Mypal/js/src/jit/mips64/CodeGenerator-mips64.cpp

777 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/mips64/CodeGenerator-mips64.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/CodeGenerator.h"
#include "jit/JitCompartment.h"
#include "jit/JitFrames.h"
#include "jit/MIR.h"
#include "jit/MIRGraph.h"
#include "js/Conversions.h"
#include "vm/Shape.h"
#include "vm/TraceLogging.h"
#include "jit/MacroAssembler-inl.h"
#include "jit/shared/CodeGenerator-shared-inl.h"
using namespace js;
using namespace js::jit;
class js::jit::OutOfLineTableSwitch : public OutOfLineCodeBase<CodeGeneratorMIPS64>
{
MTableSwitch* mir_;
CodeLabel jumpLabel_;
void accept(CodeGeneratorMIPS64* codegen) {
codegen->visitOutOfLineTableSwitch(this);
}
public:
OutOfLineTableSwitch(MTableSwitch* mir)
: mir_(mir)
{}
MTableSwitch* mir() const {
return mir_;
}
CodeLabel* jumpLabel() {
return &jumpLabel_;
}
};
void
CodeGeneratorMIPS64::visitOutOfLineBailout(OutOfLineBailout* ool)
{
masm.push(ImmWord(ool->snapshot()->snapshotOffset()));
masm.jump(&deoptLabel_);
}
void
CodeGeneratorMIPS64::visitOutOfLineTableSwitch(OutOfLineTableSwitch* ool)
{
MTableSwitch* mir = ool->mir();
masm.haltingAlign(sizeof(void*));
masm.bind(ool->jumpLabel()->target());
masm.addCodeLabel(*ool->jumpLabel());
for (size_t i = 0; i < mir->numCases(); i++) {
LBlock* caseblock = skipTrivialBlocks(mir->getCase(i))->lir();
Label* caseheader = caseblock->label();
uint32_t caseoffset = caseheader->offset();
// The entries of the jump table need to be absolute addresses and thus
// must be patched after codegen is finished. Each table entry uses 8
// instructions (4 for load address, 2 for branch, and 2 padding).
CodeLabel cl;
masm.ma_li(ScratchRegister, cl.patchAt());
masm.branch(ScratchRegister);
masm.as_nop();
masm.as_nop();
cl.target()->bind(caseoffset);
masm.addCodeLabel(cl);
}
}
void
CodeGeneratorMIPS64::emitTableSwitchDispatch(MTableSwitch* mir, Register index,
Register address)
{
Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label();
// Lower value with low value
if (mir->low() != 0)
masm.subPtr(Imm32(mir->low()), index);
// Jump to default case if input is out of range
int32_t cases = mir->numCases();
masm.branch32(Assembler::AboveOrEqual, index, Imm32(cases), defaultcase);
// To fill in the CodeLabels for the case entries, we need to first
// generate the case entries (we don't yet know their offsets in the
// instruction stream).
OutOfLineTableSwitch* ool = new(alloc()) OutOfLineTableSwitch(mir);
addOutOfLineCode(ool, mir);
// Compute the position where a pointer to the right case stands.
masm.ma_li(address, ool->jumpLabel()->patchAt());
// index = size of table entry * index.
