Mypal/xpcom/io/Base64.cpp

663 lines
17 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Base64.h"
#include "mozilla/UniquePtrExtensions.h"
#include "nsIInputStream.h"
#include "nsString.h"
#include "nsTArray.h"
#include "plbase64.h"
namespace {
// BEGIN base64 encode code copied and modified from NSPR
const unsigned char* base =
(unsigned char*)"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
template<typename T>
static void
Encode3to4(const unsigned char* aSrc, T* aDest)
{
uint32_t b32 = (uint32_t)0;
int i, j = 18;
for (i = 0; i < 3; ++i) {
b32 <<= 8;
b32 |= (uint32_t)aSrc[i];
}
for (i = 0; i < 4; ++i) {
aDest[i] = base[(uint32_t)((b32 >> j) & 0x3F)];
j -= 6;
}
}
template<typename T>
static void
Encode2to4(const unsigned char* aSrc, T* aDest)
{
aDest[0] = base[(uint32_t)((aSrc[0] >> 2) & 0x3F)];
aDest[1] = base[(uint32_t)(((aSrc[0] & 0x03) << 4) | ((aSrc[1] >> 4) & 0x0F))];
aDest[2] = base[(uint32_t)((aSrc[1] & 0x0F) << 2)];
aDest[3] = (unsigned char)'=';
}
template<typename T>
static void
Encode1to4(const unsigned char* aSrc, T* aDest)
{
aDest[0] = base[(uint32_t)((aSrc[0] >> 2) & 0x3F)];
aDest[1] = base[(uint32_t)((aSrc[0] & 0x03) << 4)];
aDest[2] = (unsigned char)'=';
aDest[3] = (unsigned char)'=';
}
template<typename T>
static void
Encode(const unsigned char* aSrc, uint32_t aSrcLen, T* aDest)
{
while (aSrcLen >= 3) {
Encode3to4(aSrc, aDest);
aSrc += 3;
aDest += 4;
aSrcLen -= 3;
}
switch (aSrcLen) {
case 2:
Encode2to4(aSrc, aDest);
break;
case 1:
Encode1to4(aSrc, aDest);
break;
case 0:
break;
default:
NS_NOTREACHED("coding error");
}
}
// END base64 encode code copied and modified from NSPR.
template<typename T>
struct EncodeInputStream_State
{
unsigned char c[3];
uint8_t charsOnStack;
typename T::char_type* buffer;
};
template<typename T>
nsresult
EncodeInputStream_Encoder(nsIInputStream* aStream,
void* aClosure,
const char* aFromSegment,
uint32_t aToOffset,
uint32_t aCount,
uint32_t* aWriteCount)
{
NS_ASSERTION(aCount > 0, "Er, what?");
EncodeInputStream_State<T>* state =
static_cast<EncodeInputStream_State<T>*>(aClosure);
// We always consume all data.
*aWriteCount = aCount;
// If we have any data left from last time, encode it now.
uint32_t countRemaining = aCount;
const unsigned char* src = (const unsigned char*)aFromSegment;
if (state->charsOnStack) {
MOZ_ASSERT(state->charsOnStack == 1 || state->charsOnStack == 2);
// Not enough data to compose a triple.
if (state->charsOnStack == 1 && countRemaining == 1) {
state->charsOnStack = 2;
state->c[1] = src[0];
return NS_OK;
}
uint32_t consumed = 0;
unsigned char firstSet[4];
if (state->charsOnStack == 1) {
firstSet[0] = state->c[0];
firstSet[1] = src[0];
firstSet[2] = src[1];
firstSet[3] = '\0';
consumed = 2;
} else /* state->charsOnStack == 2 */ {
firstSet[0] = state->c[0];
firstSet[1] = state->c[1];
firstSet[2] = src[0];
firstSet[3] = '\0';
consumed = 1;
}
Encode(firstSet, 3, state->buffer);
state->buffer += 4;
countRemaining -= consumed;
src += consumed;
state->charsOnStack = 0;
// Bail if there is nothing left.
