li(SecondScratchReg, imm);
ma_store(SecondScratchReg, address, SizeByte);
}
void
MacroAssemblerMIPS64Compat::store8(Register src, const Address& address)
{
ma_store(src, address, SizeByte);
}
void
MacroAssemblerMIPS64Compat::store8(Imm32 imm, const BaseIndex& dest)
{
ma_store(imm, dest, SizeByte);
}
void
MacroAssemblerMIPS64Compat::store8(Register src, const BaseIndex& dest)
{
ma_store(src, dest, SizeByte);
}
void
MacroAssemblerMIPS64Compat::store16(Imm32 imm, const Address& address)
{
ma_li(SecondScratchReg, imm);
ma_store(SecondScratchReg, address, SizeHalfWord);
}
void
MacroAssemblerMIPS64Compat::store16(Register src, const Address& address)
{
ma_store(src, address, SizeHalfWord);
}
void
MacroAssemblerMIPS64Compat::store16(Imm32 imm, const BaseIndex& dest)
{
ma_store(imm, dest, SizeHalfWord);
}
void
MacroAssemblerMIPS64Compat::store16(Register src, const BaseIndex& address)
{
ma_store(src, address, SizeHalfWord);
}
void
MacroAssemblerMIPS64Compat::store32(Register src, AbsoluteAddress address)
{
movePtr(ImmPtr(address.addr), ScratchRegister);
store32(src, Address(ScratchRegister, 0));
}
void
MacroAssemblerMIPS64Compat::store32(Register src, const Address& address)
{
ma_store(src, address, SizeWord);
}
void
MacroAssemblerMIPS64Compat::store32(Imm32 src, const Address& address)
{
if (src.value == 0) {
ma_store(zero, address, SizeWord);
return;
}
move32(src, SecondScratchReg);
ma_store(SecondScratchReg, address, SizeWord);
}
void
MacroAssemblerMIPS64Compat::store32(Imm32 imm, const BaseIndex& dest)
{
ma_store(imm, dest, SizeWord);
}
void
MacroAssemblerMIPS64Compat::store32(Register src, const BaseIndex& dest)
{
ma_store(src, dest, SizeWord);
}
template <typename T>
void
MacroAssemblerMIPS64Compat::storePtr(ImmWord imm, T address)
{
ma_li(SecondScratchReg, imm);
ma_store(SecondScratchReg, address, SizeDouble);
}
template void MacroAssemblerMIPS64Compat::storePtr<Address>(ImmWord imm, Address address);
template void MacroAssemblerMIPS64Compat::storePtr<BaseIndex>(ImmWord imm, BaseIndex address);
template <typename T>
void
MacroAssemblerMIPS64Compat::storePtr(ImmPtr imm, T address)
{
storePtr(ImmWord(uintptr_t(imm.value)), address);
}
template void MacroAssemblerMIPS64Compat::storePtr<Address>(ImmPtr imm, Address address);
template void MacroAssemblerMIPS64Compat::storePtr<BaseIndex>(ImmPtr imm, BaseIndex address);
template <typename T>
void
MacroAssemblerMIPS64Compat::storePtr(ImmGCPtr imm, T address)
{
movePtr(imm, SecondScratchReg);
storePtr(SecondScratchReg, address);
}
template void MacroAssemblerMIPS64Compat::storePtr<Address>(ImmGCPtr imm, Address address);
template void MacroAssemblerMIPS64Compat::storePtr<BaseIndex>(ImmGCPtr imm, BaseIndex address);
void
MacroAssemblerMIPS64Compat::storePtr(Register src, const Address& address)
{
ma_store(src, address, SizeDouble);
}
void
MacroAssemblerMIPS64Compat::storePtr(Register src, const BaseIndex& address)
{
ma_store(src, address, SizeDouble);
}
void
MacroAssemblerMIPS64Compat::storePtr(Register src, AbsoluteAddress dest)
{
movePtr(ImmPtr(dest.addr), ScratchRegister);
storePtr(src, Address(ScratchRegister, 0));
}
void
MacroAssemblerMIPS64Compat::storeUnalignedFloat32(const wasm::MemoryAccessDesc& access,
FloatRegister src, Register temp, const BaseIndex& dest)
{
computeScaledAddress(dest, SecondScratchReg);
moveFromFloat32(src, temp);
BufferOffset store;
if (Imm16::IsInSignedRange(dest.offset) && Imm16::IsInSignedRange(dest.offset + 3)) {
store = as_swl(temp, SecondScratchReg, dest.offset + 3);
as_swr(temp, SecondScratchReg, dest.offset);
} else {
ma_li(ScratchRegister, Imm32(dest.offset));
as_daddu(ScratchRegister, SecondScratchReg, ScratchRegister);
store = as_swl(temp, ScratchRegister, 3);
as_swr(temp, ScratchRegister, 0);
}
append(access, store.getOffset(), asMasm().framePushed());
}
void
MacroAssemblerMIPS64Compat::storeUnalignedDouble(const wasm::MemoryAccessDesc& access,
FloatRegister src, Register temp, const BaseIndex& dest)
{
computeScaledAddress(dest, SecondScratchReg);
moveFromDouble(src, temp);
BufferOffset store;
if (Imm16::IsInSignedRange(dest.offset) && Imm16::IsInSignedRange(dest.offset + 7)) {
store = as_sdl(temp, SecondScratchReg, dest.offset + 7);
as_sdr(temp, SecondScratchReg, dest.offset);
} else {
ma_li(ScratchRegister, Imm32(dest.offset));
as_daddu(ScratchRegister, SecondScratchReg, ScratchRegister);
store = as_sdl(temp, ScratchRegister, 7);
as_sdr(temp, ScratchRegister, 0);
}
append(access, store.getOffset(), asMasm().framePushed());
}
// Note: this function clobbers the input register.
