Mypal/gfx/layers/composite/AsyncCompositionManager.cpp

1495 lines
62 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/AsyncCompositionManager.h"
#include <stdint.h> // for uint32_t
#include "apz/src/AsyncPanZoomController.h"
#include "FrameMetrics.h" // for FrameMetrics
#include "LayerManagerComposite.h" // for LayerManagerComposite, etc
#include "Layers.h" // for Layer, ContainerLayer, etc
#include "gfxPoint.h" // for gfxPoint, gfxSize
#include "gfxPrefs.h" // for gfxPrefs
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
#include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation
#include "mozilla/dom/KeyframeEffectReadOnly.h"
#include "mozilla/dom/AnimationEffectReadOnlyBinding.h" // for dom::FillMode
#include "mozilla/dom/KeyframeEffectBinding.h" // for dom::IterationComposite
#include "mozilla/gfx/BaseRect.h" // for BaseRect
#include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped
#include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped
#include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor
#include "mozilla/layers/APZUtils.h" // for CompleteAsyncTransform
#include "mozilla/layers/Compositor.h" // for Compositor
#include "mozilla/layers/CompositorBridgeParent.h" // for CompositorBridgeParent, etc
#include "mozilla/layers/CompositorThread.h"
#include "mozilla/layers/LayerAnimationUtils.h" // for TimingFunctionToComputedTimingFunction
#include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper
#include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc
#include "nsDebug.h" // for NS_ASSERTION, etc
#include "nsDeviceContext.h" // for nsDeviceContext
#include "nsDisplayList.h" // for nsDisplayTransform, etc
#include "nsMathUtils.h" // for NS_round
#include "nsPoint.h" // for nsPoint
#include "nsRect.h" // for mozilla::gfx::IntRect
#include "nsRegion.h" // for nsIntRegion
#include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
#include "UnitTransforms.h" // for TransformTo
#include "gfxPrefs.h"
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "mozilla/widget/AndroidCompositorWidget.h"
#endif
#include "GeckoProfiler.h"
#include "FrameUniformityData.h"
#include "TreeTraversal.h" // for ForEachNode, BreadthFirstSearch
#include "VsyncSource.h"
struct nsCSSValueSharedList;
namespace mozilla {
namespace layers {
using namespace mozilla::gfx;
static bool
IsSameDimension(dom::ScreenOrientationInternal o1, dom::ScreenOrientationInternal o2)
{
bool isO1portrait = (o1 == dom::eScreenOrientation_PortraitPrimary || o1 == dom::eScreenOrientation_PortraitSecondary);
bool isO2portrait = (o2 == dom::eScreenOrientation_PortraitPrimary || o2 == dom::eScreenOrientation_PortraitSecondary);
return !(isO1portrait ^ isO2portrait);
}
static bool
ContentMightReflowOnOrientationChange(const IntRect& rect)
{
return rect.width != rect.height;
}
AsyncCompositionManager::AsyncCompositionManager(LayerManagerComposite* aManager)
: mLayerManager(aManager)
, mIsFirstPaint(true)
, mLayersUpdated(false)
, mPaintSyncId(0)
, mReadyForCompose(true)
{
}
AsyncCompositionManager::~AsyncCompositionManager()
{
}
void
AsyncCompositionManager::ResolveRefLayers(CompositorBridgeParent* aCompositor,
bool* aHasRemoteContent,
bool* aResolvePlugins)
{
if (aHasRemoteContent) {
*aHasRemoteContent = false;
}
#if defined(XP_WIN) || defined(MOZ_WIDGET_GTK)
// If valid *aResolvePlugins indicates if we need to update plugin geometry
// when we walk the tree.
bool resolvePlugins = (aCompositor && aResolvePlugins && *aResolvePlugins);
#endif
if (!mLayerManager->GetRoot()) {
// Updated the return value since this result controls completing composition.
if (aResolvePlugins) {
*aResolvePlugins = false;
}
return;
}
mReadyForCompose = true;
bool hasRemoteContent = false;
bool didResolvePlugins = false;
ForEachNode<ForwardIterator>(
mLayerManager->GetRoot(),
[&](Layer* layer)
{
RefLayer* refLayer = layer->AsRefLayer();
if (!refLayer) {
return;
}
hasRemoteContent = true;
const CompositorBridgeParent::LayerTreeState* state =
CompositorBridgeParent::GetIndirectShadowTree(refLayer->GetReferentId());
if (!state) {
return;
}
Layer* referent = state->mRoot;
if (!referent) {
return;
}
if (!refLayer->GetLocalVisibleRegion().IsEmpty()) {
dom::ScreenOrientationInternal chromeOrientation =
mTargetConfig.orientation();
dom::ScreenOrientationInternal contentOrientation =
state->mTargetConfig.orientation();
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
ContentMightReflowOnOrientationChange(mTargetConfig.naturalBounds())) {
mReadyForCompose = false;
}
}
refLayer->ConnectReferentLayer(referent);
#if defined(XP_WIN) || defined(MOZ_WIDGET_GTK)
if (resolvePlugins) {
didResolvePlugins |=
aCompositor->UpdatePluginWindowState(refLayer->GetReferentId());
}
#endif
});
if (aHasRemoteContent) {
*aHasRemoteContent = hasRemoteContent;
}
if (aResolvePlugins) {
*aResolvePlugins = didResolvePlugins;
}
}
void
AsyncCompositionManager::DetachRefLayers()
{
if (!mLayerManager->GetRoot()) {
return;
}
mReadyForCompose = false;
ForEachNodePostOrder<ForwardIterator>(mLayerManager->GetRoot(),
[&](Layer* layer)
{
RefLayer* refLayer = layer->AsRefLayer();
if (!refLayer) {
return;
}
const CompositorBridgeParent::LayerTreeState* state =
CompositorBridgeParent::GetIndirectShadowTree(refLayer->GetReferentId());
if (!state) {
return;
}
Layer* referent = state->mRoot;
if (referent) {
refLayer->DetachReferentLayer(referent);
}
});
}
void
AsyncCompositionManager::ComputeRotation()
{
if (!mTargetConfig.naturalBounds().IsEmpty()) {
mWorldTransform =
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
mTargetConfig.rotation());
}
}
#ifdef DEBUG
static void
GetBaseTransform(Layer* aLayer, Matrix4x4* aTransform)
{
// Start with the animated transform if there is one
*aTransform =
(aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation()
? aLayer->GetLocalTransform()
: aLayer->GetTransform());
}
#endif
static void
TransformClipRect(Layer* aLayer,
const ParentLayerToParentLayerMatrix4x4& aTransform)
{
MOZ_ASSERT(aTransform.Is2D());
const Maybe<ParentLayerIntRect>& clipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
if (clipRect) {
ParentLayerIntRect transformed = TransformBy(aTransform, *clipRect);
aLayer->AsLayerComposite()->SetShadowClipRect(Some(transformed));
}
}
// Similar to TransformFixedClip(), but only transforms the fixed part of the
// clip.
