Mypal/js/src/jit/mips32/Assembler-mips32.h

215 lines
8.8 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_mips32_Assembler_mips32_h
#define jit_mips32_Assembler_mips32_h
#include "jit/mips-shared/Assembler-mips-shared.h"
#include "jit/mips32/Architecture-mips32.h"
namespace js {
namespace jit {
static constexpr Register CallTempReg4 = t4;
static constexpr Register CallTempReg5 = t5;
static constexpr Register CallTempNonArgRegs[] = { t0, t1, t2, t3, t4 };
static const uint32_t NumCallTempNonArgRegs = mozilla::ArrayLength(CallTempNonArgRegs);
class ABIArgGenerator
{
unsigned usedArgSlots_;
unsigned firstArgFloatSize_;
// Note: This is not compliant with the system ABI. The Lowering phase
// expects to lower an MWasmParameter to only one register.
bool useGPRForFloats_;
ABIArg current_;
public:
ABIArgGenerator();
ABIArg next(MIRType argType);
ABIArg& current() { return current_; }
void enforceO32ABI() {
useGPRForFloats_ = true;
}
uint32_t stackBytesConsumedSoFar() const {
if (usedArgSlots_ <= 4)
return ShadowStackSpace;
return usedArgSlots_ * sizeof(intptr_t);
}
};
static constexpr Register ABINonArgReg0 = t0;
static constexpr Register ABINonArgReg1 = t1;
static constexpr Register ABINonArgReg2 = t2;
static constexpr Register ABINonArgReturnReg0 = t0;
static constexpr Register ABINonArgReturnReg1 = t1;
// TLS pointer argument register for WebAssembly functions. This must not alias
// any other register used for passing function arguments or return values.
// Preserved by WebAssembly functions.
static constexpr Register WasmTlsReg = s5;
// Registers used for asm.js/wasm table calls. These registers must be disjoint
// from the ABI argument registers, WasmTlsReg and each other.
static constexpr Register WasmTableCallScratchReg = ABINonArgReg0;
static constexpr Register WasmTableCallSigReg = ABINonArgReg1;
static constexpr Register WasmTableCallIndexReg = ABINonArgReg2;
static constexpr Register JSReturnReg_Type = a3;
static constexpr Register JSReturnReg_Data = a2;
static constexpr Register64 ReturnReg64(InvalidReg, InvalidReg);
static constexpr FloatRegister ReturnFloat32Reg = { FloatRegisters::f0, FloatRegister::Single };
static constexpr FloatRegister ReturnDoubleReg = { FloatRegisters::f0, FloatRegister::Double };
static constexpr FloatRegister ScratchFloat32Reg = { FloatRegisters::f18, FloatRegister::Single };
static constexpr FloatRegister ScratchDoubleReg = { FloatRegisters::f18, FloatRegister::Double };
static constexpr FloatRegister SecondScratchFloat32Reg = { FloatRegisters::f16, FloatRegister::Single };
static constexpr FloatRegister SecondScratchDoubleReg = { FloatRegisters::f16, FloatRegister::Double };
// Registers used in the GenerateFFIIonExit Disable Activation block.
// None of these may be the second scratch register (t8).
static constexpr Register WasmIonExitRegReturnData = JSReturnReg_Data;
static constexpr Register WasmIonExitRegReturnType = JSReturnReg_Type;
static constexpr FloatRegister f0 = { FloatRegisters::f0, FloatRegister::Double };
static constexpr FloatRegister f2 = { FloatRegisters::f2, FloatRegister::Double };
static constexpr FloatRegister f4 = { FloatRegisters::f4, FloatRegister::Double };
static constexpr FloatRegister f6 = { FloatRegisters::f6, FloatRegister::Double };
static constexpr FloatRegister f8 = { FloatRegisters::f8, FloatRegister::Double };
static constexpr FloatRegister f10 = { FloatRegisters::f10, FloatRegister::Double };
static constexpr FloatRegister f12 = { FloatRegisters::f12, FloatRegister::Double };
static constexpr FloatRegister f14 = { FloatRegisters::f14, FloatRegister::Double };
static constexpr FloatRegister f16 = { FloatRegisters::f16, FloatRegister::Double };
static constexpr FloatRegister f18 = { FloatRegisters::f18, FloatRegister::Double };
static constexpr FloatRegister f20 = { FloatRegisters::f20, FloatRegister::Double };
static constexpr FloatRegister f22 = { FloatRegisters::f22, FloatRegister::Double };
static constexpr FloatRegister f24 = { FloatRegisters::f24, FloatRegister::Double };
static constexpr FloatRegister f26 = { FloatRegisters::f26, FloatRegister::Double };
static constexpr FloatRegister f28 = { FloatRegisters::f28, FloatRegister::Double };
static constexpr FloatRegister f30 = { FloatRegisters::f30, FloatRegister::Double };
// MIPS CPUs can only load multibyte data that is "naturally"
// four-byte-aligned, sp register should be eight-byte-aligned.