void
MacroAssembler::clampDoubleToUint8(FloatRegister input, Register output)
{
MOZ_ASSERT(input != ScratchDoubleReg);
Label positive, done;
// <= 0 or NaN --> 0
zeroDouble(ScratchDoubleReg);
branchDouble(DoubleGreaterThan, input, ScratchDoubleReg, &positive);
{
move32(Imm32(0), output);
jump(&done);
}
bind(&positive);
// Add 0.5 and truncate.
loadConstantDouble(0.5, ScratchDoubleReg);
addDouble(ScratchDoubleReg, input);
Label outOfRange;
branchTruncateDoubleMaybeModUint32(input, output, &outOfRange);
asMasm().branch32(Assembler::Above, output, Imm32(255), &outOfRange);
{
// Check if we had a tie.
convertInt32ToDouble(output, ScratchDoubleReg);
branchDouble(DoubleNotEqual, input, ScratchDoubleReg, &done);
// It was a tie. Mask out the ones bit to get an even value.
// See also js_TypedArray_uint8_clamp_double.
and32(Imm32(~1), output);
jump(&done);
}
// > 255 --> 255
bind(&outOfRange);
{
move32(Imm32(255), output);
}
bind(&done);
}
void
MacroAssemblerMIPS64Compat::testNullSet(Condition cond, const ValueOperand& value, Register dest)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
splitTag(value, SecondScratchReg);
ma_cmp_set(dest, SecondScratchReg, ImmTag(JSVAL_TAG_NULL), cond);
}
void
MacroAssemblerMIPS64Compat::testObjectSet(Condition cond, const ValueOperand& value, Register dest)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
splitTag(value, SecondScratchReg);
ma_cmp_set(dest, SecondScratchReg, ImmTag(JSVAL_TAG_OBJECT), cond);
}
void
MacroAssemblerMIPS64Compat::testUndefinedSet(Condition cond, const ValueOperand& value, Register dest)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
splitTag(value, SecondScratchReg);
ma_cmp_set(dest, SecondScratchReg, ImmTag(JSVAL_TAG_UNDEFINED), cond);
}
// unboxing code
void
MacroAssemblerMIPS64Compat::unboxNonDouble(const ValueOperand& operand, Register dest)
{
Label isInt32, done;
Register tag = splitTagForTest(operand);
asMasm().branchTestInt32(Assembler::Equal, tag, &isInt32);
ma_dext(dest, operand.valueReg(), Imm32(0), Imm32(JSVAL_TAG_SHIFT));
jump(&done);
bind(&isInt32);
ma_sll(dest, operand.valueReg(), Imm32(0));
bind(&done);
}
void
MacroAssemblerMIPS64Compat::unboxNonDouble(const Address& src, Register dest)
{
Label isInt32, done;
loadPtr(Address(src.base, src.offset), dest);
splitTag(dest, SecondScratchReg);
asMasm().branchTestInt32(Assembler::Equal, SecondScratchReg, &isInt32);
ma_dext(dest, dest, Imm32(0), Imm32(JSVAL_TAG_SHIFT));
jump(&done);
bind(&isInt32);
ma_sll(dest, dest, Imm32(0));
bind(&done);
}
void
MacroAssemblerMIPS64Compat::unboxNonDouble(const BaseIndex& src, Register dest)
{
Label isInt32, done;
computeScaledAddress(src, SecondScratchReg);
loadPtr(Address(SecondScratchReg, src.offset), dest);
splitTag(dest, SecondScratchReg);
asMasm().branchTestInt32(Assembler::Equal, SecondScratchReg, &isInt32);
ma_dext(dest, dest, Imm32(0), Imm32(JSVAL_TAG_SHIFT));
jump(&done);
bind(&isInt32);
ma_sll(dest, dest, Imm32(0));
bind(&done);
}
void
MacroAssemblerMIPS64Compat::unboxInt32(const ValueOperand& operand, Register dest)
{
ma_sll(dest, operand.valueReg(), Imm32(0));
}
void
MacroAssemblerMIPS64Compat::unboxInt32(Register src, Register dest)
{
ma_sll(dest, src, Imm32(0));
}
void
MacroAssemblerMIPS64Compat::unboxInt32(const Address& src, Register dest)
{
load32(Address(src.base, src.offset), dest);
}
void
MacroAssemblerMIPS64Compat::unboxInt32(const BaseIndex& src, Register dest)
{
computeScaledAddress(src, SecondScratchReg);
load32(Address(SecondScratchReg, src.offset), dest);
}
void
MacroAssemblerMIPS64Compat::unboxBoolean(const ValueOperand& operand, Register dest)
{
ma_dext(dest, operand.valueReg(), Imm32(0), Imm32(32));
}
void
MacroAssemblerMIPS64Compat::unboxBoolean(Register src, Register dest)
{
ma_dext(dest, src, Imm32(0), Imm32(32));
}
void
MacroAssemblerMIPS64Compat::unboxBoolean(const Address& src, Register dest)
{
ma_load(dest, Address(src.base, src.offset), SizeWord, ZeroExtend);
}
void
MacroAssemblerMIPS64Compat::unboxBoolean(const BaseIndex& src, Register dest)
{
computeScaledAddress(src, SecondScratchReg);
ma_load(dest, Address(SecondScratchReg, src.offset), SizeWord, ZeroExtend);
}
void