static void
TransformFixedClip(Layer* aLayer,
const ParentLayerToParentLayerMatrix4x4& aTransform,
AsyncCompositionManager::ClipParts& aClipParts)
{
MOZ_ASSERT(aTransform.Is2D());
if (aClipParts.mFixedClip) {
*aClipParts.mFixedClip = TransformBy(aTransform, *aClipParts.mFixedClip);
aLayer->AsLayerComposite()->SetShadowClipRect(aClipParts.Intersect());
}
}
/**
* Set the given transform as the shadow transform on the layer, assuming
* that the given transform already has the pre- and post-scales applied.
* That is, this function cancels out the pre- and post-scales from aTransform
* before setting it as the shadow transform on the layer, so that when
* the layer's effective transform is computed, the pre- and post-scales will
* only be applied once.
*/
static void
SetShadowTransform(Layer* aLayer, LayerToParentLayerMatrix4x4 aTransform)
{
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
aTransform.PreScale(1.0f / c->GetPreXScale(),
1.0f / c->GetPreYScale(),
1);
}
aTransform.PostScale(1.0f / aLayer->GetPostXScale(),
1.0f / aLayer->GetPostYScale(),
1);
aLayer->AsLayerComposite()->SetShadowBaseTransform(aTransform.ToUnknownMatrix());
}
static void
TranslateShadowLayer(Layer* aLayer,
const ParentLayerPoint& aTranslation,
bool aAdjustClipRect,
AsyncCompositionManager::ClipPartsCache* aClipPartsCache)
{
// This layer might also be a scrollable layer and have an async transform.
// To make sure we don't clobber that, we start with the shadow transform.
// (i.e. GetLocalTransform() instead of GetTransform()).
// Note that the shadow transform is reset on every frame of composition so
// we don't have to worry about the adjustments compounding over successive
// frames.
LayerToParentLayerMatrix4x4 layerTransform = aLayer->GetLocalTransformTyped();
// Apply the translation to the layer transform.
layerTransform.PostTranslate(aTranslation);
SetShadowTransform(aLayer, layerTransform);
aLayer->AsLayerComposite()->SetShadowTransformSetByAnimation(false);
if (aAdjustClipRect) {
auto transform = ParentLayerToParentLayerMatrix4x4::Translation(aTranslation);
// If we're passed a clip parts cache, only transform the fixed part of
// the clip.
if (aClipPartsCache) {
auto iter = aClipPartsCache->find(aLayer);
MOZ_ASSERT(iter != aClipPartsCache->end());
TransformFixedClip(aLayer, transform, iter->second);
} else {
TransformClipRect(aLayer, transform);
}
// If a fixed- or sticky-position layer has a mask layer, that mask should
// move along with the layer, so apply the translation to the mask layer too.
if (Layer* maskLayer = aLayer->GetMaskLayer()) {
TranslateShadowLayer(maskLayer, aTranslation, false, aClipPartsCache);
}
}
}
#ifdef DEBUG
static void
AccumulateLayerTransforms(Layer* aLayer,
Layer* aAncestor,
Matrix4x4& aMatrix)
{
// Accumulate the transforms between this layer and the subtree root layer.
for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) {
Matrix4x4 transform;
GetBaseTransform(l, &transform);
aMatrix *= transform;
}
}
#endif
static LayerPoint
GetLayerFixedMarginsOffset(Layer* aLayer,
const ScreenMargin& aFixedLayerMargins)
{
// Work out the necessary translation, in root scrollable layer space.
// Because fixed layer margins are stored relative to the root scrollable
// layer, we can just take the difference between these values.
LayerPoint translation;
int32_t sides = aLayer->GetFixedPositionSides();
if ((sides & eSideBitsLeftRight) == eSideBitsLeftRight) {
translation.x += (aFixedLayerMargins.left - aFixedLayerMargins.right) / 2;
} else if (sides & eSideBitsRight) {
translation.x -= aFixedLayerMargins.right;
} else if (sides & eSideBitsLeft) {
translation.x += aFixedLayerMargins.left;
}
if ((sides & eSideBitsTopBottom) == eSideBitsTopBottom) {
translation.y += (aFixedLayerMargins.top - aFixedLayerMargins.bottom) / 2;
} else if (sides & eSideBitsBottom) {
translation.y -= aFixedLayerMargins.bottom;
} else if (sides & eSideBitsTop) {
translation.y += aFixedLayerMargins.top;
}
return translation;
}
static gfxFloat
IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax)
{
// Determine the amount of overlap between the 1D vector |aTranslation|
// and the interval [aMin, aMax].
if (aTranslation > 0) {
return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0));
} else {
return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0));
}
}
/**
* Finds the metrics on |aLayer| with scroll id |aScrollId|, and returns a
* LayerMetricsWrapper representing the (layer, metrics) pair, or the null
* LayerMetricsWrapper if no matching metrics could be found.
