Mypal/media/libcubeb/src/cubeb_audiounit.cpp

2735 lines
86 KiB
C++

/*
* Copyright © 2011 Mozilla Foundation
*
* This program is made available under an ISC-style license. See the
* accompanying file LICENSE for details.
*/
#undef NDEBUG
#include <TargetConditionals.h>
#include <assert.h>
#include <mach/mach_time.h>
#include <pthread.h>
#include <stdlib.h>
#include <AudioUnit/AudioUnit.h>
#if !TARGET_OS_IPHONE
#include <AvailabilityMacros.h>
#include <CoreAudio/AudioHardware.h>
#include <CoreAudio/HostTime.h>
#include <CoreFoundation/CoreFoundation.h>
#endif
#include <CoreAudio/CoreAudioTypes.h>
#include <AudioToolbox/AudioToolbox.h>
#include "cubeb/cubeb.h"
#include "cubeb-internal.h"
#include "cubeb_panner.h"
#if !TARGET_OS_IPHONE
#include "cubeb_osx_run_loop.h"
#endif
#include "cubeb_resampler.h"
#include "cubeb_ring_array.h"
#include "cubeb_utils.h"
#include <algorithm>
#include <atomic>
#if !defined(kCFCoreFoundationVersionNumber10_7)
/* From CoreFoundation CFBase.h */
#define kCFCoreFoundationVersionNumber10_7 635.00
#endif
#if !TARGET_OS_IPHONE && MAC_OS_X_VERSION_MIN_REQUIRED < 1060
#define AudioComponent Component
#define AudioComponentDescription ComponentDescription
#define AudioComponentFindNext FindNextComponent
#define AudioComponentInstanceNew OpenAComponent
#define AudioComponentInstanceDispose CloseComponent
#endif
#if MAC_OS_X_VERSION_MIN_REQUIRED < 101000
typedef UInt32 AudioFormatFlags;
#endif
#define CUBEB_STREAM_MAX 8
#define AU_OUT_BUS 0
#define AU_IN_BUS 1
#define PRINT_ERROR_CODE(str, r) do { \
LOG("System call failed: %s (rv: %d)", str, r); \
} while(0)
const char * DISPATCH_QUEUE_LABEL = "org.mozilla.cubeb";
/* Testing empirically, some headsets report a minimal latency that is very
* low, but this does not work in practice. Lie and say the minimum is 256
* frames. */
const uint32_t SAFE_MIN_LATENCY_FRAMES = 256;
const uint32_t SAFE_MAX_LATENCY_FRAMES = 512;
void audiounit_stream_stop_internal(cubeb_stream * stm);
void audiounit_stream_start_internal(cubeb_stream * stm);
static void audiounit_close_stream(cubeb_stream *stm);
static int audiounit_setup_stream(cubeb_stream *stm);
extern cubeb_ops const audiounit_ops;
struct cubeb {
cubeb_ops const * ops;
owned_critical_section mutex;
std::atomic<int> active_streams;
uint32_t global_latency_frames = 0;
int limit_streams;
cubeb_device_collection_changed_callback collection_changed_callback;
void * collection_changed_user_ptr;
/* Differentiate input from output devices. */
cubeb_device_type collection_changed_devtype;
uint32_t devtype_device_count;
AudioObjectID * devtype_device_array;
// The queue is asynchronously deallocated once all references to it are released
dispatch_queue_t serial_queue = dispatch_queue_create(DISPATCH_QUEUE_LABEL, DISPATCH_QUEUE_SERIAL);
};
class auto_array_wrapper
{
public:
explicit auto_array_wrapper(auto_array<float> * ar)
: float_ar(ar)
, short_ar(nullptr)
{assert((float_ar && !short_ar) || (!float_ar && short_ar));}
explicit auto_array_wrapper(auto_array<short> * ar)
: float_ar(nullptr)
, short_ar(ar)
{assert((float_ar && !short_ar) || (!float_ar && short_ar));}
~auto_array_wrapper() {
auto_lock l(lock);
assert((float_ar && !short_ar) || (!float_ar && short_ar));
delete float_ar;
delete short_ar;
}
void push(void * elements, size_t length){
assert((float_ar && !short_ar) || (!float_ar && short_ar));
auto_lock l(lock);
if (float_ar)
return float_ar->push(static_cast<float*>(elements), length);
return short_ar->push(static_cast<short*>(elements), length);
}
size_t length() {
assert((float_ar && !short_ar) || (!float_ar && short_ar));
auto_lock l(lock);
if (float_ar)
return float_ar->length();
return short_ar->length();
}
void push_silence(size_t length) {
assert((float_ar && !short_ar) || (!float_ar && short_ar));
auto_lock l(lock);
if (float_ar)
return float_ar->push_silence(length);
return short_ar->push_silence(length);
}
bool pop(void * elements, size_t length) {
assert((float_ar && !short_ar) || (!float_ar && short_ar));
auto_lock l(lock);
if (float_ar)
return float_ar->pop(static_cast<float*>(elements), length);
return short_ar->pop(static_cast<short*>(elements), length);
}
void * data() {
assert((float_ar && !short_ar) || (!float_ar && short_ar));
auto_lock l(lock);
if (float_ar)
return float_ar->data();
return short_ar->data();
}
void clear() {
assert((float_ar && !short_ar) || (!float_ar && short_ar));
auto_lock l(lock);
if (float_ar) {
float_ar->clear();
} else {
short_ar->clear();
}
}
private:
auto_array<float> * float_ar;
auto_array<short> * short_ar;
owned_critical_section lock;
};
struct cubeb_stream {
cubeb * context;
cubeb_data_callback data_callback;
cubeb_state_callback state_callback;
cubeb_device_changed_callback device_changed_callback;
/* Stream creation parameters */
cubeb_stream_params input_stream_params;
cubeb_stream_params output_stream_params;
cubeb_devid input_device;
bool is_default_input;
cubeb_devid output_device;
/* User pointer of data_callback */
void * user_ptr;
/* Format descriptions */
AudioStreamBasicDescription input_desc;
AudioStreamBasicDescription output_desc;
/* I/O AudioUnits */
AudioUnit input_unit;
AudioUnit output_unit;
/* I/O device sample rate */
Float64 input_hw_rate;
Float64 output_hw_rate;
/* Expected I/O thread interleave,
* calculated from I/O hw rate. */
int expected_output_callbacks_in_a_row;
owned_critical_section mutex;
/* Hold the input samples in every
* input callback iteration */
auto_array_wrapper * input_linear_buffer;
/* Frames on input buffer */
std::atomic<uint32_t> input_buffer_frames;
/* Frame counters */
uint64_t frames_played;
uint64_t frames_queued;
std::atomic<int64_t> frames_read;
std::atomic<bool> shutdown;
std::atomic<bool> draining;
/* Latency requested by the user. */
uint32_t latency_frames;
std::atomic<uint64_t> current_latency_frames;
uint64_t hw_latency_frames;
std::atomic<float> panning;
cubeb_resampler * resampler;
/* This is the number of output callback we got in a row. This is usually one,
* but can be two when the input and output rate are different, and more when
* a device has been plugged or unplugged, as there can be some time before
* the device is ready. */
std::atomic<int> output_callback_in_a_row;
/* This is true if a device change callback is currently running. */
std::atomic<bool> switching_device;
std::atomic<bool> buffer_size_change_state{ false };
};
bool has_input(cubeb_stream * stm)
{
return stm->input_stream_params.rate != 0;
}
bool has_output(cubeb_stream * stm)
{
return stm->output_stream_params.rate != 0;
}
#if TARGET_OS_IPHONE
typedef UInt32 AudioDeviceID;
typedef UInt32 AudioObjectID;
#define AudioGetCurrentHostTime mach_absolute_time
uint64_t
AudioConvertHostTimeToNanos(uint64_t host_time)
{
static struct mach_timebase_info timebase_info;
static bool initialized = false;
if (!initialized) {
mach_timebase_info(&timebase_info);
initialized = true;
}
long double answer = host_time;
if (timebase_info.numer != timebase_info.denom) {
answer *= timebase_info.numer;
answer /= timebase_info.denom;
}
return (uint64_t)answer;
}
#endif
static int64_t
audiotimestamp_to_latency(AudioTimeStamp const * tstamp, cubeb_stream * stream)
{
if (!(tstamp->mFlags & kAudioTimeStampHostTimeValid)) {
return 0;
}
uint64_t pres = AudioConvertHostTimeToNanos(tstamp->mHostTime);
uint64_t now = AudioConvertHostTimeToNanos(AudioGetCurrentHostTime());
return ((pres - now) * stream->output_desc.mSampleRate) / 1000000000LL;
}
static void
audiounit_set_global_latency(cubeb_stream * stm, uint32_t latency_frames)
{
stm->mutex.assert_current_thread_owns();
assert(stm->context->active_streams == 1);
stm->context->global_latency_frames = latency_frames;
}
static void
audiounit_make_silent(AudioBuffer * ioData)
{
assert(ioData);
assert(ioData->mData);
memset(ioData->mData, 0, ioData->mDataByteSize);
}
static OSStatus
audiounit_render_input(cubeb_stream * stm,
AudioUnitRenderActionFlags * flags,
AudioTimeStamp const * tstamp,
UInt32 bus,
UInt32 input_frames)
{
/* Create the AudioBufferList to store input. */
AudioBufferList input_buffer_list;
input_buffer_list.mBuffers[0].mDataByteSize =
stm->input_desc.mBytesPerFrame * input_frames;
input_buffer_list.mBuffers[0].mData = nullptr;
input_buffer_list.mBuffers[0].mNumberChannels = stm->input_desc.mChannelsPerFrame;
input_buffer_list.mNumberBuffers = 1;
/* Render input samples */
OSStatus r = AudioUnitRender(stm->input_unit,
flags,
tstamp,
bus,
input_frames,
&input_buffer_list);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitRender", r);
return r;
}
/* Copy input data in linear buffer. */
stm->input_linear_buffer->push(input_buffer_list.mBuffers[0].mData,
input_frames * stm->input_desc.mChannelsPerFrame);
LOGV("(%p) input: buffers %d, size %d, channels %d, frames %d.",
stm, input_buffer_list.mNumberBuffers,
input_buffer_list.mBuffers[0].mDataByteSize,
input_buffer_list.mBuffers[0].mNumberChannels,
input_frames);
/* Advance input frame counter. */
assert(input_frames > 0);
stm->frames_read += input_frames;
return noErr;
}
static OSStatus
audiounit_input_callback(void * user_ptr,
AudioUnitRenderActionFlags * flags,
AudioTimeStamp const * tstamp,
UInt32 bus,
UInt32 input_frames,
AudioBufferList * /* bufs */)
{
cubeb_stream * stm = static_cast<cubeb_stream *>(user_ptr);
long outframes;
assert(stm->input_unit != NULL);
assert(AU_IN_BUS == bus);
if (stm->shutdown) {
LOG("(%p) input shutdown", stm);
return noErr;
}
// This happens when we're finally getting a new input callback after having
// switched device, we can clear the input buffer now, only keeping the data
// we just got.
if (stm->output_callback_in_a_row > stm->expected_output_callbacks_in_a_row) {
stm->input_linear_buffer->pop(
nullptr,
stm->input_linear_buffer->length() -
input_frames * stm->input_stream_params.channels);
}
OSStatus r = audiounit_render_input(stm, flags, tstamp, bus, input_frames);
if (r != noErr) {
return r;
}
// Full Duplex. We'll call data_callback in the AudioUnit output callback.
if (stm->output_unit != NULL) {
stm->output_callback_in_a_row = 0;
return noErr;
}
/* Input only. Call the user callback through resampler.