// See CodeGeneratorMIPS64::visitOutOfLineTableSwitch
masm.lshiftPtr(Imm32(5), index);
masm.addPtr(index, address);
masm.branch(address);
}
FrameSizeClass
FrameSizeClass::FromDepth(uint32_t frameDepth)
{
return FrameSizeClass::None();
}
FrameSizeClass
FrameSizeClass::ClassLimit()
{
return FrameSizeClass(0);
}
uint32_t
FrameSizeClass::frameSize() const
{
MOZ_CRASH("MIPS64 does not use frame size classes");
}
ValueOperand
CodeGeneratorMIPS64::ToValue(LInstruction* ins, size_t pos)
{
return ValueOperand(ToRegister(ins->getOperand(pos)));
}
ValueOperand
CodeGeneratorMIPS64::ToOutValue(LInstruction* ins)
{
return ValueOperand(ToRegister(ins->getDef(0)));
}
ValueOperand
CodeGeneratorMIPS64::ToTempValue(LInstruction* ins, size_t pos)
{
return ValueOperand(ToRegister(ins->getTemp(pos)));
}
void
CodeGeneratorMIPS64::visitBox(LBox* box)
{
const LAllocation* in = box->getOperand(0);
const LDefinition* result = box->getDef(0);
if (IsFloatingPointType(box->type())) {
FloatRegister reg = ToFloatRegister(in);
if (box->type() == MIRType::Float32) {
masm.convertFloat32ToDouble(reg, ScratchDoubleReg);
reg = ScratchDoubleReg;
}
masm.moveFromDouble(reg, ToRegister(result));
} else {
masm.boxValue(ValueTypeFromMIRType(box->type()), ToRegister(in), ToRegister(result));
}
}
void
CodeGeneratorMIPS64::visitUnbox(LUnbox* unbox)
{
MUnbox* mir = unbox->mir();
if (mir->fallible()) {
const ValueOperand value = ToValue(unbox, LUnbox::Input);
masm.splitTag(value, SecondScratchReg);
bailoutCmp32(Assembler::NotEqual, SecondScratchReg, Imm32(MIRTypeToTag(mir->type())),
unbox->snapshot());
}
LAllocation* input = unbox->getOperand(LUnbox::Input);
Register result = ToRegister(unbox->output());
if (input->isRegister()) {
Register inputReg = ToRegister(input);
switch (mir->type()) {
case MIRType::Int32:
masm.unboxInt32(inputReg, result);
break;
case MIRType::Boolean:
masm.unboxBoolean(inputReg, result);
break;
case MIRType::Object:
masm.unboxObject(inputReg, result);
break;
case MIRType::String:
masm.unboxString(inputReg, result);
break;
case MIRType::Symbol:
masm.unboxSymbol(inputReg, result);
break;
default:
MOZ_CRASH("Given MIRType cannot be unboxed.");
}
return;
}
Address inputAddr = ToAddress(input);
switch (mir->type()) {
case MIRType::Int32:
masm.unboxInt32(inputAddr, result);
break;
case MIRType::Boolean:
masm.unboxBoolean(inputAddr, result);
break;
case MIRType::Object:
masm.unboxObject(inputAddr, result);
break;
case MIRType::String:
masm.unboxString(inputAddr, result);
break;
case MIRType::Symbol:
masm.unboxSymbol(inputAddr, result);
break;
default:
MOZ_CRASH("Given MIRType cannot be unboxed.");
}
}
Register
CodeGeneratorMIPS64::splitTagForTest(const ValueOperand& value)
{
MOZ_ASSERT(value.valueReg() != SecondScratchReg);
masm.splitTag(value.valueReg(), SecondScratchReg);
return SecondScratchReg;
}
void
CodeGeneratorMIPS64::visitCompareB(LCompareB* lir)
{
MCompare* mir = lir->mir();
const ValueOperand lhs = ToValue(lir, LCompareB::Lhs);
const LAllocation* rhs = lir->rhs();
const Register output = ToRegister(lir->output());
MOZ_ASSERT(mir->jsop() == JSOP_STRICTEQ || mir->jsop() == JSOP_STRICTNE);
Assembler::Condition cond = JSOpToCondition(mir->compareType(), mir->jsop());
// Load boxed boolean in ScratchRegister.
if (rhs->isConstant())
masm.moveValue(rhs->toConstant()->toJSValue(), ScratchRegister);
else
masm.boxValue(JSVAL_TYPE_BOOLEAN, ToRegister(rhs), ScratchRegister);
// Perform the comparison.
