Mypal/js/src/regexp/regexp-shim.h

1175 lines
36 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef RegexpShim_h
#define RegexpShim_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "mozilla/SegmentedVector.h"
#include "mozilla/Types.h"
#include <algorithm>
#include <cctype>
#include "jit/Label.h"
#include "jit/shared/Assembler-shared.h"
#include "js/Value.h"
#include "regexp/RegExpTypes.h"
#include "regexp/util/flags.h"
#include "regexp/util/vector.h"
#include "regexp/util/zone.h"
#include "vm/NativeObject.h"
// Forward declaration of classes
namespace v8 {
namespace internal {
class Heap;
class Isolate;
class RegExpMatchInfo;
class RegExpStack;
} // namespace internal
} // namespace v8
#define V8_WARN_UNUSED_RESULT MOZ_MUST_USE
#define V8_EXPORT_PRIVATE MOZ_EXPORT
#define V8_FALLTHROUGH MOZ_FALLTHROUGH
#define FATAL(x) MOZ_CRASH(x)
#define UNREACHABLE() MOZ_CRASH("unreachable code")
#define UNIMPLEMENTED() MOZ_CRASH("unimplemented code")
#define STATIC_ASSERT(exp) static_assert(exp, #exp)
#define DCHECK MOZ_ASSERT
#define DCHECK_EQ(lhs, rhs) MOZ_ASSERT((lhs) == (rhs))
#define DCHECK_NE(lhs, rhs) MOZ_ASSERT((lhs) != (rhs))
#define DCHECK_GT(lhs, rhs) MOZ_ASSERT((lhs) > (rhs))
#define DCHECK_GE(lhs, rhs) MOZ_ASSERT((lhs) >= (rhs))
#define DCHECK_LT(lhs, rhs) MOZ_ASSERT((lhs) < (rhs))
#define DCHECK_LE(lhs, rhs) MOZ_ASSERT((lhs) <= (rhs))
#define DCHECK_NULL(val) MOZ_ASSERT((val) == nullptr)
#define DCHECK_NOT_NULL(val) MOZ_ASSERT((val) != nullptr)
#define DCHECK_IMPLIES(lhs, rhs) MOZ_ASSERT_IF(lhs, rhs)
#define CHECK MOZ_RELEASE_ASSERT
#define CHECK_LE(lhs, rhs) MOZ_RELEASE_ASSERT((lhs) <= (rhs))
template <class T>
static constexpr inline T Min(T t1, T t2) {
return t1 < t2 ? t1 : t2;
}
template <class T>
static constexpr inline T Max(T t1, T t2) {
return t1 > t2 ? t1 : t2;
}
#define MemCopy memcpy
// Origin:
// https://github.com/v8/v8/blob/855591a54d160303349a5f0a32fab15825c708d1/src/base/macros.h#L310-L319
// ptrdiff_t is 't' according to the standard, but MSVC uses 'I'.
#ifdef _MSC_VER
# define V8PRIxPTRDIFF "Ix"
# define V8PRIdPTRDIFF "Id"
# define V8PRIuPTRDIFF "Iu"
#else
# define V8PRIxPTRDIFF "tx"
# define V8PRIdPTRDIFF "td"
# define V8PRIuPTRDIFF "tu"
#endif
// Origin:
// https://github.com/v8/v8/blob/855591a54d160303349a5f0a32fab15825c708d1/src/base/macros.h#L27-L38
// The arraysize(arr) macro returns the # of elements in an array arr.
// The expression is a compile-time constant, and therefore can be
// used in defining new arrays, for example. If you use arraysize on
// a pointer by mistake, you will get a compile-time error.
#define arraysize(array) (sizeof(ArraySizeHelper(array)))
// This template function declaration is used in defining arraysize.
// Note that the function doesn't need an implementation, as we only
// use its type.
template <typename T, size_t N>
char (&ArraySizeHelper(T (&array)[N]))[N];
// Explicitly declare the assignment operator as deleted.
#define DISALLOW_ASSIGN(TypeName) TypeName& operator=(const TypeName&) = delete
// Explicitly declare the copy constructor and assignment operator as deleted.
// This also deletes the implicit move constructor and implicit move assignment
// operator, but still allows to manually define them.
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&) = delete; \
DISALLOW_ASSIGN(TypeName)
// Explicitly declare all implicit constructors as deleted, namely the
// default constructor, copy constructor and operator= functions.
// This is especially useful for classes containing only static methods.
#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
TypeName() = delete; \
DISALLOW_COPY_AND_ASSIGN(TypeName)
namespace v8 {
// Origin:
// https://github.com/v8/v8/blob/855591a54d160303349a5f0a32fab15825c708d1/src/base/macros.h#L364-L367
template <typename T, typename U>
constexpr inline bool IsAligned(T value, U alignment) {
return (value & (alignment - 1)) == 0;
}
using byte = uint8_t;
using Address = uintptr_t;
static const Address kNullAddress = 0;
// Latin1/UTF-16 constants
// Code-point values in Unicode 4.0 are 21 bits wide.