if (!countRemaining) {
return NS_OK;
}
}
// Encode as many full triplets as possible.
uint32_t encodeLength = countRemaining - countRemaining % 3;
MOZ_ASSERT(encodeLength % 3 == 0,
"Should have an exact number of triplets!");
Encode(src, encodeLength, state->buffer);
state->buffer += (encodeLength / 3) * 4;
src += encodeLength;
countRemaining -= encodeLength;
if (countRemaining) {
// We should never have a full triplet left at this point.
MOZ_ASSERT(countRemaining < 3, "We should have encoded more!");
state->c[0] = src[0];
state->c[1] = (countRemaining == 2) ? src[1] : '\0';
state->charsOnStack = countRemaining;
}
return NS_OK;
}
template<typename T>
nsresult
EncodeInputStream(nsIInputStream* aInputStream,
T& aDest,
uint32_t aCount,
uint32_t aOffset)
{
nsresult rv;
uint64_t count64 = aCount;
if (!aCount) {
rv = aInputStream->Available(&count64);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
// if count64 is over 4GB, it will be failed at the below condition,
// then will return NS_ERROR_OUT_OF_MEMORY
aCount = (uint32_t)count64;
}
uint64_t countlong =
(count64 + 2) / 3 * 4; // +2 due to integer math.
if (countlong + aOffset > UINT32_MAX) {
return NS_ERROR_OUT_OF_MEMORY;
}
uint32_t count = uint32_t(countlong);
if (!aDest.SetLength(count + aOffset, mozilla::fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
EncodeInputStream_State<T> state;
state.charsOnStack = 0;
state.c[2] = '\0';
state.buffer = aOffset + aDest.BeginWriting();
while (1) {
uint32_t read = 0;
rv = aInputStream->ReadSegments(&EncodeInputStream_Encoder<T>,
(void*)&state,
aCount,
&read);
if (NS_FAILED(rv)) {
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
NS_RUNTIMEABORT("Not implemented for async streams!");
}
if (rv == NS_ERROR_NOT_IMPLEMENTED) {
NS_RUNTIMEABORT("Requires a stream that implements ReadSegments!");
}
return rv;
}
if (!read) {
break;
}
}
// Finish encoding if anything is left
if (state.charsOnStack) {
Encode(state.c, state.charsOnStack, state.buffer);
}
if (aDest.Length()) {
// May belong to an nsCString with an unallocated buffer, so only null
// terminate if there is a need to.
*aDest.EndWriting() = '\0';
}
return NS_OK;
}
static const char kBase64URLAlphabet[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
// Maps an encoded character to a value in the Base64 URL alphabet, per
// RFC 4648, Table 2. Invalid input characters map to UINT8_MAX.
static const uint8_t kBase64URLDecodeTable[] = {
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255,
62 /* - */,
255, 255,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, /* 0 - 9 */
255, 255, 255, 255, 255, 255, 255,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, /* A - Z */
255, 255, 255, 255,
63 /* _ */,
255,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, /* a - z */
255, 255, 255, 255,
};
bool
Base64URLCharToValue(char aChar, uint8_t* aValue) {
uint8_t index = static_cast<uint8_t>(aChar);
*aValue = kBase64URLDecodeTable[index & 0x7f];
return (*aValue != 255) && !(index & ~0x7f);
}
} // namespace
namespace mozilla {
nsresult
Base64EncodeInputStream(nsIInputStream* aInputStream,
nsACString& aDest,
uint32_t aCount,
uint32_t aOffset)
{
return EncodeInputStream<nsACString>(aInputStream, aDest, aCount, aOffset);
}
nsresult
Base64EncodeInputStream(nsIInputStream* aInputStream,
nsAString& aDest,
uint32_t aCount,
uint32_t aOffset)
{
return EncodeInputStream<nsAString>(aInputStream, aDest, aCount, aOffset);
}
nsresult
Base64Encode(const char* aBinary, uint32_t aBinaryLen, char** aBase64)
{
// Check for overflow.