*/
static LayerMetricsWrapper
FindMetricsWithScrollId(Layer* aLayer, FrameMetrics::ViewID aScrollId)
{
for (uint64_t i = 0; i < aLayer->GetScrollMetadataCount(); ++i) {
if (aLayer->GetFrameMetrics(i).GetScrollId() == aScrollId) {
return LayerMetricsWrapper(aLayer, i);
}
}
return LayerMetricsWrapper();
}
/**
* Checks whether the (layer, metrics) pair (aTransformedLayer, aTransformedMetrics)
* is on the path from |aFixedLayer| to the metrics with scroll id
* |aFixedWithRespectTo|, inclusive.
*/
static bool
AsyncTransformShouldBeUnapplied(Layer* aFixedLayer,
FrameMetrics::ViewID aFixedWithRespectTo,
Layer* aTransformedLayer,
FrameMetrics::ViewID aTransformedMetrics)
{
LayerMetricsWrapper transformed = FindMetricsWithScrollId(aTransformedLayer, aTransformedMetrics);
if (!transformed.IsValid()) {
return false;
}
// It's important to start at the bottom, because the fixed layer itself
// could have the transformed metrics, and they can be at the bottom.
LayerMetricsWrapper current(aFixedLayer, LayerMetricsWrapper::StartAt::BOTTOM);
bool encounteredTransformedLayer = false;
// The transformed layer is on the path from |aFixedLayer| to the fixed-to
// layer if as we walk up the (layer, metrics) tree starting from
// |aFixedLayer|, we *first* encounter the transformed layer, and *then* (or
// at the same time) the fixed-to layer.
while (current) {
if (!encounteredTransformedLayer && current == transformed) {
encounteredTransformedLayer = true;
}
if (current.Metrics().GetScrollId() == aFixedWithRespectTo) {
return encounteredTransformedLayer;
}
current = current.GetParent();
// It's possible that we reach a layers id boundary before we reach an
// ancestor with the scroll id |aFixedWithRespectTo| (this could happen
// e.g. if the scroll frame with that scroll id uses containerless
// scrolling). In such a case, stop the walk, as a new layers id could
// have a different layer with scroll id |aFixedWithRespectTo| which we
// don't intend to match.
if (current && current.AsRefLayer() != nullptr) {
break;
}
}
return false;
}
// If |aLayer| is fixed or sticky, returns the scroll id of the scroll frame
// that it's fixed or sticky to. Otherwise, returns Nothing().
static Maybe<FrameMetrics::ViewID>
IsFixedOrSticky(Layer* aLayer)
{
bool isRootOfFixedSubtree = aLayer->GetIsFixedPosition() &&
!aLayer->GetParent()->GetIsFixedPosition();
if (isRootOfFixedSubtree) {
return Some(aLayer->GetFixedPositionScrollContainerId());
}
if (aLayer->GetIsStickyPosition()) {
return Some(aLayer->GetStickyScrollContainerId());
}
return Nothing();
}
void
AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aTransformedSubtreeRoot,
Layer* aStartTraversalAt,
FrameMetrics::ViewID aTransformScrollId,
const LayerToParentLayerMatrix4x4& aPreviousTransformForRoot,
const LayerToParentLayerMatrix4x4& aCurrentTransformForRoot,
const ScreenMargin& aFixedLayerMargins,
ClipPartsCache* aClipPartsCache)
{
// We're going to be inverting |aCurrentTransformForRoot|.
// If it's singular, there's nothing we can do.
if (aCurrentTransformForRoot.IsSingular()) {
return;
}
Layer* layer = aStartTraversalAt;
bool needsAsyncTransformUnapplied = false;
if (Maybe<FrameMetrics::ViewID> fixedTo = IsFixedOrSticky(layer)) {
needsAsyncTransformUnapplied = AsyncTransformShouldBeUnapplied(layer,
*fixedTo, aTransformedSubtreeRoot, aTransformScrollId);
}
// We want to process all the fixed and sticky descendants of
// aTransformedSubtreeRoot. Once we do encounter such a descendant, we don't
// need to recurse any deeper because the adjustment to the fixed or sticky
// layer will apply to its subtree.
if (!needsAsyncTransformUnapplied) {
for (Layer* child = layer->GetFirstChild(); child; child = child->GetNextSibling()) {
AlignFixedAndStickyLayers(aTransformedSubtreeRoot, child,
aTransformScrollId, aPreviousTransformForRoot,
aCurrentTransformForRoot, aFixedLayerMargins, aClipPartsCache);
}
return;
}
// Insert a translation so that the position of the anchor point is the same
// before and after the change to the transform of aTransformedSubtreeRoot.
// A transform creates a containing block for fixed-position descendants,
// so there shouldn't be a transform in between the fixed layer and
// the subtree root layer.
#ifdef DEBUG
Matrix4x4 ancestorTransform;
if (layer != aTransformedSubtreeRoot) {
AccumulateLayerTransforms(layer->GetParent(), aTransformedSubtreeRoot,
ancestorTransform);
}
ancestorTransform.NudgeToIntegersFixedEpsilon();
MOZ_ASSERT(ancestorTransform.IsIdentity());
#endif
// Since we create container layers for fixed layers, there shouldn't
// a local CSS or OMTA transform on the fixed layer, either (any local
// transform would go onto a descendant layer inside the container
// layer).
#ifdef DEBUG
Matrix4x4 localTransform;
GetBaseTransform(layer, &localTransform);
localTransform.NudgeToIntegersFixedEpsilon();
MOZ_ASSERT(localTransform.IsIdentity());
#endif
// Now work out the translation necessary to make sure the layer doesn't
// move given the new sub-tree root transform.