// Code units in UTF-16 are 16 bits wide.
using uc16 = char16_t;
using uc32 = int32_t;
namespace base {
// Origin:
// https://github.com/v8/v8/blob/855591a54d160303349a5f0a32fab15825c708d1/src/base/macros.h#L247-L258
// The USE(x, ...) template is used to silence C++ compiler warnings
// issued for (yet) unused variables (typically parameters).
// The arguments are guaranteed to be evaluated from left to right.
struct Use {
template <typename T>
Use(T&&) {} // NOLINT(runtime/explicit)
};
#define USE(...) \
do { \
::v8::base::Use unused_tmp_array_for_use_macro[]{__VA_ARGS__}; \
(void)unused_tmp_array_for_use_macro; \
} while (false)
// Origin:
// https://github.com/v8/v8/blob/855591a54d160303349a5f0a32fab15825c708d1/src/base/safe_conversions.h#L35-L39
// saturated_cast<> is analogous to static_cast<> for numeric types, except
// that the specified numeric conversion will saturate rather than overflow or
// underflow.
template <typename Dst, typename Src>
inline Dst saturated_cast(Src value);
// This is the only specialization that is needed for regexp code.
// Instead of pulling in dozens of lines of template goo
// to derive it, I used the implementation from uint8_clamped in
// ArrayBufferObject.h.
template <>
inline uint8_t saturated_cast<uint8_t, int>(int x) {
return (x >= 0) ? ((x < 255) ? uint8_t(x) : 255) : 0;
}
#define LAZY_INSTANCE_INITIALIZER { mozilla::Nothing() }
template <typename T>
struct LazyInstanceImpl {
mozilla::Maybe<T> value_;
T* Pointer() {
if (value_.isNothing()) {
value_.emplace();
}
return value_.ptr();
}
};
template <typename T>
class LazyInstance {
public:
using type = LazyInstanceImpl<T>;
};
namespace bits {
inline uint64_t CountTrailingZeros(uint64_t value) {
return mozilla::CountTrailingZeroes64(value);
}
inline size_t RoundUpToPowerOfTwo32(size_t value) {
return mozilla::RoundUpPow2(value);
}
} // namespace bits
} // namespace base
namespace unibrow {
using uchar = unsigned int;
// Origin:
// https://github.com/v8/v8/blob/1f1e4cdb04c75eab77adbecd5f5514ddc3eb56cf/src/strings/unicode.h#L133-L150
class Latin1 {
public:
static const uc16 kMaxChar = 0xff;
// Convert the character to Latin-1 case equivalent if possible.
static inline uc16 TryConvertToLatin1(uc16 c) {
// "GREEK CAPITAL LETTER MU" case maps to "MICRO SIGN".
// "GREEK SMALL LETTER MU" case maps to "MICRO SIGN".
if (c == 0x039C || c == 0x03BC) {
return 0xB5;
}
// "LATIN CAPITAL LETTER Y WITH DIAERESIS" case maps to "LATIN SMALL LETTER
// Y WITH DIAERESIS".
if (c == 0x0178) {
return 0xFF;
}
return c;
}
};
// Origin:
// https://github.com/v8/v8/blob/b4bfbce6f91fc2cc72178af42bb3172c5f5eaebb/src/strings/unicode.h#L99-L131
class Utf16 {
public:
static inline bool IsLeadSurrogate(int code) {
return js::unicode::IsLeadSurrogate(code);
}
static inline bool IsTrailSurrogate(int code) {
return js::unicode::IsTrailSurrogate(code);
}
static inline uc16 LeadSurrogate(uint32_t char_code) {
return js::unicode::LeadSurrogate(char_code);
}
static inline uc16 TrailSurrogate(uint32_t char_code) {
return js::unicode::TrailSurrogate(char_code);
}
static inline uint32_t CombineSurrogatePair(char16_t lead, char16_t trail) {
return js::unicode::UTF16Decode(lead, trail);
}
static const uchar kMaxNonSurrogateCharCode = 0xffff;
};
#ifndef V8_INTL_SUPPORT
// A cache used in case conversion. It caches the value for characters
// that either have no mapping or map to a single character independent
// of context. Characters that map to more than one character or that
// map differently depending on context are always looked up.
