Mypal/gfx/layers/d3d11/CompositorD3D11.hlsl

422 lines
12 KiB
HLSL

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "BlendingHelpers.hlslh"
#include "BlendShaderConstants.h"
typedef float4 rect;
float4x4 mLayerTransform : register(vs, c0);
float4x4 mProjection : register(vs, c4);
float4 vRenderTargetOffset : register(vs, c8);
rect vTextureCoords : register(vs, c9);
rect vLayerQuad : register(vs, c10);
rect vMaskQuad : register(vs, c11);
float4x4 mBackdropTransform : register(vs, c12);
float4 fLayerColor : register(ps, c0);
float fLayerOpacity : register(ps, c1);
// x = layer type
// y = mask type
// z = blend op
// w = is premultiplied
uint4 iBlendConfig : register(ps, c2);
row_major float3x3 mYuvColorMatrix : register(ps, c3);
sampler sSampler : register(ps, s0);
// The mix-blend mega shader uses all variables, so we have to make sure they
// are assigned fixed slots.
Texture2D tRGB : register(ps, t0);
Texture2D tY : register(ps, t1);
Texture2D tCb : register(ps, t2);
Texture2D tCr : register(ps, t3);
Texture2D tRGBWhite : register(ps, t4);
Texture2D tMask : register(ps, t5);
Texture2D tBackdrop : register(ps, t6);
struct VS_INPUT {
float2 vPosition : POSITION;
};
struct VS_OUTPUT {
float4 vPosition : SV_Position;
float2 vTexCoords : TEXCOORD0;
};
struct VS_MASK_OUTPUT {
float4 vPosition : SV_Position;
float2 vTexCoords : TEXCOORD0;
float3 vMaskCoords : TEXCOORD1;
};
// Combined struct for the mix-blend compatible vertex shaders.
struct VS_BLEND_OUTPUT {
float4 vPosition : SV_Position;
float2 vTexCoords : TEXCOORD0;
float3 vMaskCoords : TEXCOORD1;
float2 vBackdropCoords : TEXCOORD2;
};
struct PS_OUTPUT {
float4 vSrc;
float4 vAlpha;
};
float2 TexCoords(const float2 aPosition)
{
float2 result;
const float2 size = vTextureCoords.zw;
result.x = vTextureCoords.x + aPosition.x * size.x;
result.y = vTextureCoords.y + aPosition.y * size.y;
return result;
}
SamplerState LayerTextureSamplerLinear
{
Filter = MIN_MAG_MIP_LINEAR;
AddressU = Clamp;
AddressV = Clamp;
};
float4 TransformedPosition(float2 aInPosition)
{
// the current vertex's position on the quad
// [x,y,0,1] is mandated by the CSS Transforms spec as the point value to transform
float4 position = float4(0, 0, 0, 1);
// We use 4 component floats to uniquely describe a rectangle, by the structure
// of x, y, width, height. This allows us to easily generate the 4 corners
// of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the
// stream source for our LayerQuad vertex shader. We do this by doing:
// Xout = x + Xin * width
// Yout = y + Yin * height
float2 size = vLayerQuad.zw;
position.x = vLayerQuad.x + aInPosition.x * size.x;
position.y = vLayerQuad.y + aInPosition.y * size.y;
position = mul(mLayerTransform, position);
return position;
}
float4 VertexPosition(float4 aTransformedPosition)
{
float4 result;
result.w = aTransformedPosition.w;
result.xyz = aTransformedPosition.xyz / aTransformedPosition.w;
result -= vRenderTargetOffset;
result.xyz *= result.w;
result = mul(mProjection, result);
return result;
}
float2 BackdropPosition(float4 aPosition)
{
// Move the position from clip space (-1,1) into 0..1 space.
float2 pos;
pos.x = (aPosition.x + 1.0) / 2.0;
pos.y = 1.0 - (aPosition.y + 1.0) / 2.0;
return mul(mBackdropTransform, float4(pos.xy, 0, 1.0)).xy;
}
VS_OUTPUT LayerQuadVS(const VS_INPUT aVertex)
{
VS_OUTPUT outp;
float4 position = TransformedPosition(aVertex.vPosition);
outp.vPosition = VertexPosition(position);
outp.vTexCoords = TexCoords(aVertex.vPosition.xy);
return outp;
}
VS_MASK_OUTPUT LayerQuadMaskVS(const VS_INPUT aVertex)
{
VS_MASK_OUTPUT outp;
float4 position = TransformedPosition(aVertex.vPosition);
outp.vPosition = VertexPosition(position);
// calculate the position on the mask texture
outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z;
outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w;
// We use the w coord to do non-perspective correct interpolation:
// the quad might be transformed in 3D, in which case it will have some
// perspective. The graphics card will do perspective-correct interpolation
// of the texture, but our mask is already transformed and so we require
// linear interpolation. Therefore, we must correct the interpolation
// ourselves, we do this by multiplying all coords by w here, and dividing by
// w in the pixel shader (post-interpolation), we pass w in outp.vMaskCoords.z.