Resampler will deliver input buffer in the correct rate. */
assert(input_frames <= stm->input_linear_buffer->length() / stm->input_desc.mChannelsPerFrame);
long total_input_frames = stm->input_linear_buffer->length() / stm->input_desc.mChannelsPerFrame;
outframes = cubeb_resampler_fill(stm->resampler,
stm->input_linear_buffer->data(),
&total_input_frames,
NULL,
0);
// Reset input buffer
stm->input_linear_buffer->clear();
if (outframes < 0 || outframes != input_frames) {
stm->shutdown = true;
return noErr;
}
return noErr;
}
static bool
is_extra_input_needed(cubeb_stream * stm)
{
/* If the output callback came first and this is a duplex stream, we need to
* fill in some additional silence in the resampler.
* Otherwise, if we had more than expected callbacks in a row, or we're currently
* switching, we add some silence as well to compensate for the fact that
* we're lacking some input data. */
/* If resampling is taking place after every output callback
* the input buffer expected to be empty. Any frame left over
* from resampling is stored inside the resampler available to
* be used in next iteration as needed.
* BUT when noop_resampler is operating we have left over
* frames since it does not store anything internally. */
return stm->frames_read == 0 ||
(stm->input_linear_buffer->length() == 0 &&
(stm->output_callback_in_a_row > stm->expected_output_callbacks_in_a_row ||
stm->switching_device));
}
static OSStatus
audiounit_output_callback(void * user_ptr,
AudioUnitRenderActionFlags * /* flags */,
AudioTimeStamp const * tstamp,
UInt32 bus,
UInt32 output_frames,
AudioBufferList * outBufferList)
{
assert(AU_OUT_BUS == bus);
assert(outBufferList->mNumberBuffers == 1);
cubeb_stream * stm = static_cast<cubeb_stream *>(user_ptr);
stm->output_callback_in_a_row++;
LOGV("(%p) output: buffers %d, size %d, channels %d, frames %d.",
stm, outBufferList->mNumberBuffers,
outBufferList->mBuffers[0].mDataByteSize,
outBufferList->mBuffers[0].mNumberChannels, output_frames);
long outframes = 0, input_frames = 0;
void * output_buffer = NULL, * input_buffer = NULL;
if (stm->shutdown) {
LOG("(%p) output shutdown.", stm);
audiounit_make_silent(&outBufferList->mBuffers[0]);
return noErr;
}
stm->current_latency_frames = audiotimestamp_to_latency(tstamp, stm);
if (stm->draining) {
OSStatus r = AudioOutputUnitStop(stm->output_unit);
assert(r == 0);
if (stm->input_unit) {
r = AudioOutputUnitStop(stm->input_unit);
assert(r == 0);
}
stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_DRAINED);
audiounit_make_silent(&outBufferList->mBuffers[0]);
return noErr;
}
/* Get output buffer. */
output_buffer = outBufferList->mBuffers[0].mData;
/* If Full duplex get also input buffer */
if (stm->input_unit != NULL) {
if (is_extra_input_needed(stm)) {
uint32_t min_input_frames_required = ceilf(stm->input_hw_rate / stm->output_hw_rate *
stm->input_buffer_frames);
stm->input_linear_buffer->push_silence(min_input_frames_required * stm->input_desc.mChannelsPerFrame);
LOG("(%p) %s pushed %u frames of input silence.", stm, stm->frames_read == 0 ? "Input hasn't started," :
stm->switching_device ? "Device switching," : "Drop out,", min_input_frames_required);
}
// The input buffer
input_buffer = stm->input_linear_buffer->data();
// Number of input frames in the buffer
input_frames = stm->input_linear_buffer->length() / stm->input_desc.mChannelsPerFrame;
}
/* Call user callback through resampler. */
outframes = cubeb_resampler_fill(stm->resampler,
input_buffer,
input_buffer ? &input_frames : NULL,
output_buffer,
output_frames);
if (input_buffer) {
stm->input_linear_buffer->pop(nullptr, input_frames * stm->input_desc.mChannelsPerFrame);
}
if (outframes < 0) {
stm->shutdown = true;
return noErr;
}
size_t outbpf = stm->output_desc.mBytesPerFrame;
stm->draining = outframes < output_frames;
stm->frames_played = stm->frames_queued;
stm->frames_queued += outframes;
AudioFormatFlags outaff = stm->output_desc.mFormatFlags;
float panning = (stm->output_desc.mChannelsPerFrame == 2) ?
stm->panning.load(std::memory_order_relaxed) : 0.0f;
/* Post process output samples. */
if (stm->draining) {
/* Clear missing frames (silence) */
memset((uint8_t*)output_buffer + outframes * outbpf, 0, (output_frames - outframes) * outbpf);
}
/* Pan stereo. */
if (panning != 0.0f) {
if (outaff & kAudioFormatFlagIsFloat) {
cubeb_pan_stereo_buffer_float((float*)output_buffer, outframes, panning);
} else if (outaff & kAudioFormatFlagIsSignedInteger) {
cubeb_pan_stereo_buffer_int((short*)output_buffer, outframes, panning);
}
}
return noErr;
}
extern "C" {
int
audiounit_init(cubeb ** context, char const * /* context_name */)
{
cubeb * ctx;
*context = NULL;
ctx = (cubeb *)calloc(1, sizeof(cubeb));
assert(ctx);
// Placement new to call the ctors of cubeb members.
new (ctx) cubeb();
ctx->ops = &audiounit_ops;
ctx->active_streams = 0;
ctx->limit_streams = kCFCoreFoundationVersionNumber < kCFCoreFoundationVersionNumber10_7;
#if !TARGET_OS_IPHONE
cubeb_set_coreaudio_notification_runloop();
#endif
*context = ctx;
return CUBEB_OK;
}
}
static char const *
audiounit_get_backend_id(cubeb * /* ctx */)
{
return "audiounit";
}
#if !TARGET_OS_IPHONE
static int
audiounit_get_output_device_id(AudioDeviceID * device_id)
{
UInt32 size;
OSStatus r;
AudioObjectPropertyAddress output_device_address = {
kAudioHardwarePropertyDefaultOutputDevice,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
size = sizeof(*device_id);
r = AudioObjectGetPropertyData(kAudioObjectSystemObject,
&output_device_address,
0,
NULL,
&size,
device_id);
if (r != noErr) {
PRINT_ERROR_CODE("output_device_id", r);
return CUBEB_ERROR;
}
return CUBEB_OK;
}
static int
audiounit_get_input_device_id(AudioDeviceID * device_id)
{
UInt32 size;
OSStatus r;
AudioObjectPropertyAddress input_device_address = {
kAudioHardwarePropertyDefaultInputDevice,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
size = sizeof(*device_id);
r = AudioObjectGetPropertyData(kAudioObjectSystemObject,
&input_device_address,
0,
NULL,
&size,
device_id);
if (r != noErr) {
return CUBEB_ERROR;
}
return CUBEB_OK;
}
static int audiounit_stream_get_volume(cubeb_stream * stm, float * volume);
static int audiounit_stream_set_volume(cubeb_stream * stm, float volume);
static int audiounit_uninstall_device_changed_callback(cubeb_stream * stm);
static int
audiounit_reinit_stream(cubeb_stream * stm)
{
auto_lock context_lock(stm->context->mutex);
if (!stm->shutdown) {
audiounit_stream_stop_internal(stm);
}
int r = audiounit_uninstall_device_changed_callback(stm);
if (r != CUBEB_OK) {
LOG("(%p) Could not uninstall the device changed callback", stm);
}
{
auto_lock lock(stm->mutex);
float volume = 0.0;
int vol_rv = audiounit_stream_get_volume(stm, &volume);
audiounit_close_stream(stm);
if (audiounit_setup_stream(stm) != CUBEB_OK) {
LOG("(%p) Stream reinit failed.", stm);
return CUBEB_ERROR;
}
if (vol_rv == CUBEB_OK) {
audiounit_stream_set_volume(stm, volume);
}
// Reset input frames to force new stream pre-buffer
// silence if needed, check `is_extra_input_needed()`
stm->frames_read = 0;
// If the stream was running, start it again.
if (!stm->shutdown) {
audiounit_stream_start_internal(stm);
}
}
return CUBEB_OK;
}
static OSStatus
audiounit_property_listener_callback(AudioObjectID /* id */, UInt32 address_count,
const AudioObjectPropertyAddress * addresses,
void * user)
{
cubeb_stream * stm = (cubeb_stream*) user;
stm->switching_device = true;
LOG("(%p) Audio device changed, %d events.", stm, address_count);
for (UInt32 i = 0; i < address_count; i++) {
switch(addresses[i].mSelector) {
case kAudioHardwarePropertyDefaultOutputDevice: {
LOG("Event[%d] - mSelector == kAudioHardwarePropertyDefaultOutputDevice", i);
// Allow restart to choose the new default
stm->output_device = nullptr;
}
break;
case kAudioHardwarePropertyDefaultInputDevice: {
LOG("Event[%d] - mSelector == kAudioHardwarePropertyDefaultInputDevice", i);
// Allow restart to choose the new default
stm->input_device = nullptr;
}
break;
case kAudioDevicePropertyDeviceIsAlive: {
LOG("Event[%d] - mSelector == kAudioDevicePropertyDeviceIsAlive", i);
// If this is the default input device ignore the event,
// kAudioHardwarePropertyDefaultInputDevice will take care of the switch
if (stm->is_default_input) {
LOG("It's the default input device, ignore the event");
return noErr;
}
// Allow restart to choose the new default. Event register only for input.