// Origin:
// https://github.com/v8/v8/blob/b4bfbce6f91fc2cc72178af42bb3172c5f5eaebb/src/strings/unicode.h#L64-L88
template <class T, int size = 256>
class Mapping {
public:
inline Mapping() = default;
inline int get(uchar c, uchar n, uchar* result) {
CacheEntry entry = entries_[c & kMask];
if (entry.code_point_ == c) {
if (entry.offset_ == 0) {
return 0;
} else {
result[0] = c + entry.offset_;
return 1;
}
} else {
return CalculateValue(c, n, result);
}
}
private:
int CalculateValue(uchar c, uchar n, uchar* result) {
bool allow_caching = true;
int length = T::Convert(c, n, result, &allow_caching);
if (allow_caching) {
if (length == 1) {
entries_[c & kMask] = CacheEntry(c, result[0] - c);
return 1;
} else {
entries_[c & kMask] = CacheEntry(c, 0);
return 0;
}
} else {
return length;
}
}
struct CacheEntry {
inline CacheEntry() : code_point_(kNoChar), offset_(0) {}
inline CacheEntry(uchar code_point, signed offset)
: code_point_(code_point), offset_(offset) {}
uchar code_point_;
signed offset_;
static const int kNoChar = (1 << 21) - 1;
};
static const int kSize = size;
static const int kMask = kSize - 1;
CacheEntry entries_[kSize];
};
// Origin:
// https://github.com/v8/v8/blob/b4bfbce6f91fc2cc72178af42bb3172c5f5eaebb/src/strings/unicode.h#L241-L252
struct Ecma262Canonicalize {
static const int kMaxWidth = 1;
static int Convert(uchar c, uchar n, uchar* result, bool* allow_caching_ptr);
};
struct Ecma262UnCanonicalize {
static const int kMaxWidth = 4;
static int Convert(uchar c, uchar n, uchar* result, bool* allow_caching_ptr);
};
struct CanonicalizationRange {
static const int kMaxWidth = 1;
static int Convert(uchar c, uchar n, uchar* result, bool* allow_caching_ptr);
};
#endif // !V8_INTL_SUPPORT
struct Letter {
static bool Is(uchar c);
};
} // namespace unibrow
namespace internal {
#define PRINTF_FORMAT(x, y) MOZ_FORMAT_PRINTF(x, y)
void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...);
void PRINTF_FORMAT(2, 3) PrintF(FILE* out, const char* format, ...);
// Superclass for classes only using static method functions.
// The subclass of AllStatic cannot be instantiated at all.
class AllStatic {
#ifdef DEBUG
public:
AllStatic() = delete;
#endif
};
// Superclass for classes managed with new and delete.
// In irregexp, this is only AlternativeGeneration (in regexp-compiler.cc)
// Compare:
// https://github.com/v8/v8/blob/7b3332844212d78ee87a9426f3a6f7f781a8fbfa/src/utils/allocation.cc#L88-L96
class Malloced {
public:
static void* operator new(size_t size) {
js::AutoEnterOOMUnsafeRegion oomUnsafe;
void* result = js_malloc(size);
if (!result) {
oomUnsafe.crash("Irregexp Malloced shim");
}
return result;
}
static void operator delete(void* p) { js_free(p); }
};
constexpr int32_t KB = 1024;
constexpr int32_t MB = 1024 * 1024;
#define kMaxInt JSVAL_INT_MAX
#define kMinInt JSVAL_INT_MIN
constexpr int kSystemPointerSize = sizeof(void*);
// The largest integer n such that n and n + 1 are both exactly
// representable as a Number value. ES6 section 20.1.2.6
constexpr double kMaxSafeInteger = 9007199254740991.0; // 2^53-1
constexpr int kBitsPerByte = 8;
constexpr int kBitsPerByteLog2 = 3;
constexpr int kUInt32Size = sizeof(uint32_t);
constexpr int kInt64Size = sizeof(int64_t);
constexpr int kUC16Size = sizeof(uc16);
inline constexpr bool IsDecimalDigit(uc32 c) { return c >= '0' && c <= '9'; }
inline bool is_uint24(int val) { return (val & 0x00ffffff) == val; }
inline bool IsIdentifierStart(uc32 c) {
return js::unicode::IsIdentifierStart(uint32_t(c));
}
inline bool IsIdentifierPart(uc32 c) {
return js::unicode::IsIdentifierPart(uint32_t(c));
}
// Wrappers to disambiguate char16_t and uc16.
struct AsUC16 {
explicit AsUC16(char16_t v) : value(v) {}
char16_t value;
};
struct AsUC32 {
explicit AsUC32(int32_t v) : value(v) {}
int32_t value;
};
std::ostream& operator<<(std::ostream& os, const AsUC16& c);
std::ostream& operator<<(std::ostream& os, const AsUC32& c);
// This class is used for the output of trace-regexp-parser. V8 has
// an elaborate implementation to ensure that the output gets to the
// right place, even on Android. We just need something that will
// print output (ideally to stderr, to match the rest of our tracing
// code). This is an empty wrapper that will convert itself to
// std::cerr when used.
class StdoutStream {
public:
operator std::ostream&() const;
template <typename T> std::ostream& operator<<(T t);
};
// Reuse existing Maybe implementation
using mozilla::Maybe;
template <typename T>
Maybe<T> Just(const T& value) {
return mozilla::Some(value);
}
template <typename T>
mozilla::Nothing Nothing() {
return mozilla::Nothing();
}
template <typename T>
using PseudoHandle = mozilla::UniquePtr<T, JS::FreePolicy>;
// Origin:
// https://github.com/v8/v8/blob/855591a54d160303349a5f0a32fab15825c708d1/src/utils/utils.h#L600-L642
// Compare 8bit/16bit chars to 8bit/16bit chars.