masm.cmpPtrSet(cond, lhs.valueReg(), ScratchRegister, output);
}
void
CodeGeneratorMIPS64::visitCompareBAndBranch(LCompareBAndBranch* lir)
{
MCompare* mir = lir->cmpMir();
const ValueOperand lhs = ToValue(lir, LCompareBAndBranch::Lhs);
const LAllocation* rhs = lir->rhs();
MOZ_ASSERT(mir->jsop() == JSOP_STRICTEQ || mir->jsop() == JSOP_STRICTNE);
// Load boxed boolean in ScratchRegister.
if (rhs->isConstant())
masm.moveValue(rhs->toConstant()->toJSValue(), ScratchRegister);
else
masm.boxValue(JSVAL_TYPE_BOOLEAN, ToRegister(rhs), ScratchRegister);
// Perform the comparison.
Assembler::Condition cond = JSOpToCondition(mir->compareType(), mir->jsop());
emitBranch(lhs.valueReg(), ScratchRegister, cond, lir->ifTrue(), lir->ifFalse());
}
void
CodeGeneratorMIPS64::visitCompareBitwise(LCompareBitwise* lir)
{
MCompare* mir = lir->mir();
Assembler::Condition cond = JSOpToCondition(mir->compareType(), mir->jsop());
const ValueOperand lhs = ToValue(lir, LCompareBitwise::LhsInput);
const ValueOperand rhs = ToValue(lir, LCompareBitwise::RhsInput);
const Register output = ToRegister(lir->output());
MOZ_ASSERT(IsEqualityOp(mir->jsop()));
masm.cmpPtrSet(cond, lhs.valueReg(), rhs.valueReg(), output);
}
void
CodeGeneratorMIPS64::visitCompareBitwiseAndBranch(LCompareBitwiseAndBranch* lir)
{
MCompare* mir = lir->cmpMir();
Assembler::Condition cond = JSOpToCondition(mir->compareType(), mir->jsop());
const ValueOperand lhs = ToValue(lir, LCompareBitwiseAndBranch::LhsInput);
const ValueOperand rhs = ToValue(lir, LCompareBitwiseAndBranch::RhsInput);
MOZ_ASSERT(mir->jsop() == JSOP_EQ || mir->jsop() == JSOP_STRICTEQ ||
mir->jsop() == JSOP_NE || mir->jsop() == JSOP_STRICTNE);
emitBranch(lhs.valueReg(), rhs.valueReg(), cond, lir->ifTrue(), lir->ifFalse());
}
void
CodeGeneratorMIPS64::visitCompareI64(LCompareI64* lir)
{
MCompare* mir = lir->mir();
MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 ||
mir->compareType() == MCompare::Compare_UInt64);
const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs);
const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs);
Register lhsReg = ToRegister64(lhs).reg;
Register output = ToRegister(lir->output());
Register rhsReg;
if (IsConstant(rhs)) {
rhsReg = ScratchRegister;
masm.ma_li(rhsReg, ImmWord(ToInt64(rhs)));
} else {
rhsReg = ToRegister64(rhs).reg;
}
bool isSigned = mir->compareType() == MCompare::Compare_Int64;
masm.cmpPtrSet(JSOpToCondition(lir->jsop(), isSigned), lhsReg, rhsReg, output);
}
void
CodeGeneratorMIPS64::visitCompareI64AndBranch(LCompareI64AndBranch* lir)
{
MCompare* mir = lir->cmpMir();
MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 ||
mir->compareType() == MCompare::Compare_UInt64);
const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs);
const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs);
Register lhsReg = ToRegister64(lhs).reg;
Register rhsReg;
if (IsConstant(rhs)) {
rhsReg = ScratchRegister;
masm.ma_li(rhsReg, ImmWord(ToInt64(rhs)));
} else {
rhsReg = ToRegister64(rhs).reg;
}
bool isSigned = mir->compareType() == MCompare::Compare_Int64;
Assembler::Condition cond = JSOpToCondition(lir->jsop(), isSigned);
emitBranch(lhsReg, rhsReg, cond, lir->ifTrue(), lir->ifFalse());
}
void
CodeGeneratorMIPS64::visitDivOrModI64(LDivOrModI64* lir)
{
Register lhs = ToRegister(lir->lhs());
Register rhs = ToRegister(lir->rhs());
Register output = ToRegister(lir->output());
Label done;
// Handle divide by zero.