stm->input_device = nullptr;
}
break;
case kAudioDevicePropertyDataSource: {
LOG("Event[%d] - mSelector == kAudioHardwarePropertyDataSource", i);
return noErr;
}
}
}
for (UInt32 i = 0; i < address_count; i++) {
switch(addresses[i].mSelector) {
case kAudioHardwarePropertyDefaultOutputDevice:
case kAudioHardwarePropertyDefaultInputDevice:
case kAudioDevicePropertyDeviceIsAlive:
/* fall through */
case kAudioDevicePropertyDataSource: {
auto_lock lock(stm->mutex);
if (stm->device_changed_callback) {
stm->device_changed_callback(stm->user_ptr);
}
break;
}
}
}
// Use a new thread, through the queue, to avoid deadlock when calling
// Get/SetProperties method from inside notify callback
dispatch_async(stm->context->serial_queue, ^() {
if (audiounit_reinit_stream(stm) != CUBEB_OK) {
stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STOPPED);
LOG("(%p) Could not reopen the stream after switching.", stm);
}
stm->switching_device = false;
});
return noErr;
}
OSStatus
audiounit_add_listener(cubeb_stream * stm, AudioDeviceID id, AudioObjectPropertySelector selector,
AudioObjectPropertyScope scope, AudioObjectPropertyListenerProc listener)
{
AudioObjectPropertyAddress address = {
selector,
scope,
kAudioObjectPropertyElementMaster
};
return AudioObjectAddPropertyListener(id, &address, listener, stm);
}
OSStatus
audiounit_remove_listener(cubeb_stream * stm, AudioDeviceID id,
AudioObjectPropertySelector selector,
AudioObjectPropertyScope scope,
AudioObjectPropertyListenerProc listener)
{
AudioObjectPropertyAddress address = {
selector,
scope,
kAudioObjectPropertyElementMaster
};
return AudioObjectRemovePropertyListener(id, &address, listener, stm);
}
static AudioObjectID audiounit_get_default_device_id(cubeb_device_type type);
static int
audiounit_install_device_changed_callback(cubeb_stream * stm)
{
OSStatus r;
if (stm->output_unit) {
/* This event will notify us when the data source on the same device changes,
* for example when the user plugs in a normal (non-usb) headset in the
* headphone jack. */
AudioDeviceID output_dev_id;
r = audiounit_get_output_device_id(&output_dev_id);
if (r != noErr) {
return CUBEB_ERROR;
}
r = audiounit_add_listener(stm, output_dev_id, kAudioDevicePropertyDataSource,
kAudioDevicePropertyScopeOutput, &audiounit_property_listener_callback);
if (r != noErr) {
PRINT_ERROR_CODE("AudioObjectAddPropertyListener/output/kAudioDevicePropertyDataSource", r);
return CUBEB_ERROR;
}
}
if (stm->input_unit) {
/* This event will notify us when the data source on the input device changes. */
AudioDeviceID input_dev_id;
r = audiounit_get_input_device_id(&input_dev_id);
if (r != noErr) {
return CUBEB_ERROR;
}
r = audiounit_add_listener(stm, input_dev_id, kAudioDevicePropertyDataSource,
kAudioDevicePropertyScopeInput, &audiounit_property_listener_callback);
if (r != noErr) {
PRINT_ERROR_CODE("AudioObjectAddPropertyListener/input/kAudioDevicePropertyDataSource", r);
return CUBEB_ERROR;
}
/* Event to notify when the input is going away. */
AudioDeviceID dev = stm->input_device ? reinterpret_cast<intptr_t>(stm->input_device) :
audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_INPUT);
r = audiounit_add_listener(stm, dev, kAudioDevicePropertyDeviceIsAlive,
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
if (r != noErr) {
PRINT_ERROR_CODE("AudioObjectAddPropertyListener/input/kAudioDevicePropertyDeviceIsAlive", r);
return CUBEB_ERROR;
}
}
return CUBEB_OK;
}
static int
audiounit_install_system_changed_callback(cubeb_stream * stm)
{
OSStatus r;
if (stm->output_unit) {
/* This event will notify us when the default audio device changes,
* for example when the user plugs in a USB headset and the system chooses it
* automatically as the default, or when another device is chosen in the
* dropdown list. */
r = audiounit_add_listener(stm, kAudioObjectSystemObject, kAudioHardwarePropertyDefaultOutputDevice,
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
if (r != noErr) {
LOG("AudioObjectAddPropertyListener/output/kAudioHardwarePropertyDefaultOutputDevice rv=%d", r);
return CUBEB_ERROR;
}
}
if (stm->input_unit) {
/* This event will notify us when the default input device changes. */
r = audiounit_add_listener(stm, kAudioObjectSystemObject, kAudioHardwarePropertyDefaultInputDevice,
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
if (r != noErr) {
LOG("AudioObjectAddPropertyListener/input/kAudioHardwarePropertyDefaultInputDevice rv=%d", r);
return CUBEB_ERROR;
}
}
return CUBEB_OK;
}
static int
audiounit_uninstall_device_changed_callback(cubeb_stream * stm)
{
OSStatus r;
if (stm->output_unit) {
AudioDeviceID output_dev_id;
r = audiounit_get_output_device_id(&output_dev_id);
if (r != noErr) {
return CUBEB_ERROR;
}
r = audiounit_remove_listener(stm, output_dev_id, kAudioDevicePropertyDataSource,
kAudioDevicePropertyScopeOutput, &audiounit_property_listener_callback);
if (r != noErr) {
return CUBEB_ERROR;
}
}
if (stm->input_unit) {
AudioDeviceID input_dev_id;
r = audiounit_get_input_device_id(&input_dev_id);
if (r != noErr) {
return CUBEB_ERROR;
}
r = audiounit_remove_listener(stm, input_dev_id, kAudioDevicePropertyDataSource,
kAudioDevicePropertyScopeInput, &audiounit_property_listener_callback);
if (r != noErr) {
return CUBEB_ERROR;
}
}
return CUBEB_OK;
}
static int
audiounit_uninstall_system_changed_callback(cubeb_stream * stm)
{
OSStatus r;
if (stm->output_unit) {
r = audiounit_remove_listener(stm, kAudioObjectSystemObject, kAudioHardwarePropertyDefaultOutputDevice,
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
if (r != noErr) {
return CUBEB_ERROR;
}
}
if (stm->input_unit) {
r = audiounit_remove_listener(stm, kAudioObjectSystemObject, kAudioHardwarePropertyDefaultInputDevice,
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
if (r != noErr) {
return CUBEB_ERROR;
}
}
return CUBEB_OK;
}
/* Get the acceptable buffer size (in frames) that this device can work with. */
static int
audiounit_get_acceptable_latency_range(AudioValueRange * latency_range)
{
UInt32 size;
OSStatus r;
AudioDeviceID output_device_id;
AudioObjectPropertyAddress output_device_buffer_size_range = {
kAudioDevicePropertyBufferFrameSizeRange,
kAudioDevicePropertyScopeOutput,
kAudioObjectPropertyElementMaster
};
if (audiounit_get_output_device_id(&output_device_id) != CUBEB_OK) {
LOG("Could not get default output device id.");
return CUBEB_ERROR;
}
/* Get the buffer size range this device supports */
size = sizeof(*latency_range);
r = AudioObjectGetPropertyData(output_device_id,
&output_device_buffer_size_range,
0,
NULL,
&size,
latency_range);
if (r != noErr) {
PRINT_ERROR_CODE("AudioObjectGetPropertyData/buffer size range", r);
return CUBEB_ERROR;
}
return CUBEB_OK;
}
#endif /* !TARGET_OS_IPHONE */
static AudioObjectID
audiounit_get_default_device_id(cubeb_device_type type)
{
AudioObjectPropertyAddress adr = { 0, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
AudioDeviceID devid;
UInt32 size;
if (type == CUBEB_DEVICE_TYPE_OUTPUT) {
adr.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
} else if (type == CUBEB_DEVICE_TYPE_INPUT) {
adr.mSelector = kAudioHardwarePropertyDefaultInputDevice;
} else {
return kAudioObjectUnknown;
}
size = sizeof(AudioDeviceID);
if (AudioObjectGetPropertyData(kAudioObjectSystemObject, &adr, 0, NULL, &size, &devid) != noErr) {
return kAudioObjectUnknown;
}
return devid;
}
int
audiounit_get_max_channel_count(cubeb * ctx, uint32_t * max_channels)
{
#if TARGET_OS_IPHONE
//TODO: [[AVAudioSession sharedInstance] maximumOutputNumberOfChannels]
*max_channels = 2;
#else
UInt32 size;
OSStatus r;
AudioDeviceID output_device_id;
AudioStreamBasicDescription stream_format;
AudioObjectPropertyAddress stream_format_address = {
kAudioDevicePropertyStreamFormat,
kAudioDevicePropertyScopeOutput,
kAudioObjectPropertyElementMaster
};
assert(ctx && max_channels);
if (audiounit_get_output_device_id(&output_device_id) != CUBEB_OK) {
return CUBEB_ERROR;
}
size = sizeof(stream_format);
r = AudioObjectGetPropertyData(output_device_id,
&stream_format_address,
0,
NULL,
&size,
&stream_format);
if (r != noErr) {
PRINT_ERROR_CODE("AudioObjectPropertyAddress/StreamFormat", r);
return CUBEB_ERROR;
}
*max_channels = stream_format.mChannelsPerFrame;
#endif
return CUBEB_OK;
}
static int
audiounit_get_min_latency(cubeb * /* ctx */,
cubeb_stream_params /* params */,
uint32_t * latency_frames)
{
#if TARGET_OS_IPHONE
//TODO: [[AVAudioSession sharedInstance] inputLatency]
return CUBEB_ERROR_NOT_SUPPORTED;
#else
AudioValueRange latency_range;
if (audiounit_get_acceptable_latency_range(&latency_range) != CUBEB_OK) {
LOG("Could not get acceptable latency range.");
return CUBEB_ERROR;
}
*latency_frames = std::max<uint32_t>(latency_range.mMinimum,
SAFE_MIN_LATENCY_FRAMES);
#endif
return CUBEB_OK;
}
static int
audiounit_get_preferred_sample_rate(cubeb * /* ctx */, uint32_t * rate)
{
#if TARGET_OS_IPHONE
//TODO
return CUBEB_ERROR_NOT_SUPPORTED;
#else
UInt32 size;
OSStatus r;
Float64 fsamplerate;
AudioDeviceID output_device_id;
AudioObjectPropertyAddress samplerate_address = {
kAudioDevicePropertyNominalSampleRate,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
if (audiounit_get_output_device_id(&output_device_id) != CUBEB_OK) {
return CUBEB_ERROR;
}
size = sizeof(fsamplerate);
r = AudioObjectGetPropertyData(output_device_id,
&samplerate_address,
0,
NULL,
&size,
&fsamplerate);
if (r != noErr) {
return CUBEB_ERROR;
}
*rate = static_cast<uint32_t>(fsamplerate);
#endif
return CUBEB_OK;
}
static OSStatus audiounit_remove_device_listener(cubeb * context);
static void
audiounit_destroy(cubeb * ctx)
{
// Disabling this assert for bug 1083664 -- we seem to leak a stream
// assert(ctx->active_streams == 0);
{
auto_lock lock(ctx->mutex);
/* Unregister the callback if necessary. */
if(ctx->collection_changed_callback) {
audiounit_remove_device_listener(ctx);
}
}
ctx->~cubeb();
free(ctx);
}
static void audiounit_stream_destroy(cubeb_stream * stm);
static int
audio_stream_desc_init(AudioStreamBasicDescription * ss,
const cubeb_stream_params * stream_params)
{
switch (stream_params->format) {
case CUBEB_SAMPLE_S16LE:
ss->mBitsPerChannel = 16;
ss->mFormatFlags = kAudioFormatFlagIsSignedInteger;
break;
case CUBEB_SAMPLE_S16BE:
ss->mBitsPerChannel = 16;
ss->mFormatFlags = kAudioFormatFlagIsSignedInteger |
kAudioFormatFlagIsBigEndian;
break;
case CUBEB_SAMPLE_FLOAT32LE:
ss->mBitsPerChannel = 32;
ss->mFormatFlags = kAudioFormatFlagIsFloat;
break;
case CUBEB_SAMPLE_FLOAT32BE:
ss->mBitsPerChannel = 32;
ss->mFormatFlags = kAudioFormatFlagIsFloat |
kAudioFormatFlagIsBigEndian;
break;
default:
return CUBEB_ERROR_INVALID_FORMAT;
}
ss->mFormatID = kAudioFormatLinearPCM;
ss->mFormatFlags |= kLinearPCMFormatFlagIsPacked;
ss->mSampleRate = stream_params->rate;
ss->mChannelsPerFrame = stream_params->channels;
ss->mBytesPerFrame = (ss->mBitsPerChannel / 8) * ss->mChannelsPerFrame;
ss->mFramesPerPacket = 1;
ss->mBytesPerPacket = ss->mBytesPerFrame * ss->mFramesPerPacket;
ss->mReserved = 0;
return CUBEB_OK;
}
static int
audiounit_create_unit(AudioUnit * unit,
bool is_input,
const cubeb_stream_params * /* stream_params */,
cubeb_devid device)
{
AudioComponentDescription desc;
AudioComponent comp;
UInt32 enable;
AudioDeviceID devid;
OSStatus rv;
desc.componentType = kAudioUnitType_Output;
#if TARGET_OS_IPHONE
bool use_default_output = false;
desc.componentSubType = kAudioUnitSubType_RemoteIO;
#else
// Use the DefaultOutputUnit for output when no device is specified
// so we retain automatic output device switching when the default
// changes. Once we have complete support for device notifications
// and switching, we can use the AUHAL for everything.