if (aBinaryLen > (UINT32_MAX / 4) * 3) {
return NS_ERROR_FAILURE;
}
// Don't ask PR_Base64Encode to encode empty strings.
if (aBinaryLen == 0) {
*aBase64 = (char*)moz_xmalloc(1);
(*aBase64)[0] = '\0';
return NS_OK;
}
*aBase64 = nullptr;
uint32_t base64Len = ((aBinaryLen + 2) / 3) * 4;
// Add one byte for null termination.
UniqueFreePtr<char[]> base64((char*)malloc(base64Len + 1));
if (!base64) {
return NS_ERROR_OUT_OF_MEMORY;
}
if (!PL_Base64Encode(aBinary, aBinaryLen, base64.get())) {
return NS_ERROR_INVALID_ARG;
}
// PL_Base64Encode doesn't null terminate the buffer for us when we pass
// the buffer in. Do that manually.
base64[base64Len] = '\0';
*aBase64 = base64.release();
return NS_OK;
}
nsresult
Base64Encode(const nsACString& aBinary, nsACString& aBase64)
{
// Check for overflow.
if (aBinary.Length() > (UINT32_MAX / 4) * 3) {
return NS_ERROR_FAILURE;
}
// Don't ask PR_Base64Encode to encode empty strings.
if (aBinary.IsEmpty()) {
aBase64.Truncate();
return NS_OK;
}
uint32_t base64Len = ((aBinary.Length() + 2) / 3) * 4;
// Add one byte for null termination.
if (!aBase64.SetCapacity(base64Len + 1, fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
char* base64 = aBase64.BeginWriting();
if (!PL_Base64Encode(aBinary.BeginReading(), aBinary.Length(), base64)) {
aBase64.Truncate();
return NS_ERROR_INVALID_ARG;
}
// PL_Base64Encode doesn't null terminate the buffer for us when we pass
// the buffer in. Do that manually.
base64[base64Len] = '\0';
aBase64.SetLength(base64Len);
return NS_OK;
}
nsresult
Base64Encode(const nsAString& aBinary, nsAString& aBase64)
{
NS_LossyConvertUTF16toASCII binary(aBinary);
nsAutoCString base64;
nsresult rv = Base64Encode(binary, base64);
if (NS_SUCCEEDED(rv)) {
CopyASCIItoUTF16(base64, aBase64);
} else {
aBase64.Truncate();
}
return rv;
}
static nsresult
Base64DecodeHelper(const char* aBase64, uint32_t aBase64Len, char* aBinary,
uint32_t* aBinaryLen)
{
MOZ_ASSERT(aBinary);
if (!PL_Base64Decode(aBase64, aBase64Len, aBinary)) {
return NS_ERROR_INVALID_ARG;
}
// PL_Base64Decode doesn't null terminate the buffer for us when we pass
// the buffer in. Do that manually, taking into account the number of '='
// characters we were passed.
if (aBase64Len != 0 && aBase64[aBase64Len - 1] == '=') {
if (aBase64Len > 1 && aBase64[aBase64Len - 2] == '=') {
*aBinaryLen -= 2;
} else {
*aBinaryLen -= 1;
}
}
aBinary[*aBinaryLen] = '\0';
return NS_OK;
}
nsresult
Base64Decode(const char* aBase64, uint32_t aBase64Len, char** aBinary,
uint32_t* aBinaryLen)
{
// Check for overflow.
if (aBase64Len > UINT32_MAX / 3) {
return NS_ERROR_FAILURE;
}
// Don't ask PR_Base64Decode to decode the empty string.
if (aBase64Len == 0) {
*aBinary = (char*)moz_xmalloc(1);
(*aBinary)[0] = '\0';
*aBinaryLen = 0;
return NS_OK;
}
*aBinary = nullptr;
*aBinaryLen = (aBase64Len * 3) / 4;
// Add one byte for null termination.