if (lir->canBeDivideByZero())
masm.ma_b(rhs, rhs, trap(lir, wasm::Trap::IntegerDivideByZero), Assembler::Zero);
// Handle an integer overflow exception from INT64_MIN / -1.
if (lir->canBeNegativeOverflow()) {
Label notmin;
masm.branchPtr(Assembler::NotEqual, lhs, ImmWord(INT64_MIN), &notmin);
masm.branchPtr(Assembler::NotEqual, rhs, ImmWord(-1), &notmin);
if (lir->mir()->isMod()) {
masm.ma_xor(output, output);
} else {
masm.jump(trap(lir, wasm::Trap::IntegerOverflow));
}
masm.jump(&done);
masm.bind(&notmin);
}
masm.as_ddiv(lhs, rhs);
if (lir->mir()->isMod())
masm.as_mfhi(output);
else
masm.as_mflo(output);
masm.bind(&done);
}
void
CodeGeneratorMIPS64::visitUDivOrModI64(LUDivOrModI64* lir)
{
Register lhs = ToRegister(lir->lhs());
Register rhs = ToRegister(lir->rhs());
Register output = ToRegister(lir->output());
Label done;
// Prevent divide by zero.
if (lir->canBeDivideByZero())
masm.ma_b(rhs, rhs, trap(lir, wasm::Trap::IntegerDivideByZero), Assembler::Zero);
masm.as_ddivu(lhs, rhs);
if (lir->mir()->isMod())
masm.as_mfhi(output);
else
masm.as_mflo(output);
masm.bind(&done);
}
template <typename T>
void
CodeGeneratorMIPS64::emitWasmLoadI64(T* lir)
{
const MWasmLoad* mir = lir->mir();
MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
uint32_t offset = mir->access().offset();
MOZ_ASSERT(offset < wasm::OffsetGuardLimit);
Register ptr = ToRegister(lir->ptr());
// Maybe add the offset.
if (offset) {
Register ptrPlusOffset = ToRegister(lir->ptrCopy());
masm.addPtr(Imm32(offset), ptrPlusOffset);
ptr = ptrPlusOffset;
} else {
MOZ_ASSERT(lir->ptrCopy()->isBogusTemp());
}
unsigned byteSize = mir->access().byteSize();
bool isSigned;
switch (mir->access().type()) {
case Scalar::Int8: isSigned = true; break;
case Scalar::Uint8: isSigned = false; break;
case Scalar::Int16: isSigned = true; break;
case Scalar::Uint16: isSigned = false; break;
case Scalar::Int32: isSigned = true; break;
case Scalar::Uint32: isSigned = false; break;
case Scalar::Int64: isSigned = true; break;
default: MOZ_CRASH("unexpected array type");
}
masm.memoryBarrier(mir->access().barrierBefore());
if (IsUnaligned(mir->access())) {
Register temp = ToRegister(lir->getTemp(1));
masm.ma_load_unaligned(mir->access(), ToOutRegister64(lir).reg, BaseIndex(HeapReg, ptr, TimesOne),
temp, static_cast<LoadStoreSize>(8 * byteSize),
isSigned ? SignExtend : ZeroExtend);
return;
}
masm.ma_load(ToOutRegister64(lir).reg, BaseIndex(HeapReg, ptr, TimesOne),
static_cast<LoadStoreSize>(8 * byteSize), isSigned ? SignExtend : ZeroExtend);
masm.append(mir->access(), masm.size() - 4, masm.framePushed());
masm.memoryBarrier(mir->access().barrierAfter());
}
void
CodeGeneratorMIPS64::visitWasmLoadI64(LWasmLoadI64* lir)
{
emitWasmLoadI64(lir);
}
void
CodeGeneratorMIPS64::visitWasmUnalignedLoadI64(LWasmUnalignedLoadI64* lir)
{
emitWasmLoadI64(lir);
}
template <typename T>
void
CodeGeneratorMIPS64::emitWasmStoreI64(T* lir)
{
const MWasmStore* mir = lir->mir();
MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
uint32_t offset = mir->access().offset();
MOZ_ASSERT(offset < wasm::OffsetGuardLimit);
Register ptr = ToRegister(lir->ptr());
// Maybe add the offset.