bool use_default_output = device == NULL && !is_input;
if (use_default_output) {
desc.componentSubType = kAudioUnitSubType_DefaultOutput;
} else {
desc.componentSubType = kAudioUnitSubType_HALOutput;
}
#endif
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
comp = AudioComponentFindNext(NULL, &desc);
if (comp == NULL) {
LOG("Could not find matching audio hardware.");
return CUBEB_ERROR;
}
rv = AudioComponentInstanceNew(comp, unit);
if (rv != noErr) {
PRINT_ERROR_CODE("AudioComponentInstanceNew", rv);
return CUBEB_ERROR;
}
if (!use_default_output) {
enable = 1;
rv = AudioUnitSetProperty(*unit, kAudioOutputUnitProperty_EnableIO,
is_input ? kAudioUnitScope_Input : kAudioUnitScope_Output,
is_input ? AU_IN_BUS : AU_OUT_BUS, &enable, sizeof(UInt32));
if (rv != noErr) {
PRINT_ERROR_CODE("AudioUnitSetProperty/kAudioOutputUnitProperty_EnableIO", rv);
return CUBEB_ERROR;
}
enable = 0;
rv = AudioUnitSetProperty(*unit, kAudioOutputUnitProperty_EnableIO,
is_input ? kAudioUnitScope_Output : kAudioUnitScope_Input,
is_input ? AU_OUT_BUS : AU_IN_BUS, &enable, sizeof(UInt32));
if (rv != noErr) {
PRINT_ERROR_CODE("AudioUnitSetProperty/kAudioOutputUnitProperty_EnableIO", rv);
return CUBEB_ERROR;
}
if (device == NULL) {
assert(is_input);
devid = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_INPUT);
} else {
devid = reinterpret_cast<intptr_t>(device);
}
rv = AudioUnitSetProperty(*unit, kAudioOutputUnitProperty_CurrentDevice,
kAudioUnitScope_Global,
is_input ? AU_IN_BUS : AU_OUT_BUS,
&devid, sizeof(AudioDeviceID));
if (rv != noErr) {
PRINT_ERROR_CODE("AudioUnitSetProperty/kAudioOutputUnitProperty_CurrentDevice", rv);
return CUBEB_ERROR;
}
}
return CUBEB_OK;
}
static int
audiounit_init_input_linear_buffer(cubeb_stream * stream, uint32_t capacity)
{
if (stream->input_desc.mFormatFlags & kAudioFormatFlagIsSignedInteger) {
stream->input_linear_buffer = new auto_array_wrapper(
new auto_array<short>(capacity *
stream->input_buffer_frames *
stream->input_desc.mChannelsPerFrame) );
} else {
stream->input_linear_buffer = new auto_array_wrapper(
new auto_array<float>(capacity *
stream->input_buffer_frames *
stream->input_desc.mChannelsPerFrame) );
}
if (!stream->input_linear_buffer) {
return CUBEB_ERROR;
}
assert(stream->input_linear_buffer->length() == 0);
// Pre-buffer silence if needed
if (capacity != 1) {
size_t silence_size = stream->input_buffer_frames *
stream->input_desc.mChannelsPerFrame;
stream->input_linear_buffer->push_silence(silence_size);
assert(stream->input_linear_buffer->length() == silence_size);
}
return CUBEB_OK;
}
static void
audiounit_destroy_input_linear_buffer(cubeb_stream * stream)
{
delete stream->input_linear_buffer;
}
static uint32_t
audiounit_clamp_latency(cubeb_stream * stm, uint32_t latency_frames)
{
// For the 1st stream set anything within safe min-max
assert(stm->context->active_streams > 0);
if (stm->context->active_streams == 1) {
return std::max(std::min<uint32_t>(latency_frames, SAFE_MAX_LATENCY_FRAMES),
SAFE_MIN_LATENCY_FRAMES);
}
// If more than one stream operates in parallel
// allow only lower values of latency
int r;
UInt32 output_buffer_size = 0;
UInt32 size = sizeof(output_buffer_size);
if (stm->output_unit) {
r = AudioUnitGetProperty(stm->output_unit,
kAudioDevicePropertyBufferFrameSize,
kAudioUnitScope_Output,
AU_OUT_BUS,
&output_buffer_size,
&size);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitGetProperty/output/kAudioDevicePropertyBufferFrameSize", r);
return 0;
}
output_buffer_size = std::max(std::min<uint32_t>(output_buffer_size, SAFE_MAX_LATENCY_FRAMES),
SAFE_MIN_LATENCY_FRAMES);
}
UInt32 input_buffer_size = 0;
if (stm->input_unit) {
r = AudioUnitGetProperty(stm->input_unit,
kAudioDevicePropertyBufferFrameSize,
kAudioUnitScope_Input,
AU_IN_BUS,
&input_buffer_size,
&size);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitGetProperty/input/kAudioDevicePropertyBufferFrameSize", r);
return 0;
}
input_buffer_size = std::max(std::min<uint32_t>(input_buffer_size, SAFE_MAX_LATENCY_FRAMES),
SAFE_MIN_LATENCY_FRAMES);
}
// Every following active streams can only set smaller latency
UInt32 upper_latency_limit = 0;
if (input_buffer_size != 0 && output_buffer_size != 0) {
upper_latency_limit = std::min<uint32_t>(input_buffer_size, output_buffer_size);
} else if (input_buffer_size != 0) {
upper_latency_limit = input_buffer_size;
} else if (output_buffer_size != 0) {
upper_latency_limit = output_buffer_size;
} else {
upper_latency_limit = SAFE_MAX_LATENCY_FRAMES;
}
return std::max(std::min<uint32_t>(latency_frames, upper_latency_limit),
SAFE_MIN_LATENCY_FRAMES);
}
/*
* Change buffer size is prone to deadlock thus we change it
* following the steps:
* - register a listener for the buffer size property
* - change the property
* - wait until the listener is executed
* - property has changed, remove the listener
* */
static void
buffer_size_changed_callback(void * inClientData,
AudioUnit inUnit,
AudioUnitPropertyID inPropertyID,
AudioUnitScope inScope,
AudioUnitElement inElement)
{
cubeb_stream * stm = (cubeb_stream *)inClientData;
AudioUnit au = inUnit;
AudioUnitScope au_scope = kAudioUnitScope_Input;
AudioUnitElement au_element = inElement;
const char * au_type = "output";
if (au == stm->input_unit) {
au_scope = kAudioUnitScope_Output;
au_type = "input";
}
switch (inPropertyID) {
case kAudioDevicePropertyBufferFrameSize: {
if (inScope != au_scope) {
break;
}
UInt32 new_buffer_size;
UInt32 outSize = sizeof(UInt32);
OSStatus r = AudioUnitGetProperty(au,
kAudioDevicePropertyBufferFrameSize,
au_scope,
au_element,
&new_buffer_size,
&outSize);
if (r != noErr) {
LOG("(%p) Event: kAudioDevicePropertyBufferFrameSize: Cannot get current buffer size", stm);
} else {
LOG("(%p) Event: kAudioDevicePropertyBufferFrameSize: New %s buffer size = %d for scope %d", stm,
au_type, new_buffer_size, inScope);
}
stm->buffer_size_change_state = true;
break;
}
}
}
enum set_buffer_size_side {
INPUT,
OUTPUT,
};
static int
audiounit_set_buffer_size(cubeb_stream * stm, uint32_t new_size_frames, set_buffer_size_side set_side)
{
AudioUnit au = stm->output_unit;
AudioUnitScope au_scope = kAudioUnitScope_Input;
AudioUnitElement au_element = AU_OUT_BUS;
const char * au_type = "output";
if (set_side == INPUT) {
au = stm->input_unit;
au_scope = kAudioUnitScope_Output;
au_element = AU_IN_BUS;
au_type = "input";
}
uint32_t buffer_frames = 0;
UInt32 size = sizeof(buffer_frames);
int r = AudioUnitGetProperty(au,
kAudioDevicePropertyBufferFrameSize,
au_scope,
au_element,
&buffer_frames,
&size);
if (r != noErr) {
if (set_side == INPUT) {
PRINT_ERROR_CODE("AudioUnitGetProperty/input/kAudioDevicePropertyBufferFrameSize", r);
} else {
PRINT_ERROR_CODE("AudioUnitGetProperty/output/kAudioDevicePropertyBufferFrameSize", r);
}
return CUBEB_ERROR;
}
if (new_size_frames == buffer_frames) {
LOG("(%p) No need to update %s buffer size already %u frames", stm, au_type, buffer_frames);
return CUBEB_OK;
}
r = AudioUnitAddPropertyListener(au,
kAudioDevicePropertyBufferFrameSize,
buffer_size_changed_callback,
stm);
if (r != noErr) {
if (set_side == INPUT) {
PRINT_ERROR_CODE("AudioUnitAddPropertyListener/input/kAudioDevicePropertyBufferFrameSize", r);
} else {
PRINT_ERROR_CODE("AudioUnitAddPropertyListener/output/kAudioDevicePropertyBufferFrameSize", r);
}
return CUBEB_ERROR;
}
stm->buffer_size_change_state = false;
r = AudioUnitSetProperty(au,
kAudioDevicePropertyBufferFrameSize,
au_scope,
au_element,
&new_size_frames,
sizeof(new_size_frames));
if (r != noErr) {
if (set_side == INPUT) {
PRINT_ERROR_CODE("AudioUnitSetProperty/input/kAudioDevicePropertyBufferFrameSize", r);
} else {
PRINT_ERROR_CODE("AudioUnitSetProperty/output/kAudioDevicePropertyBufferFrameSize", r);
}
r = AudioUnitRemovePropertyListenerWithUserData(au,
kAudioDevicePropertyBufferFrameSize,
buffer_size_changed_callback,
stm);
if (r != noErr) {
if (set_side == INPUT) {
PRINT_ERROR_CODE("AudioUnitAddPropertyListener/input/kAudioDevicePropertyBufferFrameSize", r);
} else {