// Used indirectly by regexp-interpreter.cc
template <typename lchar, typename rchar>
inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs,
size_t chars) {
const lchar* limit = lhs + chars;
if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) {
// memcmp compares byte-by-byte, yielding wrong results for two-byte
// strings on little-endian systems.
return memcmp(lhs, rhs, chars);
}
while (lhs < limit) {
int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
if (r != 0) return r;
++lhs;
++rhs;
}
return 0;
}
template <typename lchar, typename rchar>
inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) {
DCHECK_LE(sizeof(lchar), 2);
DCHECK_LE(sizeof(rchar), 2);
if (sizeof(lchar) == 1) {
if (sizeof(rchar) == 1) {
return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
reinterpret_cast<const uint8_t*>(rhs), chars);
} else {
return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
reinterpret_cast<const char16_t*>(rhs),
chars);
}
} else {
if (sizeof(rchar) == 1) {
return CompareCharsUnsigned(reinterpret_cast<const char16_t*>(lhs),
reinterpret_cast<const uint8_t*>(rhs), chars);
} else {
return CompareCharsUnsigned(reinterpret_cast<const char16_t*>(lhs),
reinterpret_cast<const char16_t*>(rhs),
chars);
}
}
}
// Origin:
// https://github.com/v8/v8/blob/855591a54d160303349a5f0a32fab15825c708d1/src/utils/utils.h#L40-L48
// Returns the value (0 .. 15) of a hexadecimal character c.
// If c is not a legal hexadecimal character, returns a value < 0.
// Used in regexp-parser.cc
inline int HexValue(uc32 c) {
c -= '0';
if (static_cast<unsigned>(c) <= 9) return c;
c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36.
if (static_cast<unsigned>(c) <= 5) return c + 10;
return -1;
}
// V8::Object ~= JS::Value
class Object {
public:
// The default object constructor in V8 stores a nullptr,
// which has its low bit clear and is interpreted as Smi(0).
constexpr Object() : value_(JS::Int32Value(0)) {}
// Conversions to/from SpiderMonkey types
constexpr Object(JS::Value value) : value_(value) {}
operator JS::Value() const { return value_; }
// Used in regexp-macro-assembler.cc and regexp-interpreter.cc to
// check the return value of isolate->stack_guard()->HandleInterrupts()
// In V8, this will be either an exception object or undefined.
// In SM, we store the exception in the context, so we can use our normal
// idiom: return false iff we are throwing an exception.
inline bool IsException(Isolate*) const { return !value_.toBoolean(); }
protected:
JS::Value value_;
};
class Smi : public Object {
public:
static Smi FromInt(int32_t value) {
Smi smi;
smi.value_ = JS::Int32Value(value);
return smi;
}
static inline int32_t ToInt(const Object object) {
return JS::Value(object).toInt32();
}
};
// V8::HeapObject ~= JSObject
class HeapObject : public Object {
public:
inline static HeapObject cast(Object object) {
HeapObject h;
h.value_ = JS::Value(object);
return h;
}
};
// A fixed-size array with Objects (aka Values) as element types
// Only used for named captures. Allocated during parsing, so
// can't be a GC thing.
// TODO: implement.
class FixedArray : public HeapObject {
public:
inline void set(uint32_t index, Object value) {}
inline static FixedArray cast(Object object) { MOZ_CRASH("TODO"); }
};
class ByteArrayData {
public:
uint32_t length;
uint8_t* data();
};
/*
* Conceptually, ByteArrayData is a variable-size structure. To
* implement this in a C++-approved way, we allocate a struct
* containing the 32-bit length field, followed by additional memory
* for the data. To access the data, we get a pointer to the next byte
* after the length field and cast it to the correct type.