UniqueFreePtr<char[]> binary((char*)malloc(*aBinaryLen + 1));
if (!binary) {
return NS_ERROR_OUT_OF_MEMORY;
}
nsresult rv =
Base64DecodeHelper(aBase64, aBase64Len, binary.get(), aBinaryLen);
if (NS_FAILED(rv)) {
return rv;
}
*aBinary = binary.release();
return NS_OK;
}
nsresult
Base64Decode(const nsACString& aBase64, nsACString& aBinary)
{
// Check for overflow.
if (aBase64.Length() > UINT32_MAX / 3) {
return NS_ERROR_FAILURE;
}
// Don't ask PR_Base64Decode to decode the empty string
if (aBase64.IsEmpty()) {
aBinary.Truncate();
return NS_OK;
}
uint32_t binaryLen = ((aBase64.Length() * 3) / 4);
// Add one byte for null termination.
if (!aBinary.SetCapacity(binaryLen + 1, fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
char* binary = aBinary.BeginWriting();
nsresult rv = Base64DecodeHelper(aBase64.BeginReading(), aBase64.Length(),
binary, &binaryLen);
if (NS_FAILED(rv)) {
aBinary.Truncate();
return rv;
}
aBinary.SetLength(binaryLen);
return NS_OK;
}
nsresult
Base64Decode(const nsAString& aBase64, nsAString& aBinary)
{
NS_LossyConvertUTF16toASCII base64(aBase64);
nsAutoCString binary;
nsresult rv = Base64Decode(base64, binary);
if (NS_SUCCEEDED(rv)) {
CopyASCIItoUTF16(binary, aBinary);
} else {
aBinary.Truncate();
}
return rv;
}
nsresult
Base64URLDecode(const nsACString& aBase64,
Base64URLDecodePaddingPolicy aPaddingPolicy,
FallibleTArray<uint8_t>& aBinary)
{
// Don't decode empty strings.
if (aBase64.IsEmpty()) {
aBinary.Clear();
return NS_OK;
}
// Check for overflow.
uint32_t base64Len = aBase64.Length();
if (base64Len > UINT32_MAX / 3) {
return NS_ERROR_FAILURE;
}
const char* base64 = aBase64.BeginReading();
// The decoded length may be 1-2 bytes over, depending on the final quantum.
uint32_t binaryLen = (base64Len * 3) / 4;
// Determine whether to check for and ignore trailing padding.
bool maybePadded = false;
switch (aPaddingPolicy) {
case Base64URLDecodePaddingPolicy::Require:
if (base64Len % 4) {
// Padded input length must be a multiple of 4.
return NS_ERROR_INVALID_ARG;
}
maybePadded = true;
break;
case Base64URLDecodePaddingPolicy::Ignore:
// Check for padding only if the length is a multiple of 4.
maybePadded = !(base64Len % 4);
break;
// If we're expecting unpadded input, no need for additional checks.
// `=` isn't in the decode table, so padded strings will fail to decode.