PRINT_ERROR_CODE("AudioUnitAddPropertyListener/output/kAudioDevicePropertyBufferFrameSize", r);
}
}
return CUBEB_ERROR;
}
int count = 0;
while (!stm->buffer_size_change_state && count++ < 30) {
struct timespec req, rem;
req.tv_sec = 0;
req.tv_nsec = 100000000L; // 0.1 sec
if (nanosleep(&req , &rem) < 0 ) {
LOG("(%p) Warning: nanosleep call failed or interrupted. Remaining time %ld nano secs \n", stm, rem.tv_nsec);
}
LOG("(%p) audiounit_set_buffer_size : wait count = %d", stm, count);
}
r = AudioUnitRemovePropertyListenerWithUserData(au,
kAudioDevicePropertyBufferFrameSize,
buffer_size_changed_callback,
stm);
if (r != noErr) {
if (set_side == INPUT) {
PRINT_ERROR_CODE("AudioUnitAddPropertyListener/input/kAudioDevicePropertyBufferFrameSize", r);
} else {
PRINT_ERROR_CODE("AudioUnitAddPropertyListener/output/kAudioDevicePropertyBufferFrameSize", r);
}
return CUBEB_ERROR;
}
if (!stm->buffer_size_change_state && count >= 30) {
LOG("(%p) Error, did not get buffer size change callback ...", stm);
return CUBEB_ERROR;
}
LOG("(%p) %s buffer size changed to %u frames.", stm, au_type, new_size_frames);
return CUBEB_OK;
}
static int
audiounit_configure_input(cubeb_stream * stm)
{
int r = 0;
UInt32 size;
AURenderCallbackStruct aurcbs_in;
LOG("(%p) Opening input side: rate %u, channels %u, format %d, latency in frames %u.",
stm, stm->input_stream_params.rate, stm->input_stream_params.channels,
stm->input_stream_params.format, stm->latency_frames);
/* Get input device sample rate. */
AudioStreamBasicDescription input_hw_desc;
size = sizeof(AudioStreamBasicDescription);
r = AudioUnitGetProperty(stm->input_unit,
kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Input,
AU_IN_BUS,
&input_hw_desc,
&size);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitGetProperty/input/kAudioUnitProperty_StreamFormat", r);
return CUBEB_ERROR;
}
stm->input_hw_rate = input_hw_desc.mSampleRate;
LOG("(%p) Input device sampling rate: %.2f", stm, stm->input_hw_rate);
/* Set format description according to the input params. */
r = audio_stream_desc_init(&stm->input_desc, &stm->input_stream_params);
if (r != CUBEB_OK) {
LOG("(%p) Setting format description for input failed.", stm);
return r;
}
// Use latency to set buffer size
stm->input_buffer_frames = stm->latency_frames;
r = audiounit_set_buffer_size(stm, stm->input_buffer_frames, INPUT);
if (r != CUBEB_OK) {
LOG("(%p) Error in change input buffer size.", stm);
return CUBEB_ERROR;
}
AudioStreamBasicDescription src_desc = stm->input_desc;
/* Input AudioUnit must be configured with device's sample rate.
we will resample inside input callback. */
src_desc.mSampleRate = stm->input_hw_rate;
r = AudioUnitSetProperty(stm->input_unit,
kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Output,
AU_IN_BUS,
&src_desc,
sizeof(AudioStreamBasicDescription));
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitSetProperty/input/kAudioUnitProperty_StreamFormat", r);
return CUBEB_ERROR;
}
/* Frames per buffer in the input callback. */
r = AudioUnitSetProperty(stm->input_unit,
kAudioUnitProperty_MaximumFramesPerSlice,
kAudioUnitScope_Global,
AU_IN_BUS,
&stm->input_buffer_frames,
sizeof(UInt32));
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitSetProperty/input/kAudioUnitProperty_MaximumFramesPerSlice", r);
return CUBEB_ERROR;
}
// Input only capacity
unsigned int array_capacity = 1;
if (has_output(stm)) {
// Full-duplex increase capacity
array_capacity = 8;
}
if (audiounit_init_input_linear_buffer(stm, array_capacity) != CUBEB_OK) {
return CUBEB_ERROR;
}
assert(stm->input_unit != NULL);
aurcbs_in.inputProc = audiounit_input_callback;
aurcbs_in.inputProcRefCon = stm;
r = AudioUnitSetProperty(stm->input_unit,
kAudioOutputUnitProperty_SetInputCallback,
kAudioUnitScope_Global,
AU_OUT_BUS,
&aurcbs_in,
sizeof(aurcbs_in));
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitSetProperty/input/kAudioOutputUnitProperty_SetInputCallback", r);
return CUBEB_ERROR;
}
LOG("(%p) Input audiounit init successfully.", stm);
return CUBEB_OK;
}
static int
audiounit_configure_output(cubeb_stream * stm)
{
int r;
AURenderCallbackStruct aurcbs_out;
UInt32 size;
LOG("(%p) Opening output side: rate %u, channels %u, format %d, latency in frames %u.",
stm, stm->output_stream_params.rate, stm->output_stream_params.channels,
stm->output_stream_params.format, stm->latency_frames);
r = audio_stream_desc_init(&stm->output_desc, &stm->output_stream_params);
if (r != CUBEB_OK) {
LOG("(%p) Could not initialize the audio stream description.", stm);
return r;
}
/* Get output device sample rate. */
AudioStreamBasicDescription output_hw_desc;
size = sizeof(AudioStreamBasicDescription);
memset(&output_hw_desc, 0, size);
r = AudioUnitGetProperty(stm->output_unit,
kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Output,
AU_OUT_BUS,
&output_hw_desc,
&size);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitGetProperty/output/tkAudioUnitProperty_StreamFormat", r);
return CUBEB_ERROR;
}
stm->output_hw_rate = output_hw_desc.mSampleRate;
LOG("(%p) Output device sampling rate: %.2f", stm, output_hw_desc.mSampleRate);
r = AudioUnitSetProperty(stm->output_unit,
kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Input,
AU_OUT_BUS,
&stm->output_desc,
sizeof(AudioStreamBasicDescription));
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitSetProperty/output/kAudioUnitProperty_StreamFormat", r);
return CUBEB_ERROR;
}
r = audiounit_set_buffer_size(stm, stm->latency_frames, OUTPUT);
if (r != CUBEB_OK) {
LOG("(%p) Error in change output buffer size.", stm);
return CUBEB_ERROR;
}
/* Frames per buffer in the input callback. */
r = AudioUnitSetProperty(stm->output_unit,
kAudioUnitProperty_MaximumFramesPerSlice,
kAudioUnitScope_Global,
AU_OUT_BUS,
&stm->latency_frames,
sizeof(UInt32));
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitSetProperty/output/kAudioUnitProperty_MaximumFramesPerSlice", r);
return CUBEB_ERROR;
}
assert(stm->output_unit != NULL);
aurcbs_out.inputProc = audiounit_output_callback;
aurcbs_out.inputProcRefCon = stm;
r = AudioUnitSetProperty(stm->output_unit,
kAudioUnitProperty_SetRenderCallback,
kAudioUnitScope_Global,
AU_OUT_BUS,
&aurcbs_out,
sizeof(aurcbs_out));
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitSetProperty/output/kAudioUnitProperty_SetRenderCallback", r);
return CUBEB_ERROR;
}
LOG("(%p) Output audiounit init successfully.", stm);
return CUBEB_OK;
}
static int
audiounit_setup_stream(cubeb_stream * stm)
{
stm->mutex.assert_current_thread_owns();
int r = 0;
if (has_input(stm)) {
r = audiounit_create_unit(&stm->input_unit, true,
&stm->input_stream_params,
stm->input_device);
if (r != CUBEB_OK) {
LOG("(%p) AudioUnit creation for input failed.", stm);
return r;
}
}
if (has_output(stm)) {
r = audiounit_create_unit(&stm->output_unit, false,
&stm->output_stream_params,
stm->output_device);
if (r != CUBEB_OK) {
LOG("(%p) AudioUnit creation for output failed.", stm);
return r;
}
}
/* Latency cannot change if another stream is operating in parallel. In this case
* latecy is set to the other stream value. */
if (stm->context->active_streams > 1) {
LOG("(%p) More than one active stream, use global latency.", stm);
stm->latency_frames = stm->context->global_latency_frames;
} else {
/* Silently clamp the latency down to the platform default, because we
* synthetize the clock from the callbacks, and we want the clock to update
* often. */
stm->latency_frames = audiounit_clamp_latency(stm, stm->latency_frames);
assert(stm->latency_frames); // Ungly error check
audiounit_set_global_latency(stm, stm->latency_frames);
}
/* Setup Input Stream! */
if (has_input(stm)) {
r = audiounit_configure_input(stm);
if (r != CUBEB_OK) {
LOG("(%p) Configure audiounit input failed.", stm);
return r;
}
}
/* Setup Output Stream! */
if (has_output(stm)) {
r = audiounit_configure_output(stm);
if (r != CUBEB_OK) {
LOG("(%p) Configure audiounit output failed.", stm);
return r;
}
}
// Setting the latency doesn't work well for USB headsets (eg. plantronics).
// Keep the default latency for now.