MacroAssemblerMIPS64Compat::unboxDouble(const ValueOperand& operand, FloatRegister dest)
{
as_dmtc1(operand.valueReg(), dest);
}
void
MacroAssemblerMIPS64Compat::unboxDouble(const Address& src, FloatRegister dest)
{
ma_ld(dest, Address(src.base, src.offset));
}
void
MacroAssemblerMIPS64Compat::unboxString(const ValueOperand& operand, Register dest)
{
unboxNonDouble(operand, dest);
}
void
MacroAssemblerMIPS64Compat::unboxString(Register src, Register dest)
{
ma_dext(dest, src, Imm32(0), Imm32(JSVAL_TAG_SHIFT));
}
void
MacroAssemblerMIPS64Compat::unboxString(const Address& src, Register dest)
{
unboxNonDouble(src, dest);
}
void
MacroAssemblerMIPS64Compat::unboxSymbol(Register src, Register dest)
{
ma_dext(dest, src, Imm32(0), Imm32(JSVAL_TAG_SHIFT));
}
void
MacroAssemblerMIPS64Compat::unboxSymbol(const Address& src, Register dest)
{
unboxNonDouble(src, dest);
}
void
MacroAssemblerMIPS64Compat::unboxObject(const ValueOperand& src, Register dest)
{
unboxNonDouble(src, dest);
}
void
MacroAssemblerMIPS64Compat::unboxObject(Register src, Register dest)
{
ma_dext(dest, src, Imm32(0), Imm32(JSVAL_TAG_SHIFT));
}
void
MacroAssemblerMIPS64Compat::unboxObject(const Address& src, Register dest)
{
unboxNonDouble(src, dest);
}
void
MacroAssemblerMIPS64Compat::unboxValue(const ValueOperand& src, AnyRegister dest)
{
if (dest.isFloat()) {
Label notInt32, end;
asMasm().branchTestInt32(Assembler::NotEqual, src, &notInt32);
convertInt32ToDouble(src.valueReg(), dest.fpu());
ma_b(&end, ShortJump);
bind(&notInt32);
unboxDouble(src, dest.fpu());
bind(&end);
} else {
unboxNonDouble(src, dest.gpr());
}
}
void
MacroAssemblerMIPS64Compat::unboxPrivate(const ValueOperand& src, Register dest)
{
ma_dsrl(dest, src.valueReg(), Imm32(1));
}
void
MacroAssemblerMIPS64Compat::boxDouble(FloatRegister src, const ValueOperand& dest)
{
as_dmfc1(dest.valueReg(), src);
}
void
MacroAssemblerMIPS64Compat::boxNonDouble(JSValueType type, Register src,
const ValueOperand& dest)
{
MOZ_ASSERT(src != dest.valueReg());
boxValue(type, src, dest.valueReg());
}
void
MacroAssemblerMIPS64Compat::boolValueToDouble(const ValueOperand& operand, FloatRegister dest)
{
convertBoolToInt32(operand.valueReg(), ScratchRegister);
convertInt32ToDouble(ScratchRegister, dest);
}
void
MacroAssemblerMIPS64Compat::int32ValueToDouble(const ValueOperand& operand,
FloatRegister dest)
{
convertInt32ToDouble(operand.valueReg(), dest);
}
void
MacroAssemblerMIPS64Compat::boolValueToFloat32(const ValueOperand& operand,
FloatRegister dest)
{
convertBoolToInt32(operand.valueReg(), ScratchRegister);
convertInt32ToFloat32(ScratchRegister, dest);
}
void
MacroAssemblerMIPS64Compat::int32ValueToFloat32(const ValueOperand& operand,
FloatRegister dest)
{
convertInt32ToFloat32(operand.valueReg(), dest);
}
void
MacroAssemblerMIPS64Compat::loadConstantFloat32(float f, FloatRegister dest)
{
ma_lis(dest, f);
}
void
MacroAssemblerMIPS64Compat::loadConstantFloat32(wasm::RawF32 f, FloatRegister dest)
{
ma_lis(dest, f);
}
void
MacroAssemblerMIPS64Compat::loadInt32OrDouble(const Address& src, FloatRegister dest)
{
Label notInt32, end;
// If it's an int, convert it to double.
loadPtr(Address(src.base, src.offset), ScratchRegister);
ma_dsrl(SecondScratchReg, ScratchRegister, Imm32(JSVAL_TAG_SHIFT));
asMasm().branchTestInt32(Assembler::NotEqual, SecondScratchReg, &notInt32);
loadPtr(Address(src.base, src.offset), SecondScratchReg);
convertInt32ToDouble(SecondScratchReg, dest);
ma_b(&end, ShortJump);
// Not an int, just load as double.
bind(&notInt32);
ma_ld(dest, src);
bind(&end);
}
void
MacroAssemblerMIPS64Compat::loadInt32OrDouble(const BaseIndex& addr, FloatRegister dest)
{
Label notInt32, end;
// If it's an int, convert it to double.
computeScaledAddress(addr, SecondScratchReg);
// Since we only have one scratch, we need to stomp over it with the tag.
loadPtr(Address(SecondScratchReg, 0), ScratchRegister);
ma_dsrl(SecondScratchReg, ScratchRegister, Imm32(JSVAL_TAG_SHIFT));
asMasm().branchTestInt32(Assembler::NotEqual, SecondScratchReg, &notInt32);
computeScaledAddress(addr, SecondScratchReg);
loadPtr(Address(SecondScratchReg, 0), SecondScratchReg);
convertInt32ToDouble(SecondScratchReg, dest);
ma_b(&end, ShortJump);
// Not an int, just load as double.