// Get the layer's fixed anchor point, in the layer's local coordinate space
// (before any transform is applied).
LayerPoint anchor = layer->GetFixedPositionAnchor();
// Offset the layer's anchor point to make sure fixed position content
// respects content document fixed position margins.
LayerPoint offsetAnchor = anchor + GetLayerFixedMarginsOffset(layer, aFixedLayerMargins);
// Additionally transform the anchor to compensate for the change
// from the old transform to the new transform. We do
// this by using the old transform to take the offset anchor back into
// subtree root space, and then the inverse of the new transform
// to bring it back to layer space.
ParentLayerPoint offsetAnchorInSubtreeRootSpace =
aPreviousTransformForRoot.TransformPoint(offsetAnchor);
LayerPoint transformedAnchor = aCurrentTransformForRoot.Inverse()
.TransformPoint(offsetAnchorInSubtreeRootSpace);
// We want to translate the layer by the difference between
// |transformedAnchor| and |anchor|.
LayerPoint translation = transformedAnchor - anchor;
// A fixed layer will "consume" (be unadjusted by) the entire translation
// calculated above. A sticky layer may consume all, part, or none of it,
// depending on where we are relative to its sticky scroll range.
// The remainder of the translation (the unconsumed portion) needs to
// be propagated to descendant fixed/sticky layers.
LayerPoint unconsumedTranslation;
if (layer->GetIsStickyPosition()) {
// For sticky positioned layers, the difference between the two rectangles
// defines a pair of translation intervals in each dimension through which
// the layer should not move relative to the scroll container. To
// accomplish this, we limit each dimension of the |translation| to that
// part of it which overlaps those intervals.
const LayerRect& stickyOuter = layer->GetStickyScrollRangeOuter();
const LayerRect& stickyInner = layer->GetStickyScrollRangeInner();
LayerPoint originalTranslation = translation;
translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) -
IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost());
translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) -
IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost());
unconsumedTranslation = translation - originalTranslation;
}
// Finally, apply the translation to the layer transform. Note that in cases
// where the async transform on |aTransformedSubtreeRoot| affects this layer's
// clip rect, we need to apply the same translation to said clip rect, so
// that the effective transform on the clip rect takes it back to where it was
// originally, had there been no async scroll.
TranslateShadowLayer(layer, ViewAs<ParentLayerPixel>(translation,
PixelCastJustification::NoTransformOnLayer), true, aClipPartsCache);
// Propragate the unconsumed portion of the translation to descendant
// fixed/sticky layers.
if (unconsumedTranslation != LayerPoint()) {
// Take the computations we performed to derive |translation| from
// |aCurrentTransformForRoot|, and perform them in reverse, keeping other
// quantities fixed, to come up with a new transform |newTransform| that
// would produce |unconsumedTranslation|.
LayerPoint newTransformedAnchor = unconsumedTranslation + anchor;
ParentLayerPoint newTransformedAnchorInSubtreeRootSpace =
aPreviousTransformForRoot.TransformPoint(newTransformedAnchor);
LayerToParentLayerMatrix4x4 newTransform = aPreviousTransformForRoot;
newTransform.PostTranslate(newTransformedAnchorInSubtreeRootSpace -
offsetAnchorInSubtreeRootSpace);
// Propagate this new transform to our descendants as the new value of
// |aCurrentTransformForRoot|. This allows them to consume the unconsumed
// translation.
for (Layer* child = layer->GetFirstChild(); child; child = child->GetNextSibling()) {
AlignFixedAndStickyLayers(aTransformedSubtreeRoot, child, aTransformScrollId,
aPreviousTransformForRoot, newTransform, aFixedLayerMargins, aClipPartsCache);
}
}
return;
}
static void
SampleValue(float aPortion, Animation& aAnimation,
const StyleAnimationValue& aStart, const StyleAnimationValue& aEnd,
const StyleAnimationValue& aLastValue, uint64_t aCurrentIteration,
Animatable* aValue, Layer* aLayer)
{
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
aStart.GetUnit() == StyleAnimationValue::eUnit_None ||
aEnd.GetUnit() == StyleAnimationValue::eUnit_None,
"Must have same unit");
StyleAnimationValue startValue = aStart;
StyleAnimationValue endValue = aEnd;
// Iteration composition for accumulate
if (static_cast<dom::IterationCompositeOperation>
(aAnimation.iterationComposite()) ==
dom::IterationCompositeOperation::Accumulate &&
aCurrentIteration > 0) {
// FIXME: Bug 1293492: Add a utility function to calculate both of
// below StyleAnimationValues.
DebugOnly<bool> accumulateResult =
StyleAnimationValue::Accumulate(aAnimation.property(),
startValue,
aLastValue,
aCurrentIteration);
MOZ_ASSERT(accumulateResult, "could not accumulate value");
accumulateResult =
StyleAnimationValue::Accumulate(aAnimation.property(),
endValue,
aLastValue,
aCurrentIteration);
MOZ_ASSERT(accumulateResult, "could not accumulate value");
}
StyleAnimationValue interpolatedValue;
// This should never fail because we only pass transform and opacity values
// to the compositor and they should never fail to interpolate.