*/
inline uint8_t* ByteArrayData::data() {
static_assert(alignof(uint8_t) <= alignof(ByteArrayData),
"The trailing data must be aligned to start immediately "
"after the header with no padding.");
ByteArrayData* immediatelyAfter = this + 1;
return reinterpret_cast<uint8_t*>(immediatelyAfter);
}
// A fixed-size array of bytes.
class ByteArray : public HeapObject {
ByteArrayData* inner() const {
return static_cast<ByteArrayData*>(value_.toPrivate());
}
public:
PseudoHandle<ByteArrayData> takeOwnership(Isolate* isolate);
byte get(uint32_t index) {
MOZ_ASSERT(index < length());
return inner()->data()[index];
}
void set(uint32_t index, byte val) {
MOZ_ASSERT(index < length());
inner()->data()[index] = val;
}
uint32_t length() const { return inner()->length; }
byte* GetDataStartAddress() { return inner()->data(); }
static ByteArray cast(Object object) {
ByteArray b;
b.value_ = JS::Value(object);
return b;
}
};
// Like Handles in SM, V8 handles are references to marked pointers.
// Unlike SM, where Rooted pointers are created individually on the
// stack, the target of a V8 handle lives in an arena on the isolate
// (~= JSContext). Whenever a Handle is created, a new "root" is
// created at the end of the arena.
//
// HandleScopes are used to manage the lifetimes of these handles. A
// HandleScope lives on the stack and stores the size of the arena at
// the time of its creation. When the function returns and the
// HandleScope is destroyed, the arena is truncated to its previous
// size, clearing all roots that were created since the creation of
// the HandleScope.
//
// In some cases, objects that are GC-allocated in V8 are not in SM.
// In particular, irregexp allocates ByteArrays during code generation
// to store lookup tables. This does not play nicely with the SM
// macroassembler's requirement that no GC allocations take place
// while it is on the stack. To work around this, this shim layer also
// provides the ability to create pseudo-handles, which are not
// managed by the GC but provide the same API to irregexp. The "root"
// of a pseudohandle is a unique pointer living in a second arena. If
// the allocated object should outlive the HandleScope, it must be
// manually moved out of the arena using takeOwnership.
class MOZ_STACK_CLASS HandleScope {
public:
HandleScope(Isolate* isolate);
~HandleScope();
private:
size_t level_;
size_t non_gc_level_;
Isolate* isolate_;
friend class Isolate;
};
// Origin:
// https://github.com/v8/v8/blob/5792f3587116503fc047d2f68c951c72dced08a5/src/handles/handles.h#L88-L171
template <typename T>
class MOZ_NONHEAP_CLASS Handle {
public:
Handle() : location_(nullptr) {}
Handle(T object, Isolate* isolate);
Handle(JS::Value value, Isolate* isolate);
// Constructor for handling automatic up casting.
template <typename S, typename = typename std::enable_if<
std::is_convertible<S*, T*>::value>::type>
inline Handle(Handle<S> handle) : location_(handle.location_) {}
template <typename S>
inline static const Handle<T> cast(Handle<S> that) {
return Handle<T>(that.location_);
}
inline bool is_null() const { return location_ == nullptr; }
inline T operator*() const {
return T::cast(Object(*location_));
};
// {ObjectRef} is returned by {Handle::operator->}. It should never be stored
// anywhere or used in any other code; no one should ever have to spell out
// {ObjectRef} in code. Its only purpose is to be dereferenced immediately by
// "operator-> chaining". Returning the address of the field is valid because
// this object's lifetime only ends at the end of the full statement.
// Origin:
// https://github.com/v8/v8/blob/03aaa4b3bf4cb01eee1f223b252e6869b04ab08c/src/handles/handles.h#L91-L105
class MOZ_TEMPORARY_CLASS ObjectRef {
public:
T* operator->() { return &object_; }
private:
friend class Handle;
explicit ObjectRef(T object) : object_(object) {}
T object_;
};
inline ObjectRef operator->() const { return ObjectRef{**this}; }
static Handle<T> fromHandleValue(JS::HandleValue handle) {
return Handle(handle.address());
}
private:
Handle(const JS::Value* location) : location_(location) {}
template <typename>
friend class Handle;
template <typename>
friend class MaybeHandle;
const JS::Value* location_;
};
// A Handle can be converted into a MaybeHandle. Converting a MaybeHandle
// into a Handle requires checking that it does not point to nullptr. This
// ensures nullptr checks before use.
//
// Also note that Handles do not provide default equality comparison or hashing
// operators on purpose. Such operators would be misleading, because intended
// semantics is ambiguous between Handle location and object identity.
// Origin:
// https://github.com/v8/v8/blob/5792f3587116503fc047d2f68c951c72dced08a5/src/handles/maybe-handles.h#L15-L78
template <typename T>
class MOZ_NONHEAP_CLASS MaybeHandle final {
public:
MaybeHandle() : location_(nullptr) {}
// Constructor for handling automatic up casting from Handle.