bind(&notInt32);
// First, recompute the offset that had been stored in the scratch register
// since the scratch register was overwritten loading in the type.
computeScaledAddress(addr, SecondScratchReg);
loadDouble(Address(SecondScratchReg, 0), dest);
bind(&end);
}
void
MacroAssemblerMIPS64Compat::loadConstantDouble(double dp, FloatRegister dest)
{
ma_lid(dest, dp);
}
void
MacroAssemblerMIPS64Compat::loadConstantDouble(wasm::RawF64 d, FloatRegister dest)
{
ImmWord imm(d.bits());
ma_li(ScratchRegister, imm);
moveToDouble(ScratchRegister, dest);
}
Register
MacroAssemblerMIPS64Compat::extractObject(const Address& address, Register scratch)
{
loadPtr(Address(address.base, address.offset), scratch);
ma_dext(scratch, scratch, Imm32(0), Imm32(JSVAL_TAG_SHIFT));
return scratch;
}
Register
MacroAssemblerMIPS64Compat::extractTag(const Address& address, Register scratch)
{
loadPtr(Address(address.base, address.offset), scratch);
ma_dext(scratch, scratch, Imm32(JSVAL_TAG_SHIFT), Imm32(64 - JSVAL_TAG_SHIFT));
return scratch;
}
Register
MacroAssemblerMIPS64Compat::extractTag(const BaseIndex& address, Register scratch)
{
computeScaledAddress(address, scratch);
return extractTag(Address(scratch, address.offset), scratch);
}
void
MacroAssemblerMIPS64Compat::moveValue(const Value& val, Register dest)
{
writeDataRelocation(val);
movWithPatch(ImmWord(val.asRawBits()), dest);
}
void
MacroAssemblerMIPS64Compat::moveValue(const Value& val, const ValueOperand& dest)
{
moveValue(val, dest.valueReg());
}
/* There are 3 paths trough backedge jump. They are listed here in the order
* in which instructions are executed.
* - The short jump is simple:
* b offset # Jumps directly to target.
* lui at, addr1_hl # In delay slot. Don't care about 'at' here.
*
* - The long jump to loop header:
* b label1
* lui at, addr1_hl # In delay slot. We use the value in 'at' later.
* label1:
* ori at, addr1_lh
* drotr32 at, at, 48
* ori at, addr1_ll
* jr at
* lui at, addr2_hl # In delay slot. Don't care about 'at' here.
*
* - The long jump to interrupt loop:
* b label2
* ...
* jr at
* label2:
* lui at, addr2_hl # In delay slot. Don't care about 'at' here.
* ori at, addr2_lh
* drotr32 at, at, 48
* ori at, addr2_ll
* jr at
* nop # In delay slot.
*
* The backedge is done this way to avoid patching lui+ori pair while it is
* being executed. Look also at jit::PatchBackedge().
*/
CodeOffsetJump
MacroAssemblerMIPS64Compat::backedgeJump(RepatchLabel* label, Label* documentation)
{
// Only one branch per label.
MOZ_ASSERT(!label->used());
uint32_t dest = label->bound() ? label->offset() : LabelBase::INVALID_OFFSET;
BufferOffset bo = nextOffset();
label->use(bo.getOffset());
// Backedges are short jumps when bound, but can become long when patched.
m_buffer.ensureSpace(16 * sizeof(uint32_t));
if (label->bound()) {
int32_t offset = label->offset() - bo.getOffset();
MOZ_ASSERT(BOffImm16::IsInRange(offset));
as_b(BOffImm16(offset));
} else {
// Jump to "label1" by default to jump to the loop header.
as_b(BOffImm16(2 * sizeof(uint32_t)));
}
// No need for nop here. We can safely put next instruction in delay slot.
ma_liPatchable(ScratchRegister, ImmWord(dest));
MOZ_ASSERT(nextOffset().getOffset() - bo.getOffset() == 5 * sizeof(uint32_t));
as_jr(ScratchRegister);
// No need for nop here. We can safely put next instruction in delay slot.
ma_liPatchable(ScratchRegister, ImmWord(dest));
as_jr(ScratchRegister);
as_nop();
MOZ_ASSERT(nextOffset().getOffset() - bo.getOffset() == 12 * sizeof(uint32_t));
return CodeOffsetJump(bo.getOffset());
}
CodeOffsetJump
MacroAssemblerMIPS64Compat::jumpWithPatch(RepatchLabel* label, Label* documentation)
{
// Only one branch per label.
MOZ_ASSERT(!label->used());
BufferOffset bo = nextOffset();
label->use(bo.getOffset());
if (label->bound())
addMixedJump(bo, label->offset(), MixedJumpPatch::PATCHABLE);
as_j(JOffImm26(0));
as_nop();
return CodeOffsetJump(bo.getOffset());
}
/////////////////////////////////////////////////////////////////
// X86/X64-common/ARM/MIPS interface.