if (offset) {
Register ptrPlusOffset = ToRegister(lir->ptrCopy());
masm.addPtr(Imm32(offset), ptrPlusOffset);
ptr = ptrPlusOffset;
} else {
MOZ_ASSERT(lir->ptrCopy()->isBogusTemp());
}
unsigned byteSize = mir->access().byteSize();
bool isSigned;
switch (mir->access().type()) {
case Scalar::Int8: isSigned = true; break;
case Scalar::Uint8: isSigned = false; break;
case Scalar::Int16: isSigned = true; break;
case Scalar::Uint16: isSigned = false; break;
case Scalar::Int32: isSigned = true; break;
case Scalar::Uint32: isSigned = false; break;
case Scalar::Int64: isSigned = true; break;
default: MOZ_CRASH("unexpected array type");
}
masm.memoryBarrier(mir->access().barrierBefore());
if (IsUnaligned(mir->access())) {
Register temp = ToRegister(lir->getTemp(1));
masm.ma_store_unaligned(mir->access(), ToRegister64(lir->value()).reg, BaseIndex(HeapReg, ptr, TimesOne),
temp, static_cast<LoadStoreSize>(8 * byteSize),
isSigned ? SignExtend : ZeroExtend);
return;
}
masm.ma_store(ToRegister64(lir->value()).reg, BaseIndex(HeapReg, ptr, TimesOne),
static_cast<LoadStoreSize>(8 * byteSize), isSigned ? SignExtend : ZeroExtend);
masm.append(mir->access(), masm.size() - 4, masm.framePushed());
masm.memoryBarrier(mir->access().barrierAfter());
}
void
CodeGeneratorMIPS64::visitWasmStoreI64(LWasmStoreI64* lir)
{
emitWasmStoreI64(lir);
}
void
CodeGeneratorMIPS64::visitWasmUnalignedStoreI64(LWasmUnalignedStoreI64* lir)
{
emitWasmStoreI64(lir);
}
void
CodeGeneratorMIPS64::visitWasmLoadGlobalVarI64(LWasmLoadGlobalVarI64* ins)
{
const MWasmLoadGlobalVar* mir = ins->mir();
unsigned addr = mir->globalDataOffset() - WasmGlobalRegBias;
MOZ_ASSERT(mir->type() == MIRType::Int64);
masm.load64(Address(GlobalReg, addr), ToOutRegister64(ins));
}
void
CodeGeneratorMIPS64::visitWasmStoreGlobalVarI64(LWasmStoreGlobalVarI64* ins)
{
const MWasmStoreGlobalVar* mir = ins->mir();
unsigned addr = mir->globalDataOffset() - WasmGlobalRegBias;
MOZ_ASSERT(mir->value()->type() == MIRType::Int64);
masm.store64(ToRegister64(ins->value()), Address(GlobalReg, addr));
}
void
CodeGeneratorMIPS64::visitWasmSelectI64(LWasmSelectI64* lir)
{
MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
Register cond = ToRegister(lir->condExpr());
const LInt64Allocation falseExpr = lir->falseExpr();
Register64 out = ToOutRegister64(lir);
MOZ_ASSERT(ToRegister64(lir->trueExpr()) == out, "true expr is reused for input");
if (falseExpr.value().isRegister()) {
masm.as_movz(out.reg, ToRegister(falseExpr.value()), cond);
} else {
Label done;
masm.ma_b(cond, cond, &done, Assembler::NonZero, ShortJump);
masm.loadPtr(ToAddress(falseExpr.value()), out.reg);
masm.bind(&done);
}
}
void