#if 0
buffer_size = latency;
/* Get the range of latency this particular device can work with, and clamp
* the requested latency to this acceptable range. */
#if !TARGET_OS_IPHONE
if (audiounit_get_acceptable_latency_range(&latency_range) != CUBEB_OK) {
return CUBEB_ERROR;
}
if (buffer_size < (unsigned int) latency_range.mMinimum) {
buffer_size = (unsigned int) latency_range.mMinimum;
} else if (buffer_size > (unsigned int) latency_range.mMaximum) {
buffer_size = (unsigned int) latency_range.mMaximum;
}
/**
* Get the default buffer size. If our latency request is below the default,
* set it. Otherwise, use the default latency.
**/
size = sizeof(default_buffer_size);
if (AudioUnitGetProperty(stm->output_unit, kAudioDevicePropertyBufferFrameSize,
kAudioUnitScope_Output, 0, &default_buffer_size, &size) != 0) {
return CUBEB_ERROR;
}
if (buffer_size < default_buffer_size) {
/* Set the maximum number of frame that the render callback will ask for,
* effectively setting the latency of the stream. This is process-wide. */
if (AudioUnitSetProperty(stm->output_unit, kAudioDevicePropertyBufferFrameSize,
kAudioUnitScope_Output, 0, &buffer_size, sizeof(buffer_size)) != 0) {
return CUBEB_ERROR;
}
}
#else // TARGET_OS_IPHONE
//TODO: [[AVAudioSession sharedInstance] inputLatency]
// http://stackoverflow.com/questions/13157523/kaudiodevicepropertybufferframesize-replacement-for-ios
#endif
#endif
/* We use a resampler because input AudioUnit operates
* reliable only in the capture device sample rate.
* Resampler will convert it to the user sample rate
* and deliver it to the callback. */
uint32_t target_sample_rate;
if (has_input(stm)) {
target_sample_rate = stm->input_stream_params.rate;
} else {
assert(has_output(stm));
target_sample_rate = stm->output_stream_params.rate;
}
cubeb_stream_params input_unconverted_params;
if (has_input(stm)) {
input_unconverted_params = stm->input_stream_params;
/* Use the rate of the input device. */
input_unconverted_params.rate = stm->input_hw_rate;
}
/* Create resampler. Output params are unchanged
* because we do not need conversion on the output. */
stm->resampler = cubeb_resampler_create(stm,
has_input(stm) ? &input_unconverted_params : NULL,
has_output(stm) ? &stm->output_stream_params : NULL,
target_sample_rate,
stm->data_callback,
stm->user_ptr,
CUBEB_RESAMPLER_QUALITY_DESKTOP);
if (!stm->resampler) {
LOG("(%p) Could not create resampler.", stm);
return CUBEB_ERROR;
}
if (stm->input_unit != NULL) {
r = AudioUnitInitialize(stm->input_unit);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitInitialize/input", r);
return CUBEB_ERROR;
}
}
if (stm->output_unit != NULL) {
r = AudioUnitInitialize(stm->output_unit);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitInitialize/output", r);
return CUBEB_ERROR;
}
}
if (stm->input_unit && stm->output_unit) {
// According to the I/O hardware rate it is expected a specific pattern of callbacks
// for example is input is 44100 and output is 48000 we expected no more than 2
// out callback in a row.
stm->expected_output_callbacks_in_a_row = ceilf(stm->output_hw_rate / stm->input_hw_rate);
}
r = audiounit_install_device_changed_callback(stm);
if (r != CUBEB_OK) {
LOG("(%p) Could not install the device change callback.", stm);
return r;
}
return CUBEB_OK;
}
static int
audiounit_stream_init(cubeb * context,
cubeb_stream ** stream,
char const * /* stream_name */,
cubeb_devid input_device,
cubeb_stream_params * input_stream_params,
cubeb_devid output_device,
cubeb_stream_params * output_stream_params,
unsigned int latency_frames,
cubeb_data_callback data_callback,
cubeb_state_callback state_callback,
void * user_ptr)
{
cubeb_stream * stm;
int r;
assert(context);
*stream = NULL;
assert(latency_frames > 0);
if (context->limit_streams && context->active_streams >= CUBEB_STREAM_MAX) {
LOG("Reached the stream limit of %d", CUBEB_STREAM_MAX);
return CUBEB_ERROR;
}
stm = (cubeb_stream *) calloc(1, sizeof(cubeb_stream));
assert(stm);
// Placement new to call the ctors of cubeb_stream members.
new (stm) cubeb_stream();
/* These could be different in the future if we have both
* full-duplex stream and different devices for input vs output. */
stm->context = context;
stm->data_callback = data_callback;
stm->state_callback = state_callback;
stm->user_ptr = user_ptr;
stm->latency_frames = latency_frames;
stm->device_changed_callback = NULL;
if (input_stream_params) {
stm->input_stream_params = *input_stream_params;
stm->input_device = input_device;
stm->is_default_input = input_device == nullptr ||
(audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_INPUT) ==
reinterpret_cast<intptr_t>(input_device));
}
if (output_stream_params) {
stm->output_stream_params = *output_stream_params;
stm->output_device = output_device;
}
/* Init data members where necessary */
stm->hw_latency_frames = UINT64_MAX;
stm->switching_device = false;
auto_lock context_lock(context->mutex);
{
// It's not critical to lock here, because no other thread has been started
// yet, but it allows to assert that the lock has been taken in
// `audiounit_setup_stream`.
context->active_streams += 1;
auto_lock lock(stm->mutex);
r = audiounit_setup_stream(stm);
}
if (r != CUBEB_OK) {
LOG("(%p) Could not setup the audiounit stream.", stm);
audiounit_stream_destroy(stm);
return r;
}
r = audiounit_install_system_changed_callback(stm);
if (r != CUBEB_OK) {
LOG("(%p) Could not install the device change callback.", stm);
return r;
}
*stream = stm;
LOG("Cubeb stream (%p) init successful.", stm);
return CUBEB_OK;
}
static void
audiounit_close_stream(cubeb_stream *stm)
{
stm->mutex.assert_current_thread_owns();
if (stm->input_unit) {
AudioUnitUninitialize(stm->input_unit);
AudioComponentInstanceDispose(stm->input_unit);
}
audiounit_destroy_input_linear_buffer(stm);
if (stm->output_unit) {
AudioUnitUninitialize(stm->output_unit);
AudioComponentInstanceDispose(stm->output_unit);
}
cubeb_resampler_destroy(stm->resampler);
}
static void
audiounit_stream_destroy(cubeb_stream * stm)
{
stm->shutdown = true;
int r = audiounit_uninstall_system_changed_callback(stm);
if (r != CUBEB_OK) {
LOG("(%p) Could not uninstall the device changed callback", stm);
}
r = audiounit_uninstall_device_changed_callback(stm);
if (r != CUBEB_OK) {
LOG("(%p) Could not uninstall the device changed callback", stm);
}
auto_lock context_lock(stm->context->mutex);
audiounit_stream_stop_internal(stm);
// Execute close in serial queue to avoid collision
// with reinit when un/plug devices
dispatch_sync(stm->context->serial_queue, ^() {
auto_lock lock(stm->mutex);
audiounit_close_stream(stm);
});
assert(stm->context->active_streams >= 1);
stm->context->active_streams -= 1;
LOG("Cubeb stream (%p) destroyed successful.", stm);
stm->~cubeb_stream();
free(stm);
}
void
audiounit_stream_start_internal(cubeb_stream * stm)
{
OSStatus r;
if (stm->input_unit != NULL) {
r = AudioOutputUnitStart(stm->input_unit);
assert(r == 0);
}
if (stm->output_unit != NULL) {
r = AudioOutputUnitStart(stm->output_unit);
assert(r == 0);
}
}
static int
audiounit_stream_start(cubeb_stream * stm)
{
auto_lock context_lock(stm->context->mutex);
stm->shutdown = false;
stm->draining = false;
audiounit_stream_start_internal(stm);
stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STARTED);
LOG("Cubeb stream (%p) started successfully.", stm);
return CUBEB_OK;
}
void
audiounit_stream_stop_internal(cubeb_stream * stm)
{
OSStatus r;
if (stm->input_unit != NULL) {
r = AudioOutputUnitStop(stm->input_unit);
assert(r == 0);
}
if (stm->output_unit != NULL) {
r = AudioOutputUnitStop(stm->output_unit);
assert(r == 0);
}
}
static int
audiounit_stream_stop(cubeb_stream * stm)
{
auto_lock context_lock(stm->context->mutex);
stm->shutdown = true;
audiounit_stream_stop_internal(stm);
stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STOPPED);
LOG("Cubeb stream (%p) stopped successfully.", stm);
return CUBEB_OK;
}
static int
audiounit_stream_get_position(cubeb_stream * stm, uint64_t * position)
{
auto_lock lock(stm->mutex);
*position = stm->frames_played;
return CUBEB_OK;
}
int
audiounit_stream_get_latency(cubeb_stream * stm, uint32_t * latency)
{
#if TARGET_OS_IPHONE
//TODO
return CUBEB_ERROR_NOT_SUPPORTED;
#else
auto_lock lock(stm->mutex);
if (stm->hw_latency_frames == UINT64_MAX) {
UInt32 size;
uint32_t device_latency_frames, device_safety_offset;
double unit_latency_sec;
AudioDeviceID output_device_id;
OSStatus r;
AudioObjectPropertyAddress latency_address = {
kAudioDevicePropertyLatency,
kAudioDevicePropertyScopeOutput,
kAudioObjectPropertyElementMaster
};
AudioObjectPropertyAddress safety_offset_address = {
kAudioDevicePropertySafetyOffset,
kAudioDevicePropertyScopeOutput,
kAudioObjectPropertyElementMaster
};
r = audiounit_get_output_device_id(&output_device_id);
if (r != noErr) {
return CUBEB_ERROR;
}
size = sizeof(unit_latency_sec);
r = AudioUnitGetProperty(stm->output_unit,
kAudioUnitProperty_Latency,
kAudioUnitScope_Global,
0,
&unit_latency_sec,
&size);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitGetProperty/kAudioUnitProperty_Latency", r);
return CUBEB_ERROR;
}
size = sizeof(device_latency_frames);
r = AudioObjectGetPropertyData(output_device_id,
&latency_address,
0,
NULL,
&size,
&device_latency_frames);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitGetPropertyData/latency_frames", r);
return CUBEB_ERROR;
}
size = sizeof(device_safety_offset);
r = AudioObjectGetPropertyData(output_device_id,
&safety_offset_address,
0,