static constexpr uint32_t ABIStackAlignment = 8;
static constexpr uint32_t JitStackAlignment = 8;
static constexpr uint32_t JitStackValueAlignment = JitStackAlignment / sizeof(Value);
static_assert(JitStackAlignment % sizeof(Value) == 0 && JitStackValueAlignment >= 1,
"Stack alignment should be a non-zero multiple of sizeof(Value)");
// TODO this is just a filler to prevent a build failure. The MIPS SIMD
// alignment requirements still need to be explored.
// TODO Copy the static_asserts from x64/x86 assembler files.
static constexpr uint32_t SimdMemoryAlignment = 8;
static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment;
// Does this architecture support SIMD conversions between Uint32x4 and Float32x4?
static constexpr bool SupportsUint32x4FloatConversions = false;
// Does this architecture support comparisons of unsigned integer vectors?
static constexpr bool SupportsUint8x16Compares = false;
static constexpr bool SupportsUint16x8Compares = false;
static constexpr bool SupportsUint32x4Compares = false;
static constexpr Scale ScalePointer = TimesFour;
class Assembler : public AssemblerMIPSShared
{
public:
Assembler()
: AssemblerMIPSShared()
{ }
static Condition UnsignedCondition(Condition cond);
static Condition ConditionWithoutEqual(Condition cond);
// MacroAssemblers hold onto gcthings, so they are traced by the GC.
void trace(JSTracer* trc);
static uintptr_t GetPointer(uint8_t*);
protected:
// This is used to access the odd register form the pair of single
// precision registers that make one double register.
FloatRegister getOddPair(FloatRegister reg) {
MOZ_ASSERT(reg.isDouble());
return reg.singleOverlay(1);
}
public:
void Bind(uint8_t* rawCode, CodeOffset* label, const void* address);
static void TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader);
static void TraceDataRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader);
static uint32_t InstructionImmediateSize() {
return 2 * sizeof(uint32_t);
}
static uint32_t ExtractLuiOriValue(Instruction* inst0, Instruction* inst1);
static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue,
ImmPtr expectedValue);
static void PatchDataWithValueCheck(CodeLocationLabel label, PatchedImmPtr newValue,
PatchedImmPtr expectedValue);
static void PatchInstructionImmediate(uint8_t* code, PatchedImmPtr imm);
static uint32_t ExtractInstructionImmediate(uint8_t* code);
static void ToggleCall(CodeLocationLabel inst_, bool enabled);
}; // Assembler
static const uint32_t NumIntArgRegs = 4;
static inline bool
GetIntArgReg(uint32_t usedArgSlots, Register* out)
{
if (usedArgSlots < NumIntArgRegs) {
*out = Register::FromCode(a0.code() + usedArgSlots);
return true;
}
return false;
}
// Get a register in which we plan to put a quantity that will be used as an
// integer argument. This differs from GetIntArgReg in that if we have no more
// actual argument registers to use we will fall back on using whatever
// CallTempReg* don't overlap the argument registers, and only fail once those
// run out too.
static inline bool
GetTempRegForIntArg(uint32_t usedIntArgs, uint32_t usedFloatArgs, Register* out)
{
// NOTE: We can't properly determine which regs are used if there are
// float arguments. If this is needed, we will have to guess.
MOZ_ASSERT(usedFloatArgs == 0);
if (GetIntArgReg(usedIntArgs, out))
return true;
// Unfortunately, we have to assume things about the point at which
// GetIntArgReg returns false, because we need to know how many registers it
// can allocate.
usedIntArgs -= NumIntArgRegs;
if (usedIntArgs >= NumCallTempNonArgRegs)
return false;
*out = CallTempNonArgRegs[usedIntArgs];
return true;
}
static inline uint32_t
GetArgStackDisp(uint32_t usedArgSlots)
{
MOZ_ASSERT(usedArgSlots >= NumIntArgRegs);
// Even register arguments have place reserved on stack.
return usedArgSlots * sizeof(intptr_t);
}
} // namespace jit
} // namespace js
#endif /* jit_mips32_Assembler_mips32_h */