default:
MOZ_FALLTHROUGH_ASSERT("Invalid decode padding policy");
case Base64URLDecodePaddingPolicy::Reject:
break;
}
if (maybePadded && base64[base64Len - 1] == '=') {
if (base64[base64Len - 2] == '=') {
base64Len -= 2;
} else {
base64Len -= 1;
}
}
if (NS_WARN_IF(!aBinary.SetCapacity(binaryLen, mozilla::fallible))) {
return NS_ERROR_OUT_OF_MEMORY;
}
aBinary.SetLengthAndRetainStorage(binaryLen);
uint8_t* binary = aBinary.Elements();
for (; base64Len >= 4; base64Len -= 4) {
uint8_t w, x, y, z;
if (!Base64URLCharToValue(*base64++, &w) ||
!Base64URLCharToValue(*base64++, &x) ||
!Base64URLCharToValue(*base64++, &y) ||
!Base64URLCharToValue(*base64++, &z)) {
return NS_ERROR_INVALID_ARG;
}
*binary++ = w << 2 | x >> 4;
*binary++ = x << 4 | y >> 2;
*binary++ = y << 6 | z;
}
if (base64Len == 3) {
uint8_t w, x, y;
if (!Base64URLCharToValue(*base64++, &w) ||
!Base64URLCharToValue(*base64++, &x) ||
!Base64URLCharToValue(*base64++, &y)) {
return NS_ERROR_INVALID_ARG;
}
*binary++ = w << 2 | x >> 4;
*binary++ = x << 4 | y >> 2;
} else if (base64Len == 2) {
uint8_t w, x;
if (!Base64URLCharToValue(*base64++, &w) ||
!Base64URLCharToValue(*base64++, &x)) {
return NS_ERROR_INVALID_ARG;
}
*binary++ = w << 2 | x >> 4;
} else if (base64Len) {
return NS_ERROR_INVALID_ARG;
}
// Set the length to the actual number of decoded bytes.
aBinary.TruncateLength(binary - aBinary.Elements());
return NS_OK;
}
nsresult
Base64URLEncode(uint32_t aBinaryLen, const uint8_t* aBinary,
Base64URLEncodePaddingPolicy aPaddingPolicy,
nsACString& aBase64)
{
// Don't encode empty strings.
if (aBinaryLen == 0) {
aBase64.Truncate();
return NS_OK;
}
// Check for overflow.
if (aBinaryLen > (UINT32_MAX / 4) * 3) {
return NS_ERROR_FAILURE;
}
// Allocate a buffer large enough to hold the encoded string with padding.
// Add one byte for null termination.
uint32_t base64Len = ((aBinaryLen + 2) / 3) * 4;
if (NS_WARN_IF(!aBase64.SetCapacity(base64Len + 1, fallible))) {
aBase64.Truncate();
return NS_ERROR_FAILURE;
}
char* base64 = aBase64.BeginWriting();
uint32_t index = 0;
for (; index + 3 <= aBinaryLen; index += 3) {
*base64++ = kBase64URLAlphabet[aBinary[index] >> 2];
*base64++ = kBase64URLAlphabet[((aBinary[index] & 0x3) << 4) |
(aBinary[index + 1] >> 4)];
*base64++ = kBase64URLAlphabet[((aBinary[index + 1] & 0xf) << 2) |
(aBinary[index + 2] >> 6)];
*base64++ = kBase64URLAlphabet[aBinary[index + 2] & 0x3f];
}
uint32_t remaining = aBinaryLen - index;
if (remaining == 1) {
*base64++ = kBase64URLAlphabet[aBinary[index] >> 2];
*base64++ = kBase64URLAlphabet[((aBinary[index] & 0x3) << 4)];
} else if (remaining == 2) {
*base64++ = kBase64URLAlphabet[aBinary[index] >> 2];
*base64++ = kBase64URLAlphabet[((aBinary[index] & 0x3) << 4) |
(aBinary[index + 1] >> 4)];
*base64++ = kBase64URLAlphabet[((aBinary[index + 1] & 0xf) << 2)];
}
uint32_t length = base64 - aBase64.BeginWriting();
if (aPaddingPolicy == Base64URLEncodePaddingPolicy::Include) {
if (length % 4 == 2) {
*base64++ = '=';
*base64++ = '=';
length += 2;
} else if (length % 4 == 3) {
*base64++ = '=';
length += 1;
}
} else {
MOZ_ASSERT(aPaddingPolicy == Base64URLEncodePaddingPolicy::Omit,
"Invalid encode padding policy");
}
// Null terminate and truncate to the actual number of characters.
*base64 = '\0';
aBase64.SetLength(length);
return NS_OK;
}
} // namespace mozilla