// Ex. Handle<JSArray> can be passed when MaybeHandle<Object> is expected.
template <typename S, typename = typename std::enable_if<
std::is_convertible<S*, T*>::value>::type>
MaybeHandle(Handle<S> handle) : location_(handle.location_) {}
inline Handle<T> ToHandleChecked() const {
MOZ_RELEASE_ASSERT(location_);
return Handle<T>(location_);
}
// Convert to a Handle with a type that can be upcasted to.
template <typename S>
inline bool ToHandle(Handle<S>* out) const {
if (location_) {
*out = Handle<T>(location_);
return true;
} else {
*out = Handle<T>();
return false;
}
}
private:
JS::Value* location_;
};
// From v8/src/handles/handles-inl.h
template <typename T>
inline Handle<T> handle(T object, Isolate* isolate) {
return Handle<T>(object, isolate);
}
// RAII Guard classes
class DisallowHeapAllocation {
public:
DisallowHeapAllocation() {}
operator const JS::AutoAssertNoGC&() const { return no_gc_; }
private:
const JS::AutoAssertNoGC no_gc_;
};
// This is used inside DisallowHeapAllocation regions to enable
// allocation just before throwing an exception, to allocate the
// exception object. Specifically, it only ever guards:
// - isolate->stack_guard()->HandleInterrupts()
// - isolate->StackOverflow()
// Those cases don't allocate in SpiderMonkey, so this can be a no-op.
class AllowHeapAllocation {
public:
// Empty constructor to avoid unused_variable warnings
AllowHeapAllocation() {}
};
// Origin:
// https://github.com/v8/v8/blob/84f3877c15bc7f8956d21614da4311337525a3c8/src/objects/string.h#L83-L474
class String : public HeapObject {
private:
JSString* str() const { return value_.toString(); }
public:
String() : HeapObject() {}
String(JSString* str) { value_ = JS::StringValue(str); }
operator JSString*() const { return str(); }
// Max char codes.
static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
static const int kMaxUtf16CodeUnit = 0xffff;
static const uc32 kMaxCodePoint = 0x10ffff;
MOZ_ALWAYS_INLINE int length() const { return str()->length(); }
bool IsFlat() { return str()->isLinear(); };
// Origin:
// https://github.com/v8/v8/blob/84f3877c15bc7f8956d21614da4311337525a3c8/src/objects/string.h#L95-L152
class FlatContent {
public:
FlatContent(JSLinearString* string, const DisallowHeapAllocation& no_gc)
: string_(string), no_gc_(no_gc) {}
inline bool IsOneByte() const { return string_->hasLatin1Chars(); }
inline bool IsTwoByte() const { return !string_->hasLatin1Chars(); }
Vector<const uint8_t> ToOneByteVector() const {
MOZ_ASSERT(IsOneByte());
return Vector<const uint8_t>(string_->latin1Chars(no_gc_),
string_->length());
}
Vector<const uc16> ToUC16Vector() const {
MOZ_ASSERT(IsTwoByte());
return Vector<const uc16>(string_->twoByteChars(no_gc_),
string_->length());
}
private:
const JSLinearString* string_;
const JS::AutoAssertNoGC& no_gc_;
};
FlatContent GetFlatContent(const DisallowHeapAllocation& no_gc) {
MOZ_ASSERT(IsFlat());
return FlatContent(&str()->asLinear(), no_gc);
}
static Handle<String> Flatten(Isolate* isolate, Handle<String> string);
inline static String cast(Object object) {
String s;
s.value_ = JS::StringValue(JS::Value(object).toString());
return s;
}
inline static bool IsOneByteRepresentationUnderneath(String string) {
return string.str()->hasLatin1Chars();
}
inline bool IsOneByteRepresentation() const {
return str()->hasLatin1Chars();
}
std::unique_ptr<char[]> ToCString();
template <typename Char>
Vector<const Char> GetCharVector(const DisallowHeapAllocation& no_gc);
};
template <>
inline Vector<const uint8_t> String::GetCharVector(
const DisallowHeapAllocation& no_gc) {
String::FlatContent flat = GetFlatContent(no_gc);
MOZ_ASSERT(flat.IsOneByte());
return flat.ToOneByteVector();
}
template <>
inline Vector<const uc16> String::GetCharVector(
const DisallowHeapAllocation& no_gc) {
String::FlatContent flat = GetFlatContent(no_gc);
MOZ_ASSERT(flat.IsTwoByte());
return flat.ToUC16Vector();
}
// A flat string reader provides random access to the contents of a
// string independent of the character width of the string. The handle
// must be valid as long as the reader is being used.