/////////////////////////////////////////////////////////////////
void
MacroAssemblerMIPS64Compat::storeValue(ValueOperand val, Operand dst)
{
storeValue(val, Address(Register::FromCode(dst.base()), dst.disp()));
}
void
MacroAssemblerMIPS64Compat::storeValue(ValueOperand val, const BaseIndex& dest)
{
computeScaledAddress(dest, SecondScratchReg);
storeValue(val, Address(SecondScratchReg, dest.offset));
}
void
MacroAssemblerMIPS64Compat::storeValue(JSValueType type, Register reg, BaseIndex dest)
{
computeScaledAddress(dest, ScratchRegister);
int32_t offset = dest.offset;
if (!Imm16::IsInSignedRange(offset)) {
ma_li(SecondScratchReg, Imm32(offset));
as_daddu(ScratchRegister, ScratchRegister, SecondScratchReg);
offset = 0;
}
storeValue(type, reg, Address(ScratchRegister, offset));
}
void
MacroAssemblerMIPS64Compat::storeValue(ValueOperand val, const Address& dest)
{
storePtr(val.valueReg(), Address(dest.base, dest.offset));
}
void
MacroAssemblerMIPS64Compat::storeValue(JSValueType type, Register reg, Address dest)
{
MOZ_ASSERT(dest.base != SecondScratchReg);
ma_li(SecondScratchReg, ImmTag(JSVAL_TYPE_TO_TAG(type)));
ma_dsll(SecondScratchReg, SecondScratchReg, Imm32(JSVAL_TAG_SHIFT));
if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) {
ma_dins(SecondScratchReg, reg, Imm32(0), Imm32(32));
} else {
ma_dins(SecondScratchReg, reg, Imm32(0), Imm32(JSVAL_TAG_SHIFT));
}
storePtr(SecondScratchReg, Address(dest.base, dest.offset));
}
void
MacroAssemblerMIPS64Compat::storeValue(const Value& val, Address dest)
{
if (val.isGCThing()) {
writeDataRelocation(val);
movWithPatch(ImmWord(val.asRawBits()), SecondScratchReg);
} else {
ma_li(SecondScratchReg, ImmWord(val.asRawBits()));
}
storePtr(SecondScratchReg, Address(dest.base, dest.offset));
}
void
MacroAssemblerMIPS64Compat::storeValue(const Value& val, BaseIndex dest)
{
computeScaledAddress(dest, ScratchRegister);
int32_t offset = dest.offset;
if (!Imm16::IsInSignedRange(offset)) {
ma_li(SecondScratchReg, Imm32(offset));
as_daddu(ScratchRegister, ScratchRegister, SecondScratchReg);
offset = 0;
}
storeValue(val, Address(ScratchRegister, offset));
}
void
MacroAssemblerMIPS64Compat::loadValue(const BaseIndex& addr, ValueOperand val)
{
computeScaledAddress(addr, SecondScratchReg);
loadValue(Address(SecondScratchReg, addr.offset), val);
}
void
MacroAssemblerMIPS64Compat::loadValue(Address src, ValueOperand val)
{
loadPtr(Address(src.base, src.offset), val.valueReg());
}
void
MacroAssemblerMIPS64Compat::tagValue(JSValueType type, Register payload, ValueOperand dest)
{
MOZ_ASSERT(dest.valueReg() != ScratchRegister);
if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) {
ma_dext(dest.valueReg(), payload, Imm32(0), Imm32(32));
} else {
if (payload != dest.valueReg()) {
ma_move(dest.valueReg(), payload);
}
}
ma_li(ScratchRegister, ImmTag(JSVAL_TYPE_TO_TAG(type)));
ma_dins(dest.valueReg(), ScratchRegister, Imm32(JSVAL_TAG_SHIFT), Imm32(64 - JSVAL_TAG_SHIFT));
}
void
MacroAssemblerMIPS64Compat::pushValue(ValueOperand val)
{
// Allocate stack slots for Value. One for each.
asMasm().subPtr(Imm32(sizeof(Value)), StackPointer);
// Store Value
storeValue(val, Address(StackPointer, 0));
}
void
MacroAssemblerMIPS64Compat::pushValue(const Address& addr)
{
// Load value before allocate stack, addr.base may be is sp.
loadPtr(Address(addr.base, addr.offset), ScratchRegister);
ma_dsubu(StackPointer, StackPointer, Imm32(sizeof(Value)));
storePtr(ScratchRegister, Address(StackPointer, 0));
}
void
MacroAssemblerMIPS64Compat::popValue(ValueOperand val)
{
as_ld(val.valueReg(), StackPointer, 0);
as_daddiu(StackPointer, StackPointer, sizeof(Value));
}
void
MacroAssemblerMIPS64Compat::breakpoint()
{
as_break(0);
}
void
MacroAssemblerMIPS64Compat::ensureDouble(const ValueOperand& source, FloatRegister dest,
Label* failure)
{
Label isDouble, done;
Register tag = splitTagForTest(source);
asMasm().branchTestDouble(Assembler::Equal, tag, &isDouble);
asMasm().branchTestInt32(Assembler::NotEqual, tag, failure);
unboxInt32(source, ScratchRegister);
convertInt32ToDouble(ScratchRegister, dest);
jump(&done);
bind(&isDouble);
unboxDouble(source, dest);
bind(&done);
}
void
MacroAssemblerMIPS64Compat::checkStackAlignment()
{
#ifdef DEBUG
Label aligned;
as_andi(ScratchRegister, sp, ABIStackAlignment - 1);
ma_b(ScratchRegister, zero, &aligned, Equal, ShortJump);
as_break(BREAK_STACK_UNALIGNED);
bind(&aligned);
#endif
}
void
MacroAssembler::alignFrameForICArguments(AfterICSaveLive& aic)
{
if (framePushed() % ABIStackAlignment != 0) {
aic.alignmentPadding = ABIStackAlignment - (framePushed() % ABIStackAlignment);
reserveStack(aic.alignmentPadding);
} else {
aic.alignmentPadding = 0;
}
MOZ_ASSERT(framePushed() % ABIStackAlignment == 0);
checkStackAlignment();
}
void
MacroAssembler::restoreFrameAlignmentForICArguments(AfterICSaveLive& aic)
{
if (aic.alignmentPadding != 0)
freeStack(aic.alignmentPadding);
}
void
MacroAssemblerMIPS64Compat::handleFailureWithHandlerTail(void* handler)
{
// Reserve space for exception information.