DebugOnly<bool> uncomputeResult =
StyleAnimationValue::Interpolate(aAnimation.property(),
startValue, endValue,
aPortion, interpolatedValue);
MOZ_ASSERT(uncomputeResult, "could not uncompute value");
if (aAnimation.property() == eCSSProperty_opacity) {
*aValue = interpolatedValue.GetFloatValue();
return;
}
nsCSSValueSharedList* interpolatedList =
interpolatedValue.GetCSSValueSharedListValue();
TransformData& data = aAnimation.data().get_TransformData();
nsPoint origin = data.origin();
// we expect all our transform data to arrive in device pixels
Point3D transformOrigin = data.transformOrigin();
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
transformOrigin);
// If our parent layer is a perspective layer, then the offset into reference
// frame coordinates is already on that layer. If not, then we need to ask
// for it to be added here.
uint32_t flags = 0;
if (!aLayer->GetParent() || !aLayer->GetParent()->GetTransformIsPerspective()) {
flags = nsDisplayTransform::OFFSET_BY_ORIGIN;
}
Matrix4x4 transform =
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
data.appUnitsPerDevPixel(),
flags, &data.bounds());
InfallibleTArray<TransformFunction> functions;
functions.AppendElement(TransformMatrix(transform));
*aValue = functions;
}
static bool
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
{
bool activeAnimations = false;
ForEachNode<ForwardIterator>(
aLayer,
[&activeAnimations, &aPoint] (Layer* layer)
{
AnimationArray& animations = layer->GetAnimations();
InfallibleTArray<AnimData>& animationData = layer->GetAnimationData();
// Process in order, since later animations override earlier ones.
for (size_t i = 0, iEnd = animations.Length(); i < iEnd; ++i) {
Animation& animation = animations[i];
AnimData& animData = animationData[i];
activeAnimations = true;
MOZ_ASSERT(!animation.startTime().IsNull(),
"Failed to resolve start time of pending animations");
TimeDuration elapsedDuration =
(aPoint - animation.startTime()).MultDouble(animation.playbackRate());
TimingParams timing;
timing.mDuration.emplace(animation.duration());
timing.mDelay = animation.delay();
timing.mIterations = animation.iterations();
timing.mIterationStart = animation.iterationStart();
timing.mDirection =
static_cast<dom::PlaybackDirection>(animation.direction());
timing.mFill = static_cast<dom::FillMode>(animation.fillMode());
timing.mFunction =
AnimationUtils::TimingFunctionToComputedTimingFunction(
animation.easingFunction());
ComputedTiming computedTiming =
dom::AnimationEffectReadOnly::GetComputedTimingAt(
Nullable<TimeDuration>(elapsedDuration), timing,
animation.playbackRate());
if (computedTiming.mProgress.IsNull()) {
continue;
}
uint32_t segmentIndex = 0;
size_t segmentSize = animation.segments().Length();
AnimationSegment* segment = animation.segments().Elements();
while (segment->endPortion() < computedTiming.mProgress.Value() &&
segmentIndex < segmentSize - 1) {
++segment;
++segmentIndex;
}
double positionInSegment =
(computedTiming.mProgress.Value() - segment->startPortion()) /
(segment->endPortion() - segment->startPortion());
double portion =
ComputedTimingFunction::GetPortion(animData.mFunctions[segmentIndex],
positionInSegment,
computedTiming.mBeforeFlag);
// interpolate the property
Animatable interpolatedValue;
SampleValue(portion, animation,
animData.mStartValues[segmentIndex],
animData.mEndValues[segmentIndex],
animData.mEndValues.LastElement(),
computedTiming.mCurrentIteration,
&interpolatedValue, layer);
LayerComposite* layerComposite = layer->AsLayerComposite();
switch (animation.property()) {
case eCSSProperty_opacity:
{
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
layerComposite->SetShadowOpacitySetByAnimation(true);
break;
}
case eCSSProperty_transform:
{
Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
if (ContainerLayer* c = layer->AsContainerLayer()) {
matrix.PostScale(c->GetInheritedXScale(), c->GetInheritedYScale(), 1);
}
layerComposite->SetShadowBaseTransform(matrix);
layerComposite->SetShadowTransformSetByAnimation(true);
break;
}
default:
NS_WARNING("Unhandled animated property");
}
}
});
return activeAnimations;
}
static bool
SampleAPZAnimations(const LayerMetricsWrapper& aLayer, TimeStamp aSampleTime)
{
bool activeAnimations = false;
ForEachNodePostOrder<ForwardIterator>(aLayer,
[&activeAnimations, &aSampleTime](LayerMetricsWrapper aLayerMetrics)
{
if (AsyncPanZoomController* apzc = aLayerMetrics.GetApzc()) {
apzc->ReportCheckerboard(aSampleTime);
activeAnimations |= apzc->AdvanceAnimations(aSampleTime);
}
}
);
return activeAnimations;
}
void
AsyncCompositionManager::RecordShadowTransforms(Layer* aLayer)
{
MOZ_ASSERT(gfxPrefs::CollectScrollTransforms());
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
ForEachNodePostOrder<ForwardIterator>(
aLayer,
[this] (Layer* layer)
{
for (uint32_t i = 0; i < layer->GetScrollMetadataCount(); i++) {
AsyncPanZoomController* apzc = layer->GetAsyncPanZoomController(i);
if (!apzc) {
continue;
}
gfx::Matrix4x4 shadowTransform = layer->AsLayerComposite()->GetShadowBaseTransform();
if (!shadowTransform.Is2D()) {
continue;
}
Matrix transform = shadowTransform.As2D();
if (transform.IsTranslation() && !shadowTransform.IsIdentity()) {
Point translation = transform.GetTranslation();
mLayerTransformRecorder.RecordTransform(layer, translation);
return;
}
}
});
}
static AsyncTransformComponentMatrix
AdjustForClip(const AsyncTransformComponentMatrix& asyncTransform, Layer* aLayer)
{
AsyncTransformComponentMatrix result = asyncTransform;
// Container layers start at the origin, but they are clipped to where they
// actually have content on the screen. The tree transform is meant to apply
// to the clipped area. If the tree transform includes a scale component,
// then applying it to container as-is will produce incorrect results. To
// avoid this, translate the layer so that the clip rect starts at the origin,
// apply the tree transform, and translate back.
if (const Maybe<ParentLayerIntRect>& shadowClipRect = aLayer->AsLayerComposite()->GetShadowClipRect()) {
if (shadowClipRect->TopLeft() != ParentLayerIntPoint()) { // avoid a gratuitous change of basis
result.ChangeBasis(shadowClipRect->x, shadowClipRect->y, 0);
}
}
return result;
}
static void
ExpandRootClipRect(Layer* aLayer, const ScreenMargin& aFixedLayerMargins)
{
// For Fennec we want to expand the root scrollable layer clip rect based on
// the fixed position margins. In particular, we want this while the dynamic
// toolbar is in the process of sliding offscreen and the area of the
// LayerView visible to the user is larger than the viewport size that Gecko
// knows about (and therefore larger than the clip rect). We could also just
// clear the clip rect on aLayer entirely but this seems more precise.