// See http://en.wikipedia.org/wiki/Texture_mapping#Perspective_correctness
outp.vMaskCoords.z = 1;
outp.vMaskCoords *= position.w;
outp.vTexCoords = TexCoords(aVertex.vPosition.xy);
return outp;
}
float4 RGBAShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tMask.Sample(sSampler, maskCoords).r;
return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity * mask;
}
float4 RGBShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
float4 result;
result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity;
result.a = fLayerOpacity;
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tMask.Sample(sSampler, maskCoords).r;
return result * mask;
}
/* From Rec601:
[R] [1.1643835616438356, 0.0, 1.5960267857142858] [ Y - 16]
[G] = [1.1643835616438358, -0.3917622900949137, -0.8129676472377708] x [Cb - 128]
[B] [1.1643835616438356, 2.017232142857143, 8.862867620416422e-17] [Cr - 128]
For [0,1] instead of [0,255], and to 5 places:
[R] [1.16438, 0.00000, 1.59603] [ Y - 0.06275]
[G] = [1.16438, -0.39176, -0.81297] x [Cb - 0.50196]
[B] [1.16438, 2.01723, 0.00000] [Cr - 0.50196]
From Rec709:
[R] [1.1643835616438356, 4.2781193979771426e-17, 1.7927410714285714] [ Y - 16]
[G] = [1.1643835616438358, -0.21324861427372963, -0.532909328559444] x [Cb - 128]
[B] [1.1643835616438356, 2.1124017857142854, 0.0] [Cr - 128]
For [0,1] instead of [0,255], and to 5 places:
[R] [1.16438, 0.00000, 1.79274] [ Y - 0.06275]
[G] = [1.16438, -0.21325, -0.53291] x [Cb - 0.50196]
[B] [1.16438, 2.11240, 0.00000] [Cr - 0.50196]
*/
float4 CalculateYCbCrColor(const float2 aTexCoords)
{
float3 yuv;
float4 color;
yuv.x = tY.Sample(sSampler, aTexCoords).r - 0.06275;
yuv.y = tCb.Sample(sSampler, aTexCoords).r - 0.50196;
yuv.z = tCr.Sample(sSampler, aTexCoords).r - 0.50196;
color.rgb = mul(mYuvColorMatrix, yuv);
color.a = 1.0f;
return color;
}
float4 YCbCrShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tMask.Sample(sSampler, maskCoords).r;
return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity * mask;
}
PS_OUTPUT ComponentAlphaShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
PS_OUTPUT result;
result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords);
result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc;
result.vSrc.a = result.vAlpha.g;
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tMask.Sample(sSampler, maskCoords).r;
result.vSrc *= fLayerOpacity * mask;
result.vAlpha *= fLayerOpacity * mask;
return result;
}
float4 SolidColorShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tMask.Sample(sSampler, maskCoords).r;
return fLayerColor * mask;
}
/*
* Un-masked versions
*************************************************************
*/
float4 RGBAShader(const VS_OUTPUT aVertex) : SV_Target
{
return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity;
}
float4 RGBShader(const VS_OUTPUT aVertex) : SV_Target
{
float4 result;
result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity;
result.a = fLayerOpacity;
return result;
}
float4 YCbCrShader(const VS_OUTPUT aVertex) : SV_Target
{
return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity;
}
PS_OUTPUT ComponentAlphaShader(const VS_OUTPUT aVertex) : SV_Target
{
PS_OUTPUT result;
result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords);
result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc;
result.vSrc.a = result.vAlpha.g;
result.vSrc *= fLayerOpacity;
result.vAlpha *= fLayerOpacity;
return result;
}
float4 SolidColorShader(const VS_OUTPUT aVertex) : SV_Target
{
return fLayerColor;
}
// Mix-blend compatible vertex shaders.