int size = (sizeof(ResumeFromException) + ABIStackAlignment) & ~(ABIStackAlignment - 1);
asMasm().subPtr(Imm32(size), StackPointer);
ma_move(a0, StackPointer); // Use a0 since it is a first function argument
// Call the handler.
asMasm().setupUnalignedABICall(a1);
asMasm().passABIArg(a0);
asMasm().callWithABI(handler);
Label entryFrame;
Label catch_;
Label finally;
Label return_;
Label bailout;
// Already clobbered a0, so use it...
load32(Address(StackPointer, offsetof(ResumeFromException, kind)), a0);
asMasm().branch32(Assembler::Equal, a0, Imm32(ResumeFromException::RESUME_ENTRY_FRAME),
&entryFrame);
asMasm().branch32(Assembler::Equal, a0, Imm32(ResumeFromException::RESUME_CATCH), &catch_);
asMasm().branch32(Assembler::Equal, a0, Imm32(ResumeFromException::RESUME_FINALLY), &finally);
asMasm().branch32(Assembler::Equal, a0, Imm32(ResumeFromException::RESUME_FORCED_RETURN),
&return_);
asMasm().branch32(Assembler::Equal, a0, Imm32(ResumeFromException::RESUME_BAILOUT), &bailout);
breakpoint(); // Invalid kind.
// No exception handler. Load the error value, load the new stack pointer
// and return from the entry frame.
bind(&entryFrame);
moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand);
loadPtr(Address(StackPointer, offsetof(ResumeFromException, stackPointer)), StackPointer);
// We're going to be returning by the ion calling convention
as_ld(ra, StackPointer, 0);
as_jr(ra);
as_daddiu(StackPointer, StackPointer, sizeof(intptr_t)); // in delay slot.
// If we found a catch handler, this must be a baseline frame. Restore
// state and jump to the catch block.
bind(&catch_);
loadPtr(Address(StackPointer, offsetof(ResumeFromException, target)), a0);
loadPtr(Address(StackPointer, offsetof(ResumeFromException, framePointer)), BaselineFrameReg);
loadPtr(Address(StackPointer, offsetof(ResumeFromException, stackPointer)), StackPointer);
jump(a0);
// If we found a finally block, this must be a baseline frame. Push
// two values expected by JSOP_RETSUB: BooleanValue(true) and the
// exception.
bind(&finally);
ValueOperand exception = ValueOperand(a1);
loadValue(Address(sp, offsetof(ResumeFromException, exception)), exception);
loadPtr(Address(sp, offsetof(ResumeFromException, target)), a0);
loadPtr(Address(sp, offsetof(ResumeFromException, framePointer)), BaselineFrameReg);
loadPtr(Address(sp, offsetof(ResumeFromException, stackPointer)), sp);
pushValue(BooleanValue(true));
as_daddiu(StackPointer, StackPointer, -sizeof(intptr_t));
as_jr(a0);
as_sd(exception.valueReg(), StackPointer, 0); // In delay slot
// Only used in debug mode. Return BaselineFrame->returnValue() to the
// caller.
bind(&return_);
loadPtr(Address(StackPointer, offsetof(ResumeFromException, framePointer)), BaselineFrameReg);
loadPtr(Address(StackPointer, offsetof(ResumeFromException, stackPointer)), StackPointer);
loadValue(Address(BaselineFrameReg, BaselineFrame::reverseOffsetOfReturnValue()),
JSReturnOperand);
ma_move(StackPointer, BaselineFrameReg);
pop(BaselineFrameReg);
// If profiling is enabled, then update the lastProfilingFrame to refer to caller
// frame before returning.
{
Label skipProfilingInstrumentation;
// Test if profiler enabled.
AbsoluteAddress addressOfEnabled(GetJitContext()->runtime->spsProfiler().addressOfEnabled());
asMasm().branch32(Assembler::Equal, addressOfEnabled, Imm32(0),
&skipProfilingInstrumentation);
profilerExitFrame();
bind(&skipProfilingInstrumentation);
}
ret();
// If we are bailing out to baseline to handle an exception, jump to
// the bailout tail stub.
bind(&bailout);
loadPtr(Address(sp, offsetof(ResumeFromException, bailoutInfo)), a2);
ma_li(ReturnReg, Imm32(BAILOUT_RETURN_OK));
loadPtr(Address(sp, offsetof(ResumeFromException, target)), a1);
jump(a1);
}
template<typename T>
void
MacroAssemblerMIPS64Compat::compareExchangeToTypedIntArray(Scalar::Type arrayType, const T& mem,
Register oldval, Register newval,
Register temp, Register valueTemp,
Register offsetTemp, Register maskTemp,
AnyRegister output)
{
switch (arrayType) {
case Scalar::Int8:
compareExchange8SignExtend(mem, oldval, newval, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Uint8:
compareExchange8ZeroExtend(mem, oldval, newval, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Int16:
compareExchange16SignExtend(mem, oldval, newval, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Uint16:
compareExchange16ZeroExtend(mem, oldval, newval, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Int32:
compareExchange32(mem, oldval, newval, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Uint32:
// At the moment, the code in MCallOptimize.cpp requires the output
// type to be double for uint32 arrays. See bug 1077305.