Maybe<ParentLayerIntRect> rootClipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
if (rootClipRect && aFixedLayerMargins != ScreenMargin()) {
#ifndef MOZ_WIDGET_ANDROID
// We should never enter here on anything other than Fennec, since
// aFixedLayerMargins should be empty everywhere else.
MOZ_ASSERT(false);
#endif
ParentLayerRect rect(rootClipRect.value());
rect.Deflate(ViewAs<ParentLayerPixel>(aFixedLayerMargins,
PixelCastJustification::ScreenIsParentLayerForRoot));
aLayer->AsLayerComposite()->SetShadowClipRect(Some(RoundedOut(rect)));
}
}
#ifdef MOZ_WIDGET_ANDROID
static void
MoveScrollbarForLayerMargin(Layer* aRoot, FrameMetrics::ViewID aRootScrollId,
const ScreenMargin& aFixedLayerMargins)
{
// See bug 1223928 comment 9 - once we can detect the RCD with just the
// isRootContent flag on the metrics, we can probably move this code into
// ApplyAsyncTransformToScrollbar rather than having it as a separate
// adjustment on the layer tree.
Layer* scrollbar = BreadthFirstSearch<ReverseIterator>(aRoot,
[aRootScrollId](Layer* aNode) {
return (aNode->GetScrollbarDirection() == Layer::HORIZONTAL &&
aNode->GetScrollbarTargetContainerId() == aRootScrollId);
});
if (scrollbar) {
// Shift the horizontal scrollbar down into the new space exposed by the
// dynamic toolbar hiding. Technically we should also scale the vertical
// scrollbar a bit to expand into the new space but it's not as noticeable
// and it would add a lot more complexity, so we're going with the "it's not
// worth it" justification.
TranslateShadowLayer(scrollbar, ParentLayerPoint(0, -aFixedLayerMargins.bottom), true, nullptr);
if (scrollbar->GetParent()) {
// The layer that has the HORIZONTAL direction sits inside another
// ContainerLayer. This ContainerLayer also has a clip rect that causes
// the scrollbar to get clipped. We need to expand that clip rect to
// prevent that from happening. This is kind of ugly in that we're
// assuming a particular layer tree structure but short of adding more
// flags to the layer there doesn't appear to be a good way to do this.
ExpandRootClipRect(scrollbar->GetParent(), aFixedLayerMargins);
}
}
}
#endif
bool
AsyncCompositionManager::ApplyAsyncContentTransformToTree(Layer *aLayer,
bool* aOutFoundRoot)
{
bool appliedTransform = false;
std::stack<Maybe<ParentLayerIntRect>> stackDeferredClips;
// Maps layers to their ClipParts. The parts are not stored individually
// on the layer, but during AlignFixedAndStickyLayers we need access to
// the individual parts for descendant layers.
ClipPartsCache clipPartsCache;
ForEachNode<ForwardIterator>(
aLayer,
[&stackDeferredClips] (Layer* layer)
{
stackDeferredClips.push(Maybe<ParentLayerIntRect>());
},
[this, &aOutFoundRoot, &stackDeferredClips, &appliedTransform, &clipPartsCache] (Layer* layer)
{
Maybe<ParentLayerIntRect> clipDeferredFromChildren = stackDeferredClips.top();
stackDeferredClips.pop();
LayerToParentLayerMatrix4x4 oldTransform = layer->GetTransformTyped() *
AsyncTransformMatrix();
AsyncTransformComponentMatrix combinedAsyncTransform;
bool hasAsyncTransform = false;
ScreenMargin fixedLayerMargins;
// Each layer has multiple clips:
// - Its local clip, which is fixed to the layer contents, i.e. it moves
// with those async transforms which the layer contents move with.
// - Its scrolled clip, which moves with all async transforms.
// - For each ScrollMetadata on the layer, a scroll clip. This includes
// the composition bounds and any other clips induced by layout. This
// moves with async transforms from ScrollMetadatas above it.
// In this function, these clips are combined into two shadow clip parts:
// - The fixed clip, which consists of the local clip only, initially
// transformed by all async transforms.
// - The scrolled clip, which consists of the other clips, transformed by
// the appropriate transforms.
// These two parts are kept separate for now, because for fixed layers, we
// need to adjust the fixed clip (to cancel out some async transforms).
// The parts are kept in a cache which is cleared at the beginning of every
// composite.
// The final shadow clip for the layer is the intersection of the (possibly
// adjusted) fixed clip and the scrolled clip.
ClipParts& clipParts = clipPartsCache[layer];
clipParts.mFixedClip = layer->GetClipRect();
clipParts.mScrolledClip = layer->GetScrolledClipRect();
// If we are a perspective transform ContainerLayer, apply the clip deferred
// from our child (if there is any) before we iterate over our frame metrics,
// because this clip is subject to all async transforms of this layer.
// Since this clip came from the a scroll clip on the child, it becomes part
// of our scrolled clip.
clipParts.mScrolledClip = IntersectMaybeRects(
clipDeferredFromChildren, clipParts.mScrolledClip);
// The transform of a mask layer is relative to the masked layer's parent
// layer. So whenever we apply an async transform to a layer, we need to
// apply that same transform to the layer's own mask layer.