NULL,
&size,
&device_safety_offset);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitGetPropertyData/safety_offset", r);
return CUBEB_ERROR;
}
/* This part is fixed and depend on the stream parameter and the hardware. */
stm->hw_latency_frames =
static_cast<uint32_t>(unit_latency_sec * stm->output_desc.mSampleRate)
+ device_latency_frames
+ device_safety_offset;
}
*latency = stm->hw_latency_frames + stm->current_latency_frames;
return CUBEB_OK;
#endif
}
static int
audiounit_stream_get_volume(cubeb_stream * stm, float * volume)
{
assert(stm->output_unit);
OSStatus r = AudioUnitGetParameter(stm->output_unit,
kHALOutputParam_Volume,
kAudioUnitScope_Global,
0, volume);
if (r != noErr) {
LOG("AudioUnitGetParameter/kHALOutputParam_Volume rv=%d", r);
return CUBEB_ERROR;
}
return CUBEB_OK;
}
int audiounit_stream_set_volume(cubeb_stream * stm, float volume)
{
OSStatus r;
r = AudioUnitSetParameter(stm->output_unit,
kHALOutputParam_Volume,
kAudioUnitScope_Global,
0, volume, 0);
if (r != noErr) {
PRINT_ERROR_CODE("AudioUnitSetParameter/kHALOutputParam_Volume", r);
return CUBEB_ERROR;
}
return CUBEB_OK;
}
int audiounit_stream_set_panning(cubeb_stream * stm, float panning)
{
if (stm->output_desc.mChannelsPerFrame > 2) {
return CUBEB_ERROR_INVALID_PARAMETER;
}
stm->panning.store(panning, std::memory_order_relaxed);
return CUBEB_OK;
}
int audiounit_stream_get_current_device(cubeb_stream * stm,
cubeb_device ** const device)
{
#if TARGET_OS_IPHONE
//TODO
return CUBEB_ERROR_NOT_SUPPORTED;
#else
OSStatus r;
UInt32 size;
UInt32 data;
char strdata[4];
AudioDeviceID output_device_id;
AudioDeviceID input_device_id;
AudioObjectPropertyAddress datasource_address = {
kAudioDevicePropertyDataSource,
kAudioDevicePropertyScopeOutput,
kAudioObjectPropertyElementMaster
};
AudioObjectPropertyAddress datasource_address_input = {
kAudioDevicePropertyDataSource,
kAudioDevicePropertyScopeInput,
kAudioObjectPropertyElementMaster
};
*device = NULL;
if (audiounit_get_output_device_id(&output_device_id) != CUBEB_OK) {
return CUBEB_ERROR;
}
*device = new cubeb_device;
if (!*device) {
return CUBEB_ERROR;
}
PodZero(*device, 1);
size = sizeof(UInt32);
/* This fails with some USB headset, so simply return an empty string. */
r = AudioObjectGetPropertyData(output_device_id,
&datasource_address,
0, NULL, &size, &data);
if (r != noErr) {
size = 0;
data = 0;
}
(*device)->output_name = new char[size + 1];
if (!(*device)->output_name) {
return CUBEB_ERROR;
}
// Turn the four chars packed into a uint32 into a string
strdata[0] = (char)(data >> 24);
strdata[1] = (char)(data >> 16);
strdata[2] = (char)(data >> 8);
strdata[3] = (char)(data);
memcpy((*device)->output_name, strdata, size);
(*device)->output_name[size] = '\0';
if (audiounit_get_input_device_id(&input_device_id) != CUBEB_OK) {
return CUBEB_ERROR;
}
size = sizeof(UInt32);
r = AudioObjectGetPropertyData(input_device_id, &datasource_address_input, 0, NULL, &size, &data);
if (r != noErr) {
LOG("(%p) Error when getting device !", stm);
size = 0;
data = 0;
}
(*device)->input_name = new char[size + 1];
if (!(*device)->input_name) {
return CUBEB_ERROR;
}
// Turn the four chars packed into a uint32 into a string
strdata[0] = (char)(data >> 24);
strdata[1] = (char)(data >> 16);
strdata[2] = (char)(data >> 8);
strdata[3] = (char)(data);
memcpy((*device)->input_name, strdata, size);
(*device)->input_name[size] = '\0';
return CUBEB_OK;
#endif
}
int audiounit_stream_device_destroy(cubeb_stream * /* stream */,
cubeb_device * device)
{
delete [] device->output_name;
delete [] device->input_name;
delete device;
return CUBEB_OK;
}
int audiounit_stream_register_device_changed_callback(cubeb_stream * stream,
cubeb_device_changed_callback device_changed_callback)
{
/* Note: second register without unregister first causes 'nope' error.
* Current implementation requires unregister before register a new cb. */
assert(!stream->device_changed_callback);
auto_lock lock(stream->mutex);
stream->device_changed_callback = device_changed_callback;
return CUBEB_OK;
}
static OSStatus
audiounit_get_devices(AudioObjectID ** devices, uint32_t * count)
{
OSStatus ret;
UInt32 size = 0;
AudioObjectPropertyAddress adr = { kAudioHardwarePropertyDevices,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster };
ret = AudioObjectGetPropertyDataSize(kAudioObjectSystemObject, &adr, 0, NULL, &size);
if (ret != noErr) {
return ret;
}
*count = static_cast<uint32_t>(size / sizeof(AudioObjectID));
if (size >= sizeof(AudioObjectID)) {
if (*devices != NULL) {
delete [] (*devices);
}
*devices = new AudioObjectID[*count];
PodZero(*devices, *count);
ret = AudioObjectGetPropertyData(kAudioObjectSystemObject, &adr, 0, NULL, &size, (void *)*devices);
if (ret != noErr) {
delete [] (*devices);
*devices = NULL;
}
} else {
*devices = NULL;
ret = -1;
}
return ret;
}
static char *
audiounit_strref_to_cstr_utf8(CFStringRef strref)
{
CFIndex len, size;
char * ret;
if (strref == NULL) {
return NULL;
}
len = CFStringGetLength(strref);
size = CFStringGetMaximumSizeForEncoding(len, kCFStringEncodingUTF8);
ret = static_cast<char *>(malloc(size));
if (!CFStringGetCString(strref, ret, size, kCFStringEncodingUTF8)) {
free(ret);
ret = NULL;
}
return ret;
}
static uint32_t
audiounit_get_channel_count(AudioObjectID devid, AudioObjectPropertyScope scope)
{
AudioObjectPropertyAddress adr = { 0, scope, kAudioObjectPropertyElementMaster };
UInt32 size = 0;
uint32_t i, ret = 0;
adr.mSelector = kAudioDevicePropertyStreamConfiguration;
if (AudioObjectGetPropertyDataSize(devid, &adr, 0, NULL, &size) == noErr && size > 0) {
AudioBufferList * list = static_cast<AudioBufferList *>(alloca(size));
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, list) == noErr) {
for (i = 0; i < list->mNumberBuffers; i++)
ret += list->mBuffers[i].mNumberChannels;
}
}
return ret;
}
static void
audiounit_get_available_samplerate(AudioObjectID devid, AudioObjectPropertyScope scope,
uint32_t * min, uint32_t * max, uint32_t * def)
{
AudioObjectPropertyAddress adr = { 0, scope, kAudioObjectPropertyElementMaster };
adr.mSelector = kAudioDevicePropertyNominalSampleRate;
if (AudioObjectHasProperty(devid, &adr)) {
UInt32 size = sizeof(Float64);
Float64 fvalue = 0.0;
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &fvalue) == noErr) {
*def = fvalue;
}
}
adr.mSelector = kAudioDevicePropertyAvailableNominalSampleRates;
UInt32 size = 0;
AudioValueRange range;
if (AudioObjectHasProperty(devid, &adr) &&
AudioObjectGetPropertyDataSize(devid, &adr, 0, NULL, &size) == noErr) {
uint32_t i, count = size / sizeof(AudioValueRange);
AudioValueRange * ranges = new AudioValueRange[count];
range.mMinimum = 9999999999.0;
range.mMaximum = 0.0;
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, ranges) == noErr) {
for (i = 0; i < count; i++) {
if (ranges[i].mMaximum > range.mMaximum)
range.mMaximum = ranges[i].mMaximum;
if (ranges[i].mMinimum < range.mMinimum)
range.mMinimum = ranges[i].mMinimum;
}
}
delete [] ranges;
*max = static_cast<uint32_t>(range.mMaximum);
*min = static_cast<uint32_t>(range.mMinimum);
} else {
*min = *max = 0;
}
}
static UInt32
audiounit_get_device_presentation_latency(AudioObjectID devid, AudioObjectPropertyScope scope)
{
AudioObjectPropertyAddress adr = { 0, scope, kAudioObjectPropertyElementMaster };
UInt32 size, dev, stream = 0, offset;
AudioStreamID sid[1];
adr.mSelector = kAudioDevicePropertyLatency;
size = sizeof(UInt32);
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &dev) != noErr) {
dev = 0;
}
adr.mSelector = kAudioDevicePropertyStreams;
size = sizeof(sid);
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, sid) == noErr) {
adr.mSelector = kAudioStreamPropertyLatency;
size = sizeof(UInt32);
AudioObjectGetPropertyData(sid[0], &adr, 0, NULL, &size, &stream);
}
adr.mSelector = kAudioDevicePropertySafetyOffset;
size = sizeof(UInt32);
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &offset) != noErr) {
offset = 0;
}
return dev + stream + offset;
}
static cubeb_device_info *
audiounit_create_device_from_hwdev(AudioObjectID devid, cubeb_device_type type)
{
AudioObjectPropertyAddress adr = { 0, 0, kAudioObjectPropertyElementMaster };
UInt32 size, ch, latency;
cubeb_device_info * ret;
CFStringRef str = NULL;
AudioValueRange range;
if (type == CUBEB_DEVICE_TYPE_OUTPUT) {
adr.mScope = kAudioDevicePropertyScopeOutput;
} else if (type == CUBEB_DEVICE_TYPE_INPUT) {
adr.mScope = kAudioDevicePropertyScopeInput;
} else {
return NULL;
}
ch = audiounit_get_channel_count(devid, adr.mScope);
if (ch == 0) {
return NULL;
}
ret = new cubeb_device_info;
PodZero(ret, 1);
size = sizeof(CFStringRef);
adr.mSelector = kAudioDevicePropertyDeviceUID;
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &str) == noErr && str != NULL) {
ret->device_id = audiounit_strref_to_cstr_utf8(str);
ret->devid = (cubeb_devid)(size_t)devid;
ret->group_id = strdup(ret->device_id);
CFRelease(str);
}
size = sizeof(CFStringRef);
adr.mSelector = kAudioObjectPropertyName;
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &str) == noErr && str != NULL) {
UInt32 ds;
size = sizeof(UInt32);
adr.mSelector = kAudioDevicePropertyDataSource;
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &ds) == noErr) {
CFStringRef dsname;
AudioValueTranslation trl = { &ds, sizeof(ds), &dsname, sizeof(dsname) };
adr.mSelector = kAudioDevicePropertyDataSourceNameForIDCFString;
size = sizeof(AudioValueTranslation);
// If there is a datasource for this device, use it instead of the device
// name.