CodeGeneratorMIPS64::visitWasmReinterpretFromI64(LWasmReinterpretFromI64* lir)
{
MOZ_ASSERT(lir->mir()->type() == MIRType::Double);
MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Int64);
masm.as_dmtc1(ToRegister(lir->input()), ToFloatRegister(lir->output()));
}
void
CodeGeneratorMIPS64::visitWasmReinterpretToI64(LWasmReinterpretToI64* lir)
{
MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Double);
masm.as_dmfc1(ToRegister(lir->output()), ToFloatRegister(lir->input()));
}
void
CodeGeneratorMIPS64::visitExtendInt32ToInt64(LExtendInt32ToInt64* lir)
{
const LAllocation* input = lir->getOperand(0);
Register output = ToRegister(lir->output());
if (lir->mir()->isUnsigned())
masm.ma_dext(output, ToRegister(input), Imm32(0), Imm32(32));
else
masm.ma_sll(output, ToRegister(input), Imm32(0));
}
void
CodeGeneratorMIPS64::visitWrapInt64ToInt32(LWrapInt64ToInt32* lir)
{
const LAllocation* input = lir->getOperand(0);
Register output = ToRegister(lir->output());
if (lir->mir()->bottomHalf()) {
if (input->isMemory())
masm.load32(ToAddress(input), output);
else
masm.ma_sll(output, ToRegister(input), Imm32(0));
} else {
MOZ_CRASH("Not implemented.");
}
}
void
CodeGeneratorMIPS64::visitClzI64(LClzI64* lir)
{
Register64 input = ToRegister64(lir->getInt64Operand(0));
Register64 output = ToOutRegister64(lir);
masm.clz64(input, output.reg);
}
void
CodeGeneratorMIPS64::visitCtzI64(LCtzI64* lir)
{
Register64 input = ToRegister64(lir->getInt64Operand(0));
Register64 output = ToOutRegister64(lir);
masm.ctz64(input, output.reg);
}
void
CodeGeneratorMIPS64::visitNotI64(LNotI64* lir)
{
Register64 input = ToRegister64(lir->getInt64Operand(0));
Register output = ToRegister(lir->output());
masm.cmp64Set(Assembler::Equal, input.reg, Imm32(0), output);
}
void
CodeGeneratorMIPS64::visitWasmTruncateToInt64(LWasmTruncateToInt64* lir)
{
FloatRegister input = ToFloatRegister(lir->input());
Register output = ToRegister(lir->output());
MWasmTruncateToInt64* mir = lir->mir();
MIRType fromType = mir->input()->type();
MOZ_ASSERT(fromType == MIRType::Double || fromType == MIRType::Float32);
auto* ool = new (alloc()) OutOfLineWasmTruncateCheck(mir, input);
addOutOfLineCode(ool, mir);
if (mir->isUnsigned()) {
Label isLarge, done;
if (fromType == MIRType::Double) {
masm.loadConstantDouble(double(INT64_MAX), ScratchDoubleReg);
masm.ma_bc1d(ScratchDoubleReg, input, &isLarge,
Assembler::DoubleLessThanOrEqual, ShortJump);
masm.as_truncld(ScratchDoubleReg, input);
} else {
masm.loadConstantFloat32(float(INT64_MAX), ScratchFloat32Reg);
masm.ma_bc1s(ScratchFloat32Reg, input, &isLarge,
Assembler::DoubleLessThanOrEqual, ShortJump);
masm.as_truncls(ScratchDoubleReg, input);
}
// Check that the result is in the uint64_t range.