// Origin:
// https://github.com/v8/v8/blob/84f3877c15bc7f8956d21614da4311337525a3c8/src/objects/string.h#L807-L825
class MOZ_STACK_CLASS FlatStringReader {
public:
FlatStringReader(JSLinearString* string)
: length_(string->length()),
is_latin1_(string->hasLatin1Chars()) {
if (is_latin1_) {
latin1_chars_ = string->latin1Chars(nogc_);
} else {
two_byte_chars_ = string->twoByteChars(nogc_);
}
}
FlatStringReader(const char16_t* chars, size_t length)
: two_byte_chars_(chars),
length_(length),
is_latin1_(false) {}
int length() { return length_; }
inline char16_t Get(size_t index) {
MOZ_ASSERT(index < length_);
if (is_latin1_) {
return latin1_chars_[index];
} else {
return two_byte_chars_[index];
}
}
private:
union {
const JS::Latin1Char *latin1_chars_;
const char16_t* two_byte_chars_;
};
size_t length_;
bool is_latin1_;
JS::AutoCheckCannotGC nogc_;
};
class JSRegExp : public HeapObject {
public:
// ******************************************************
// Methods that are called from inside the implementation
// ******************************************************
void TierUpTick() { /*inner()->tierUpTick();*/ }
bool MarkedForTierUp() const {
return false; /*inner()->markedForTierUp();*/
}
// TODO: hook these up
Object Code(bool is_latin1) const { return Object(JS::UndefinedValue()); }
Object Bytecode(bool is_latin1) const { return Object(JS::UndefinedValue()); }
uint32_t BacktrackLimit() const {
return 0; /*inner()->backtrackLimit();*/
}
static JSRegExp cast(Object object) {
JSRegExp regexp;
MOZ_ASSERT(JS::Value(object).toGCThing()->is<js::RegExpShared>());
regexp.value_ = JS::PrivateGCThingValue(JS::Value(object).toGCThing());
return regexp;
}
// ******************************
// Static constants
// ******************************
// Meaning of Type:
// NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
// ATOM: A simple string to match against using an indexOf operation.
// IRREGEXP: Compiled with Irregexp.
enum Type { NOT_COMPILED, ATOM, IRREGEXP };
// Maximum number of captures allowed.
static constexpr int kMaxCaptures = 1 << 16;
// **************************************************
// JSRegExp::Flags
// **************************************************
struct FlagShiftBit {
static constexpr int kGlobal = 0;
static constexpr int kIgnoreCase = 1;
static constexpr int kMultiline = 2;
static constexpr int kSticky = 3;
static constexpr int kUnicode = 4;
static constexpr int kDotAll = 5;
static constexpr int kInvalid = 6;
};
enum Flag : uint8_t {
kNone = 0,
kGlobal = 1 << FlagShiftBit::kGlobal,
kIgnoreCase = 1 << FlagShiftBit::kIgnoreCase,
kMultiline = 1 << FlagShiftBit::kMultiline,
kSticky = 1 << FlagShiftBit::kSticky,
kUnicode = 1 << FlagShiftBit::kUnicode,
kDotAll = 1 << FlagShiftBit::kDotAll,
kInvalid = 1 << FlagShiftBit::kInvalid, // Not included in FlagCount.
};
using Flags = base::Flags<Flag>;
static constexpr int kFlagCount = 6;
static constexpr int kNoBacktrackLimit = 0;
private:
js::RegExpShared* inner() {
return value_.toGCThing()->as<js::RegExpShared>();
}
};
class Histogram {
public:
inline void AddSample(int sample) {}
};
class Counters {
public:
Histogram* regexp_backtracks() { return &regexp_backtracks_; }
private:
Histogram regexp_backtracks_;
};
#define PROFILE(isolate, call) \
do { \
} while (false);
enum class AllocationType : uint8_t {
kYoung, // Allocate in the nursery
kOld, // Allocate in the tenured heap
};
using StackGuard = Isolate;
using Factory = Isolate;
class Isolate {
public:
//********** Isolate code **********//
RegExpStack* regexp_stack() const { return regexpStack_; }
byte* top_of_regexp_stack() const;
// This is called from inside no-GC code. Instead of suppressing GC
// to allocate the error, we return false from Execute and call
// ReportOverRecursed in the caller.
void StackOverflow() {}
#ifndef V8_INTL_SUPPORT
unibrow::Mapping<unibrow::Ecma262UnCanonicalize>* jsregexp_uncanonicalize() {
return &jsregexp_uncanonicalize_;
}
unibrow::Mapping<unibrow::Ecma262Canonicalize>*
regexp_macro_assembler_canonicalize() {
return &regexp_macro_assembler_canonicalize_;
}
unibrow::Mapping<unibrow::CanonicalizationRange>* jsregexp_canonrange() {
return &jsregexp_canonrange_;
}
private:
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize_;
unibrow::Mapping<unibrow::Ecma262Canonicalize>
regexp_macro_assembler_canonicalize_;
unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange_;
#endif // !V8_INTL_SUPPORT
public:
// An empty stub for telemetry we don't support
void IncreaseTotalRegexpCodeGenerated(Handle<HeapObject> code) {}
Counters* counters() { return &counters_; }
//********** Factory code **********//
inline Factory* factory() { return this; }
Handle<ByteArray> NewByteArray(
int length, AllocationType allocation = AllocationType::kYoung);
// Allocates a fixed array initialized with undefined values.