MOZ_ASSERT(output.isFloat());
compareExchange32(mem, oldval, newval, valueTemp, offsetTemp, maskTemp, temp);
convertUInt32ToDouble(temp, output.fpu());
break;
default:
MOZ_CRASH("Invalid typed array type");
}
}
template void
MacroAssemblerMIPS64Compat::compareExchangeToTypedIntArray(Scalar::Type arrayType, const Address& mem,
Register oldval, Register newval, Register temp,
Register valueTemp, Register offsetTemp, Register maskTemp,
AnyRegister output);
template void
MacroAssemblerMIPS64Compat::compareExchangeToTypedIntArray(Scalar::Type arrayType, const BaseIndex& mem,
Register oldval, Register newval, Register temp,
Register valueTemp, Register offsetTemp, Register maskTemp,
AnyRegister output);
template<typename T>
void
MacroAssemblerMIPS64Compat::atomicExchangeToTypedIntArray(Scalar::Type arrayType, const T& mem,
Register value, Register temp, Register valueTemp,
Register offsetTemp, Register maskTemp,
AnyRegister output)
{
switch (arrayType) {
case Scalar::Int8:
atomicExchange8SignExtend(mem, value, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Uint8:
atomicExchange8ZeroExtend(mem, value, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Int16:
atomicExchange16SignExtend(mem, value, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Uint16:
atomicExchange16ZeroExtend(mem, value, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Int32:
atomicExchange32(mem, value, valueTemp, offsetTemp, maskTemp, output.gpr());
break;
case Scalar::Uint32:
// At the moment, the code in MCallOptimize.cpp requires the output
// type to be double for uint32 arrays. See bug 1077305.
MOZ_ASSERT(output.isFloat());
atomicExchange32(mem, value, valueTemp, offsetTemp, maskTemp, temp);
convertUInt32ToDouble(temp, output.fpu());
break;
default:
MOZ_CRASH("Invalid typed array type");
}
}
template void
MacroAssemblerMIPS64Compat::atomicExchangeToTypedIntArray(Scalar::Type arrayType, const Address& mem,
Register value, Register temp, Register valueTemp,
Register offsetTemp, Register maskTemp,
AnyRegister output);
template void
MacroAssemblerMIPS64Compat::atomicExchangeToTypedIntArray(Scalar::Type arrayType, const BaseIndex& mem,
Register value, Register temp, Register valueTemp,
Register offsetTemp, Register maskTemp,
AnyRegister output);
CodeOffset
MacroAssemblerMIPS64Compat::toggledJump(Label* label)
{
CodeOffset ret(nextOffset().getOffset());
ma_b(label);
return ret;
}
CodeOffset
MacroAssemblerMIPS64Compat::toggledCall(JitCode* target, bool enabled)
{
BufferOffset bo = nextOffset();
CodeOffset offset(bo.getOffset());
addPendingJump(bo, ImmPtr(target->raw()), Relocation::JITCODE);
ma_liPatchable(ScratchRegister, ImmPtr(target->raw()));
if (enabled) {
as_jalr(ScratchRegister);
as_nop();
} else {
as_nop();
as_nop();
}
MOZ_ASSERT_IF(!oom(), nextOffset().getOffset() - offset.offset() == ToggledCallSize(nullptr));
return offset;
}
void
MacroAssemblerMIPS64Compat::profilerEnterFrame(Register framePtr, Register scratch)
{
AbsoluteAddress activation(GetJitContext()->runtime->addressOfProfilingActivation());
loadPtr(activation, scratch);
storePtr(framePtr, Address(scratch, JitActivation::offsetOfLastProfilingFrame()));
storePtr(ImmPtr(nullptr), Address(scratch, JitActivation::offsetOfLastProfilingCallSite()));
}
void
MacroAssemblerMIPS64Compat::profilerExitFrame()
{
branch(GetJitContext()->runtime->jitRuntime()->getProfilerExitFrameTail());
}
void
MacroAssembler::subFromStackPtr(Imm32 imm32)
{
if (imm32.value)
asMasm().subPtr(imm32, StackPointer);
}
//{{{ check_macroassembler_style
// ===============================================================
// Stack manipulation functions.
void
MacroAssembler::PushRegsInMask(LiveRegisterSet set)
{
int32_t diff = set.gprs().size() * sizeof(intptr_t) +
set.fpus().getPushSizeInBytes();
const int32_t reserved = diff;
reserveStack(reserved);
for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) {
diff -= sizeof(intptr_t);
storePtr(*iter, Address(StackPointer, diff));
}
for (FloatRegisterBackwardIterator iter(set.fpus().reduceSetForPush()); iter.more(); ++iter) {
diff -= sizeof(double);
storeDouble(*iter, Address(StackPointer, diff));
}
MOZ_ASSERT(diff == 0);
}
void
MacroAssembler::PopRegsInMaskIgnore(LiveRegisterSet set, LiveRegisterSet ignore)
{
int32_t diff = set.gprs().size() * sizeof(intptr_t) +
set.fpus().getPushSizeInBytes();
const int32_t reserved = diff;
for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) {
diff -= sizeof(intptr_t);
if (!ignore.has(*iter))
loadPtr(Address(StackPointer, diff), *iter);
}
for (FloatRegisterBackwardIterator iter(set.fpus().reduceSetForPush()); iter.more(); ++iter) {
diff -= sizeof(double);
if (!ignore.has(*iter))
loadDouble(Address(StackPointer, diff), *iter);
}
MOZ_ASSERT(diff == 0);
freeStack(reserved);
}
// ===============================================================
// ABI function calls.