masm.moveFromDouble(ScratchDoubleReg, output);
masm.as_cfc1(ScratchRegister, Assembler::FCSR);
masm.as_ext(ScratchRegister, ScratchRegister, 16, 1);
masm.ma_dsrl(SecondScratchReg, output, Imm32(63));
masm.ma_or(SecondScratchReg, ScratchRegister);
masm.ma_b(SecondScratchReg, Imm32(0), ool->entry(), Assembler::NotEqual);
masm.ma_b(&done, ShortJump);
// The input is greater than double(INT64_MAX).
masm.bind(&isLarge);
if (fromType == MIRType::Double) {
masm.as_subd(ScratchDoubleReg, input, ScratchDoubleReg);
masm.as_truncld(ScratchDoubleReg, ScratchDoubleReg);
} else {
masm.as_subs(ScratchDoubleReg, input, ScratchDoubleReg);
masm.as_truncls(ScratchDoubleReg, ScratchDoubleReg);
}
// Check that the result is in the uint64_t range.
masm.moveFromDouble(ScratchDoubleReg, output);
masm.as_cfc1(ScratchRegister, Assembler::FCSR);
masm.as_ext(ScratchRegister, ScratchRegister, 16, 1);
masm.ma_dsrl(SecondScratchReg, output, Imm32(63));
masm.ma_or(SecondScratchReg, ScratchRegister);
masm.ma_b(SecondScratchReg, Imm32(0), ool->entry(), Assembler::NotEqual);
masm.ma_li(ScratchRegister, Imm32(1));
masm.ma_dins(output, ScratchRegister, Imm32(63), Imm32(1));
masm.bind(&done);
return;
}
// When the input value is Infinity, NaN, or rounds to an integer outside the
// range [INT64_MIN; INT64_MAX + 1[, the Invalid Operation flag is set in the FCSR.
if (fromType == MIRType::Double)
masm.as_truncld(ScratchDoubleReg, input);
else
masm.as_truncls(ScratchDoubleReg, input);
// Check that the result is in the int64_t range.
masm.as_cfc1(output, Assembler::FCSR);
masm.as_ext(output, output, 16, 1);
masm.ma_b(output, Imm32(0), ool->entry(), Assembler::NotEqual);
masm.bind(ool->rejoin());
masm.moveFromDouble(ScratchDoubleReg, output);
}
void
CodeGeneratorMIPS64::visitInt64ToFloatingPoint(LInt64ToFloatingPoint* lir)
{
Register input = ToRegister(lir->input());
FloatRegister output = ToFloatRegister(lir->output());
MIRType outputType = lir->mir()->type();
MOZ_ASSERT(outputType == MIRType::Double || outputType == MIRType::Float32);
if (outputType == MIRType::Double) {
if (lir->mir()->isUnsigned())
masm.convertUInt64ToDouble(input, output);
else
masm.convertInt64ToDouble(input, output);
} else {
if (lir->mir()->isUnsigned())
masm.convertUInt64ToFloat32(input, output);
else
masm.convertInt64ToFloat32(input, output);
}
}
void
CodeGeneratorMIPS64::visitTestI64AndBranch(LTestI64AndBranch* lir)
{
Register64 input = ToRegister64(lir->getInt64Operand(0));
MBasicBlock* ifTrue = lir->ifTrue();
MBasicBlock* ifFalse = lir->ifFalse();
emitBranch(input.reg, Imm32(0), Assembler::NonZero, ifTrue, ifFalse);
}
void
CodeGeneratorMIPS64::setReturnDoubleRegs(LiveRegisterSet* regs)
{
MOZ_ASSERT(ReturnFloat32Reg.reg_ == FloatRegisters::f0);
MOZ_ASSERT(ReturnDoubleReg.reg_ == FloatRegisters::f0);
FloatRegister f1 = { FloatRegisters::f1, FloatRegisters::Single };
regs->add(ReturnFloat32Reg);
regs->add(f1);
regs->add(ReturnDoubleReg);
}