VS_BLEND_OUTPUT LayerQuadBlendVS(const VS_INPUT aVertex)
{
VS_OUTPUT v = LayerQuadVS(aVertex);
VS_BLEND_OUTPUT o;
o.vPosition = v.vPosition;
o.vTexCoords = v.vTexCoords;
o.vMaskCoords = float3(0, 0, 0);
o.vBackdropCoords = BackdropPosition(v.vPosition);
return o;
}
VS_BLEND_OUTPUT LayerQuadBlendMaskVS(const VS_INPUT aVertex)
{
VS_MASK_OUTPUT v = LayerQuadMaskVS(aVertex);
VS_BLEND_OUTPUT o;
o.vPosition = v.vPosition;
o.vTexCoords = v.vTexCoords;
o.vMaskCoords = v.vMaskCoords;
o.vBackdropCoords = BackdropPosition(v.vPosition);
return o;
}
// The layer type and mask type are specified as constants. We use these to
// call the correct pixel shader to determine the source color for blending.
// Unfortunately this also requires some boilerplate to convert VS_BLEND_OUTPUT
// to a compatible pixel shader input.
float4 ComputeBlendSourceColor(const VS_BLEND_OUTPUT aVertex)
{
if (iBlendConfig.y == PS_MASK_NONE) {
VS_OUTPUT tmp;
tmp.vPosition = aVertex.vPosition;
tmp.vTexCoords = aVertex.vTexCoords;
if (iBlendConfig.x == PS_LAYER_RGB) {
return RGBShader(tmp);
} else if (iBlendConfig.x == PS_LAYER_RGBA) {
return RGBAShader(tmp);
} else if (iBlendConfig.x == PS_LAYER_YCBCR) {
return YCbCrShader(tmp);
}
return SolidColorShader(tmp);
} else if (iBlendConfig.y == PS_MASK) {
VS_MASK_OUTPUT tmp;
tmp.vPosition = aVertex.vPosition;
tmp.vTexCoords = aVertex.vTexCoords;
tmp.vMaskCoords = aVertex.vMaskCoords;
if (iBlendConfig.x == PS_LAYER_RGB) {
return RGBShaderMask(tmp);
} else if (iBlendConfig.x == PS_LAYER_RGBA) {
return RGBAShaderMask(tmp);
} else if (iBlendConfig.x == PS_LAYER_YCBCR) {
return YCbCrShaderMask(tmp);
}
return SolidColorShaderMask(tmp);
}
return float4(0.0, 0.0, 0.0, 1.0);
}
float3 ChooseBlendFunc(float3 dest, float3 src)
{
[flatten] switch (iBlendConfig.z) {
case PS_BLEND_MULTIPLY:
return BlendMultiply(dest, src);
case PS_BLEND_SCREEN:
return BlendScreen(dest, src);
case PS_BLEND_OVERLAY:
return BlendOverlay(dest, src);
case PS_BLEND_DARKEN:
return BlendDarken(dest, src);
case PS_BLEND_LIGHTEN:
return BlendLighten(dest, src);
case PS_BLEND_COLOR_DODGE:
return BlendColorDodge(dest, src);
case PS_BLEND_COLOR_BURN:
return BlendColorBurn(dest, src);
case PS_BLEND_HARD_LIGHT:
return BlendHardLight(dest, src);
case PS_BLEND_SOFT_LIGHT:
return BlendSoftLight(dest, src);
case PS_BLEND_DIFFERENCE:
return BlendDifference(dest, src);
case PS_BLEND_EXCLUSION:
return BlendExclusion(dest, src);
case PS_BLEND_HUE:
return BlendHue(dest, src);
case PS_BLEND_SATURATION:
return BlendSaturation(dest, src);
case PS_BLEND_COLOR:
return BlendColor(dest, src);
case PS_BLEND_LUMINOSITY:
return BlendLuminosity(dest, src);
default:
return float3(0, 0, 0);
}
}
float4 BlendShader(const VS_BLEND_OUTPUT aVertex) : SV_Target
{
float4 backdrop = tBackdrop.Sample(sSampler, aVertex.vBackdropCoords.xy);
float4 source = ComputeBlendSourceColor(aVertex);
// Shortcut when the backdrop or source alpha is 0, otherwise we may leak
// infinity into the blend function and return incorrect results.
if (backdrop.a == 0.0) {
return source;
}
if (source.a == 0.0) {
return float4(0, 0, 0, 0);
}
// The spec assumes there is no premultiplied alpha. The backdrop is always
// premultiplied, so undo the premultiply. If the source is premultiplied we
// must fix that as well.
backdrop.rgb /= backdrop.a;
if (iBlendConfig.w) {
source.rgb /= source.a;
}
float4 result;
result.rgb = ChooseBlendFunc(backdrop.rgb, source.rgb);
result.a = source.a;
// Factor backdrop alpha, then premultiply for the final OP_OVER.
result.rgb = (1.0 - backdrop.a) * source.rgb + backdrop.a * result.rgb;
result.rgb *= result.a;
return result;
}