void
MacroAssembler::setupUnalignedABICall(Register scratch)
{
setupABICall();
dynamicAlignment_ = true;
ma_move(scratch, StackPointer);
// Force sp to be aligned
asMasm().subPtr(Imm32(sizeof(uintptr_t)), StackPointer);
ma_and(StackPointer, StackPointer, Imm32(~(ABIStackAlignment - 1)));
storePtr(scratch, Address(StackPointer, 0));
}
void
MacroAssembler::callWithABIPre(uint32_t* stackAdjust, bool callFromWasm)
{
MOZ_ASSERT(inCall_);
uint32_t stackForCall = abiArgs_.stackBytesConsumedSoFar();
// Reserve place for $ra.
stackForCall += sizeof(intptr_t);
if (dynamicAlignment_) {
stackForCall += ComputeByteAlignment(stackForCall, ABIStackAlignment);
} else {
uint32_t alignmentAtPrologue = callFromWasm ? sizeof(wasm::Frame) : 0;
stackForCall += ComputeByteAlignment(stackForCall + framePushed() + alignmentAtPrologue,
ABIStackAlignment);
}
*stackAdjust = stackForCall;
reserveStack(stackForCall);
// Save $ra because call is going to clobber it. Restore it in
// callWithABIPost. NOTE: This is needed for calls from SharedIC.
// Maybe we can do this differently.
storePtr(ra, Address(StackPointer, stackForCall - sizeof(intptr_t)));
// Position all arguments.
{
enoughMemory_ = enoughMemory_ && moveResolver_.resolve();
if (!enoughMemory_)
return;
MoveEmitter emitter(*this);
emitter.emit(moveResolver_);
emitter.finish();
}
assertStackAlignment(ABIStackAlignment);
}
void
MacroAssembler::callWithABIPost(uint32_t stackAdjust, MoveOp::Type result)
{
// Restore ra value (as stored in callWithABIPre()).
loadPtr(Address(StackPointer, stackAdjust - sizeof(intptr_t)), ra);
if (dynamicAlignment_) {
// Restore sp value from stack (as stored in setupUnalignedABICall()).
loadPtr(Address(StackPointer, stackAdjust), StackPointer);
// Use adjustFrame instead of freeStack because we already restored sp.
adjustFrame(-stackAdjust);
} else {
freeStack(stackAdjust);
}
#ifdef DEBUG
MOZ_ASSERT(inCall_);
inCall_ = false;
#endif
}
void
MacroAssembler::callWithABINoProfiler(Register fun, MoveOp::Type result)
{
// Load the callee in t9, no instruction between the lw and call
// should clobber it. Note that we can't use fun.base because it may
// be one of the IntArg registers clobbered before the call.
ma_move(t9, fun);
uint32_t stackAdjust;
callWithABIPre(&stackAdjust);
call(t9);
callWithABIPost(stackAdjust, result);
}
void
MacroAssembler::callWithABINoProfiler(const Address& fun, MoveOp::Type result)
{
// Load the callee in t9, as above.
loadPtr(Address(fun.base, fun.offset), t9);
uint32_t stackAdjust;
callWithABIPre(&stackAdjust);
call(t9);
callWithABIPost(stackAdjust, result);
}
// ===============================================================
// Branch functions
void
MacroAssembler::branchValueIsNurseryObject(Condition cond, const Address& address, Register temp,
Label* label)
{
branchValueIsNurseryObjectImpl(cond, address, temp, label);
}
void
MacroAssembler::branchValueIsNurseryObject(Condition cond, ValueOperand value,
Register temp, Label* label)
{
branchValueIsNurseryObjectImpl(cond, value, temp, label);
}
template <typename T>
void
MacroAssembler::branchValueIsNurseryObjectImpl(Condition cond, const T& value, Register temp,
Label* label)
{
MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
Label done;
branchTestObject(Assembler::NotEqual, value, cond == Assembler::Equal ? &done : label);
extractObject(value, SecondScratchReg);
orPtr(Imm32(gc::ChunkMask), SecondScratchReg);
branch32(cond, Address(SecondScratchReg, gc::ChunkLocationOffsetFromLastByte),
Imm32(int32_t(gc::ChunkLocation::Nursery)), label);
bind(&done);
}
void
MacroAssembler::branchTestValue(Condition cond, const ValueOperand& lhs,
const Value& rhs, Label* label)
{
MOZ_ASSERT(cond == Equal || cond == NotEqual);
ScratchRegisterScope scratch(*this);
moveValue(rhs, scratch);
ma_b(lhs.valueReg(), scratch, label, cond);
}
// ========================================================================
// Memory access primitives.
template <typename T>
void
MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, MIRType valueType,
const T& dest, MIRType slotType)
{
if (valueType == MIRType::Double) {
storeDouble(value.reg().typedReg().fpu(), dest);
return;
}
// For known integers and booleans, we can just store the unboxed value if
// the slot has the same type.
if ((valueType == MIRType::Int32 || valueType == MIRType::Boolean) && slotType == valueType) {
if (value.constant()) {
Value val = value.value();
if (valueType == MIRType::Int32)
store32(Imm32(val.toInt32()), dest);
else
store32(Imm32(val.toBoolean() ? 1 : 0), dest);
} else {
store32(value.reg().typedReg().gpr(), dest);
}
return;
}
if (value.constant())
storeValue(value.value(), dest);
else
storeValue(ValueTypeFromMIRType(valueType), value.reg().typedReg().gpr(), dest);
}
template void
MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, MIRType valueType,
const Address& dest, MIRType slotType);
template void
MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, MIRType valueType,
const BaseIndex& dest, MIRType slotType);
//}}} check_macroassembler_style