Handle<FixedArray> NewFixedArray(int length);
template <typename Char>
Handle<String> InternalizeString(const Vector<const Char>& str);
//********** Stack guard code **********//
inline StackGuard* stack_guard() { return this; }
Object HandleInterrupts() {
return Object(JS::BooleanValue(cx()->handleInterrupt()));
}
JSContext* cx() const { return cx_; }
void trace(JSTracer* trc);
//********** Handle code **********//
JS::Value* getHandleLocation(JS::Value value);
private:
mozilla::SegmentedVector<JS::Value> handleArena_;
mozilla::SegmentedVector<PseudoHandle<void>> uniquePtrArena_;
void* allocatePseudoHandle(size_t bytes);
public:
template <typename T>
PseudoHandle<T> takeOwnership(void* ptr);
private:
void openHandleScope(HandleScope& scope) {
scope.level_ = handleArena_.Length();
scope.non_gc_level_ = uniquePtrArena_.Length();
}
void closeHandleScope(size_t prevLevel, size_t prevUniqueLevel) {
size_t currLevel = handleArena_.Length();
handleArena_.PopLastN(currLevel - prevLevel);
size_t currUniqueLevel = uniquePtrArena_.Length();
uniquePtrArena_.PopLastN(currUniqueLevel - prevUniqueLevel);
}
friend class HandleScope;
JSContext* cx_;
RegExpStack* regexpStack_;
Counters counters_;
};
// Origin:
// https://github.com/v8/v8/blob/50dcf2af54ce27801a71c47c1be1d2c5e36b0dd6/src/execution/isolate.h#L1909-L1931
class StackLimitCheck {
public:
StackLimitCheck(Isolate* isolate) : cx_(isolate->cx()) {}
// Use this to check for stack-overflows in C++ code.
bool HasOverflowed() { return !CheckRecursionLimitDontReport(cx_); }
// Use this to check for interrupt request in C++ code.
bool InterruptRequested() { return cx_->hasAnyPendingInterrupt(); }
// Use this to check for stack-overflow when entering runtime from JS code.
bool JsHasOverflowed() {
return !CheckRecursionLimitConservativeDontReport(cx_);
}
private:
JSContext* cx_;
};
class Code : public HeapObject {
public:
uint8_t* raw_instruction_start() { return inner()->raw(); }
static Code cast(Object object) {
Code c;
MOZ_ASSERT(JS::Value(object).toGCThing()->is<js::jit::JitCode>());
c.value_ = JS::PrivateGCThingValue(JS::Value(object).toGCThing());
return c;
}
js::jit::JitCode* inner() {
return value_.toGCThing()->as<js::jit::JitCode>();
}
};
enum class MessageTemplate { kStackOverflow };
class MessageFormatter {
public:
static const char* TemplateString(MessageTemplate index) {
switch (index) {
case MessageTemplate::kStackOverflow:
return "too much recursion";
}
}
};
// Origin: https://github.com/v8/v8/blob/master/src/codegen/label.h
class Label {
public:
Label() : inner_(js::jit::Label()) {}
js::jit::Label* inner() { return &inner_; }
void Unuse() { inner_.reset(); }
bool is_linked() { return inner_.used(); }
bool is_bound() { return inner_.bound(); }
bool is_unused() { return !inner_.used() && !inner_.bound(); }
int pos() { return inner_.offset(); }
void link_to(int pos) { inner_.use(pos); }
void bind_to(int pos) { inner_.bind(pos); }
private:
js::jit::Label inner_;
js::jit::CodeOffset patchOffset_;
friend class SMRegExpMacroAssembler;
};
// TODO: Map flags to jitoptions
extern bool FLAG_correctness_fuzzer_suppressions;
extern bool FLAG_enable_regexp_unaligned_accesses;
extern bool FLAG_harmony_regexp_sequence;
extern bool FLAG_regexp_interpret_all;
extern bool FLAG_regexp_mode_modifiers;
extern bool FLAG_regexp_optimization;
extern bool FLAG_regexp_peephole_optimization;
extern bool FLAG_regexp_possessive_quantifier;
extern bool FLAG_regexp_tier_up;
extern bool FLAG_trace_regexp_assembler;
extern bool FLAG_trace_regexp_bytecodes;
extern bool FLAG_trace_regexp_parser;
extern bool FLAG_trace_regexp_peephole_optimization;
#define V8_USE_COMPUTED_GOTO 1
#define COMPILING_IRREGEXP_FOR_EXTERNAL_EMBEDDER
} // namespace internal
} // namespace v8
#endif // RegexpShim_h