// A layer can also have "ancestor" mask layers for any rounded clips from
// its ancestor scroll frames. A scroll frame mask layer only needs to be
// async transformed for async scrolls of this scroll frame's ancestor
// scroll frames, not for async scrolls of this scroll frame itself.
// In the loop below, we iterate over scroll frames from inside to outside.
// At each iteration, this array contains the layer's ancestor mask layers
// of all scroll frames inside the current one.
nsTArray<Layer*> ancestorMaskLayers;
// The layer's scrolled clip can have an ancestor mask layer as well,
// which is moved by all async scrolls on this layer.
if (const Maybe<LayerClip>& scrolledClip = layer->GetScrolledClip()) {
if (scrolledClip->GetMaskLayerIndex()) {
ancestorMaskLayers.AppendElement(
layer->GetAncestorMaskLayerAt(*scrolledClip->GetMaskLayerIndex()));
}
}
for (uint32_t i = 0; i < layer->GetScrollMetadataCount(); i++) {
AsyncPanZoomController* controller = layer->GetAsyncPanZoomController(i);
if (!controller) {
continue;
}
hasAsyncTransform = true;
AsyncTransform asyncTransformWithoutOverscroll =
controller->GetCurrentAsyncTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
AsyncTransformComponentMatrix overscrollTransform =
controller->GetOverscrollTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
AsyncTransformComponentMatrix asyncTransform =
AsyncTransformComponentMatrix(asyncTransformWithoutOverscroll)
* overscrollTransform;
if (!layer->IsScrollInfoLayer()) {
controller->MarkAsyncTransformAppliedToContent();
}
const ScrollMetadata& scrollMetadata = layer->GetScrollMetadata(i);
const FrameMetrics& metrics = scrollMetadata.GetMetrics();
#if defined(MOZ_WIDGET_ANDROID)
// If we find a metrics which is the root content doc, use that. If not, use
// the root layer. Since this function recurses on children first we should
// only end up using the root layer if the entire tree was devoid of a
// root content metrics. This is a temporary solution; in the long term we
// should not need the root content metrics at all. See bug 1201529 comment
// 6 for details.
if (!(*aOutFoundRoot)) {
*aOutFoundRoot = metrics.IsRootContent() || /* RCD */
(layer->GetParent() == nullptr && /* rootmost metrics */
i + 1 >= layer->GetScrollMetadataCount());
if (*aOutFoundRoot) {
mRootScrollableId = metrics.GetScrollId();
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
if (mIsFirstPaint) {
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
mContentRect = metrics.GetScrollableRect();
SetFirstPaintViewport(scrollOffsetLayerPixels,
geckoZoom,
mContentRect);
} else {
ParentLayerPoint scrollOffset = controller->GetCurrentAsyncScrollOffset(
AsyncPanZoomController::RESPECT_FORCE_DISABLE);
// Compute the painted displayport in document-relative CSS pixels.
CSSRect displayPort(metrics.GetCriticalDisplayPort().IsEmpty() ?
metrics.GetDisplayPort() :
metrics.GetCriticalDisplayPort());
displayPort += metrics.GetScrollOffset();
SyncFrameMetrics(scrollOffset,
geckoZoom * asyncTransformWithoutOverscroll.mScale,
metrics.GetScrollableRect(), displayPort, geckoZoom, mLayersUpdated,
mPaintSyncId, fixedLayerMargins);
mFixedLayerMargins = fixedLayerMargins;
mLayersUpdated = false;
mPaintSyncId = 0;
}
mIsFirstPaint = false;
}
}
#else
// Non-Android platforms still care about this flag being cleared after
// the first call to TransformShadowTree().
mIsFirstPaint = false;
#endif
// Transform the current local clips by this APZC's async transform. If we're
// using containerful scrolling, then the clip is not part of the scrolled
// frame and should not be transformed.
if (!scrollMetadata.UsesContainerScrolling()) {
MOZ_ASSERT(asyncTransform.Is2D());
if (clipParts.mFixedClip) {
*clipParts.mFixedClip = TransformBy(asyncTransform, *clipParts.mFixedClip);
}
if (clipParts.mScrolledClip) {
*clipParts.mScrolledClip = TransformBy(asyncTransform, *clipParts.mScrolledClip);
}
}
// Note: we don't set the layer's shadow clip rect property yet;
// AlignFixedAndStickyLayers will use the clip parts from the clip parts
// cache.
combinedAsyncTransform *= asyncTransform;
// For the purpose of aligning fixed and sticky layers, we disregard
// the overscroll transform as well as any OMTA transform when computing the
// 'aCurrentTransformForRoot' parameter. This ensures that the overscroll
// and OMTA transforms are not unapplied, and therefore that the visual
// effects apply to fixed and sticky layers. We do this by using
// GetTransform() as the base transform rather than GetLocalTransform(),
// which would include those factors.
LayerToParentLayerMatrix4x4 transformWithoutOverscrollOrOmta =
layer->GetTransformTyped()
* CompleteAsyncTransform(
AdjustForClip(asyncTransformWithoutOverscroll, layer));
AlignFixedAndStickyLayers(layer, layer, metrics.GetScrollId(), oldTransform,
transformWithoutOverscrollOrOmta, fixedLayerMargins,
&clipPartsCache);
// Combine the local clip with the ancestor scrollframe clip. This is not
// included in the async transform above, since the ancestor clip should not
// move with this APZC.
if (scrollMetadata.HasScrollClip()) {
ParentLayerIntRect clip = scrollMetadata.ScrollClip().GetClipRect();
if (layer->GetParent() && layer->GetParent()->GetTransformIsPerspective()) {
// If our parent layer has a perspective transform, we want to apply
// our scroll clip to it instead of to this layer (see bug 1168263).
// A layer with a perspective transform shouldn't have multiple
// children with FrameMetrics, nor a child with multiple FrameMetrics.