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &trl) == noErr) {
CFRelease(str);
str = dsname;
}
}
ret->friendly_name = audiounit_strref_to_cstr_utf8(str);
CFRelease(str);
}
size = sizeof(CFStringRef);
adr.mSelector = kAudioObjectPropertyManufacturer;
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &str) == noErr && str != NULL) {
ret->vendor_name = audiounit_strref_to_cstr_utf8(str);
CFRelease(str);
}
ret->type = type;
ret->state = CUBEB_DEVICE_STATE_ENABLED;
ret->preferred = (devid == audiounit_get_default_device_id(type)) ?
CUBEB_DEVICE_PREF_ALL : CUBEB_DEVICE_PREF_NONE;
ret->max_channels = ch;
ret->format = (cubeb_device_fmt)CUBEB_DEVICE_FMT_ALL; /* CoreAudio supports All! */
/* kAudioFormatFlagsAudioUnitCanonical is deprecated, prefer floating point */
ret->default_format = CUBEB_DEVICE_FMT_F32NE;
audiounit_get_available_samplerate(devid, adr.mScope,
&ret->min_rate, &ret->max_rate, &ret->default_rate);
latency = audiounit_get_device_presentation_latency(devid, adr.mScope);
adr.mSelector = kAudioDevicePropertyBufferFrameSizeRange;
size = sizeof(AudioValueRange);
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &range) == noErr) {
ret->latency_lo = latency + range.mMinimum;
ret->latency_hi = latency + range.mMaximum;
} else {
ret->latency_lo = 10 * ret->default_rate / 1000; /* Default to 10ms */
ret->latency_hi = 100 * ret->default_rate / 1000; /* Default to 100ms */
}
return ret;
}
static int
audiounit_enumerate_devices(cubeb * /* context */, cubeb_device_type type,
cubeb_device_collection ** collection)
{
AudioObjectID * hwdevs = NULL;
uint32_t i, hwdevcount = 0;
OSStatus err;
if ((err = audiounit_get_devices(&hwdevs, &hwdevcount)) != noErr) {
return CUBEB_ERROR;
}
*collection = static_cast<cubeb_device_collection *>(malloc(sizeof(cubeb_device_collection) +
sizeof(cubeb_device_info*) * (hwdevcount > 0 ? hwdevcount - 1 : 0)));
(*collection)->count = 0;
if (hwdevcount > 0) {
cubeb_device_info * cur;
if (type & CUBEB_DEVICE_TYPE_OUTPUT) {
for (i = 0; i < hwdevcount; i++) {
if ((cur = audiounit_create_device_from_hwdev(hwdevs[i], CUBEB_DEVICE_TYPE_OUTPUT)) != NULL)
(*collection)->device[(*collection)->count++] = cur;
}
}
if (type & CUBEB_DEVICE_TYPE_INPUT) {
for (i = 0; i < hwdevcount; i++) {
if ((cur = audiounit_create_device_from_hwdev(hwdevs[i], CUBEB_DEVICE_TYPE_INPUT)) != NULL)
(*collection)->device[(*collection)->count++] = cur;
}
}
}
delete [] hwdevs;
return CUBEB_OK;
}
/* qsort compare method. */
int compare_devid(const void * a, const void * b)
{
return (*(AudioObjectID*)a - *(AudioObjectID*)b);
}
static uint32_t
audiounit_get_devices_of_type(cubeb_device_type devtype, AudioObjectID ** devid_array)
{
assert(devid_array == NULL || *devid_array == NULL);
AudioObjectPropertyAddress adr = { kAudioHardwarePropertyDevices,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster };
UInt32 size = 0;
OSStatus ret = AudioObjectGetPropertyDataSize(kAudioObjectSystemObject, &adr, 0, NULL, &size);
if (ret != noErr) {
return 0;
}
/* Total number of input and output devices. */
uint32_t count = (uint32_t)(size / sizeof(AudioObjectID));
AudioObjectID devices[count];
ret = AudioObjectGetPropertyData(kAudioObjectSystemObject, &adr, 0, NULL, &size, &devices);
if (ret != noErr) {
return 0;
}
/* Expected sorted but did not find anything in the docs. */
qsort(devices, count, sizeof(AudioObjectID), compare_devid);
if (devtype == (CUBEB_DEVICE_TYPE_INPUT | CUBEB_DEVICE_TYPE_OUTPUT)) {
if (devid_array) {
*devid_array = new AudioObjectID[count];
assert(*devid_array);
memcpy(*devid_array, &devices, count * sizeof(AudioObjectID));
}
return count;
}
AudioObjectPropertyScope scope = (devtype == CUBEB_DEVICE_TYPE_INPUT) ?
kAudioDevicePropertyScopeInput :
kAudioDevicePropertyScopeOutput;
uint32_t dev_count = 0;
AudioObjectID devices_in_scope[count];
for(uint32_t i = 0; i < count; ++i) {
/* For device in the given scope channel must be > 0. */
if (audiounit_get_channel_count(devices[i], scope) > 0) {
devices_in_scope[dev_count] = devices[i];
++dev_count;
}
}
if (devid_array && dev_count > 0) {
*devid_array = new AudioObjectID[dev_count];
assert(*devid_array);
memcpy(*devid_array, &devices_in_scope, dev_count * sizeof(AudioObjectID));
}
return dev_count;
}
static uint32_t
audiounit_equal_arrays(AudioObjectID * left, AudioObjectID * right, uint32_t size)
{
/* Expected sorted arrays. */
for (uint32_t i = 0; i < size; ++i) {
if (left[i] != right[i]) {
return 0;
}
}
return 1;
}
static OSStatus
audiounit_collection_changed_callback(AudioObjectID /* inObjectID */,
UInt32 /* inNumberAddresses */,
const AudioObjectPropertyAddress * /* inAddresses */,
void * inClientData)
{
cubeb * context = static_cast<cubeb *>(inClientData);
auto_lock lock(context->mutex);
if (context->collection_changed_callback == NULL) {
/* Listener removed while waiting in mutex, abort. */
return noErr;
}
/* Differentiate input from output changes. */
if (context->collection_changed_devtype == CUBEB_DEVICE_TYPE_INPUT ||
context->collection_changed_devtype == CUBEB_DEVICE_TYPE_OUTPUT) {
AudioObjectID * devices = NULL;
uint32_t new_number_of_devices = audiounit_get_devices_of_type(context->collection_changed_devtype, &devices);
/* When count is the same examine the devid for the case of coalescing. */
if (context->devtype_device_count == new_number_of_devices &&
audiounit_equal_arrays(devices, context->devtype_device_array, new_number_of_devices)) {
/* Device changed for the other scope, ignore. */
delete [] devices;
return noErr;
}
/* Device on desired scope changed, reset counter and array. */
context->devtype_device_count = new_number_of_devices;
/* Free the old array before replace. */
delete [] context->devtype_device_array;
context->devtype_device_array = devices;
}
context->collection_changed_callback(context, context->collection_changed_user_ptr);
return noErr;
}
static OSStatus
audiounit_add_device_listener(cubeb * context,
cubeb_device_type devtype,
cubeb_device_collection_changed_callback collection_changed_callback,
void * user_ptr)
{
/* Note: second register without unregister first causes 'nope' error.
* Current implementation requires unregister before register a new cb. */
assert(context->collection_changed_callback == NULL);
AudioObjectPropertyAddress devAddr;
devAddr.mSelector = kAudioHardwarePropertyDevices;
devAddr.mScope = kAudioObjectPropertyScopeGlobal;
devAddr.mElement = kAudioObjectPropertyElementMaster;
OSStatus ret = AudioObjectAddPropertyListener(kAudioObjectSystemObject,
&devAddr,
audiounit_collection_changed_callback,
context);
if (ret == noErr) {
/* Expected zero after unregister. */
assert(context->devtype_device_count == 0);
assert(context->devtype_device_array == NULL);
/* Listener works for input and output.
* When requested one of them we need to differentiate. */
if (devtype == CUBEB_DEVICE_TYPE_INPUT ||
devtype == CUBEB_DEVICE_TYPE_OUTPUT) {
/* Used to differentiate input from output device changes. */
context->devtype_device_count = audiounit_get_devices_of_type(devtype, &context->devtype_device_array);
}
context->collection_changed_devtype = devtype;
context->collection_changed_callback = collection_changed_callback;
context->collection_changed_user_ptr = user_ptr;
}
return ret;
}
static OSStatus
audiounit_remove_device_listener(cubeb * context)
{
AudioObjectPropertyAddress devAddr;
devAddr.mSelector = kAudioHardwarePropertyDevices;
devAddr.mScope = kAudioObjectPropertyScopeGlobal;
devAddr.mElement = kAudioObjectPropertyElementMaster;
/* Note: unregister a non registered cb is not a problem, not checking. */
OSStatus ret = AudioObjectRemovePropertyListener(kAudioObjectSystemObject,
&devAddr,
audiounit_collection_changed_callback,
context);
if (ret == noErr) {
/* Reset all values. */
context->collection_changed_devtype = CUBEB_DEVICE_TYPE_UNKNOWN;
context->collection_changed_callback = NULL;
context->collection_changed_user_ptr = NULL;
context->devtype_device_count = 0;
if (context->devtype_device_array) {
delete [] context->devtype_device_array;
context->devtype_device_array = NULL;
}
}
return ret;
}
int audiounit_register_device_collection_changed(cubeb * context,
cubeb_device_type devtype,
cubeb_device_collection_changed_callback collection_changed_callback,
void * user_ptr)
{
OSStatus ret;
auto_lock lock(context->mutex);
if (collection_changed_callback) {
ret = audiounit_add_device_listener(context, devtype,
collection_changed_callback,
user_ptr);
} else {
ret = audiounit_remove_device_listener(context);
}
return (ret == noErr) ? CUBEB_OK : CUBEB_ERROR;
}
cubeb_ops const audiounit_ops = {
/*.init =*/ audiounit_init,
/*.get_backend_id =*/ audiounit_get_backend_id,
/*.get_max_channel_count =*/ audiounit_get_max_channel_count,
/*.get_min_latency =*/ audiounit_get_min_latency,
/*.get_preferred_sample_rate =*/ audiounit_get_preferred_sample_rate,
/*.enumerate_devices =*/ audiounit_enumerate_devices,
/*.destroy =*/ audiounit_destroy,
/*.stream_init =*/ audiounit_stream_init,
/*.stream_destroy =*/ audiounit_stream_destroy,
/*.stream_start =*/ audiounit_stream_start,
/*.stream_stop =*/ audiounit_stream_stop,
/*.stream_get_position =*/ audiounit_stream_get_position,
/*.stream_get_latency =*/ audiounit_stream_get_latency,
/*.stream_set_volume =*/ audiounit_stream_set_volume,
/*.stream_set_panning =*/ audiounit_stream_set_panning,
/*.stream_get_current_device =*/ audiounit_stream_get_current_device,
/*.stream_device_destroy =*/ audiounit_stream_device_destroy,
/*.stream_register_device_changed_callback =*/ audiounit_stream_register_device_changed_callback,
/*.register_device_collection_changed =*/ audiounit_register_device_collection_changed
};