// (A child with multiple FrameMetrics would mean that there's *another*
// scrollable element between the one with the CSS perspective and the
// transformed element. But you'd have to use preserve-3d on the inner
// scrollable element in order to have the perspective apply to the
// transformed child, and preserve-3d is not supported on scrollable
// elements, so this case can't occur.)
MOZ_ASSERT(!stackDeferredClips.top());
stackDeferredClips.top().emplace(clip);
} else {
clipParts.mScrolledClip = IntersectMaybeRects(Some(clip),
clipParts.mScrolledClip);
}
}
// Do the same for the ancestor mask layers: ancestorMaskLayers contains
// the ancestor mask layers for scroll frames *inside* the current scroll
// frame, so these are the ones we need to shift by our async transform.
for (Layer* ancestorMaskLayer : ancestorMaskLayers) {
SetShadowTransform(ancestorMaskLayer,
ancestorMaskLayer->GetLocalTransformTyped() * asyncTransform);
}
// Append the ancestor mask layer for this scroll frame to ancestorMaskLayers.
if (scrollMetadata.HasScrollClip()) {
const LayerClip& scrollClip = scrollMetadata.ScrollClip();
if (scrollClip.GetMaskLayerIndex()) {
size_t maskLayerIndex = scrollClip.GetMaskLayerIndex().value();
Layer* ancestorMaskLayer = layer->GetAncestorMaskLayerAt(maskLayerIndex);
ancestorMaskLayers.AppendElement(ancestorMaskLayer);
}
}
}
bool clipChanged = (hasAsyncTransform || clipDeferredFromChildren ||
layer->GetScrolledClipRect());
if (clipChanged) {
// Intersect the two clip parts and apply them to the layer.
// During ApplyAsyncContentTransformTree on an ancestor layer,
// AlignFixedAndStickyLayers may overwrite this with a new clip it
// computes from the clip parts, but if that doesn't happen, this
// is the layer's final clip rect.
layer->AsLayerComposite()->SetShadowClipRect(clipParts.Intersect());
}
if (hasAsyncTransform) {
// Apply the APZ transform on top of GetLocalTransform() here (rather than
// GetTransform()) in case the OMTA code in SampleAnimations already set a
// shadow transform; in that case we want to apply ours on top of that one
// rather than clobber it.
SetShadowTransform(layer,
layer->GetLocalTransformTyped()
* AdjustForClip(combinedAsyncTransform, layer));
// Do the same for the layer's own mask layer, if it has one.
if (Layer* maskLayer = layer->GetMaskLayer()) {
SetShadowTransform(maskLayer,
maskLayer->GetLocalTransformTyped() * combinedAsyncTransform);
}
appliedTransform = true;
}
ExpandRootClipRect(layer, fixedLayerMargins);
if (layer->GetScrollbarDirection() != Layer::NONE) {
ApplyAsyncTransformToScrollbar(layer);
}
});
return appliedTransform;
}
static bool
LayerIsScrollbarTarget(const LayerMetricsWrapper& aTarget, Layer* aScrollbar)
{
AsyncPanZoomController* apzc = aTarget.GetApzc();
if (!apzc) {
return false;
}
const FrameMetrics& metrics = aTarget.Metrics();
if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) {
return false;
}
return !aTarget.IsScrollInfoLayer();
}
static void
ApplyAsyncTransformToScrollbarForContent(Layer* aScrollbar,
const LayerMetricsWrapper& aContent,
bool aScrollbarIsDescendant)
{
// We only apply the transform if the scroll-target layer has non-container
// children (i.e. when it has some possibly-visible content). This is to
// avoid moving scroll-bars in the situation that only a scroll information
// layer has been built for a scroll frame, as this would result in a
// disparity between scrollbars and visible content.
if (aContent.IsScrollInfoLayer()) {
return;
}
const FrameMetrics& metrics = aContent.Metrics();
AsyncPanZoomController* apzc = aContent.GetApzc();
MOZ_RELEASE_ASSERT(apzc);
AsyncTransformComponentMatrix asyncTransform =
apzc->GetCurrentAsyncTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
// |asyncTransform| represents the amount by which we have scrolled and
// zoomed since the last paint. Because the scrollbar was sized and positioned based
// on the painted content, we need to adjust it based on asyncTransform so that
// it reflects what the user is actually seeing now.
AsyncTransformComponentMatrix scrollbarTransform;
if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) {
const ParentLayerCoord asyncScrollY = asyncTransform._42;
const float asyncZoomY = asyncTransform._22;
// The scroll thumb needs to be scaled in the direction of scrolling by the
// inverse of the async zoom. This is because zooming in decreases the
// fraction of the whole srollable rect that is in view.
const float yScale = 1.f / asyncZoomY;
// Note: |metrics.GetZoom()| doesn't yet include the async zoom.
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().yScale * asyncZoomY);
// Here we convert the scrollbar thumb ratio into a true unitless ratio by
// dividing out the conversion factor from the scrollframe's parent's space
// to the scrollframe's space.
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
(metrics.GetPresShellResolution() * asyncZoomY);
// The scroll thumb needs to be translated in opposite direction of the
// async scroll. This is because scrolling down, which translates the layer
// content up, should result in moving the scroll thumb down.
ParentLayerCoord yTranslation = -asyncScrollY * ratio;
// The scroll thumb additionally needs to be translated to compensate for
// the scale applied above. The origin with respect to which the scale is
// applied is the origin of the entire scrollbar, rather than the origin of
// the scroll thumb (meaning, for a vertical scrollbar it's at the top of
// the composition bounds). This means that empty space above the thumb
// is scaled too, effectively translating the thumb. We undo that
// translation here.
// (One can think of the adjustment being done to the translation here as
// a change of basis. We have a method to help with that,
// Matrix4x4::ChangeBasis(), but it wouldn't necessarily make the code
// cleaner in this case).
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().y * ratio);
const CSSCoord thumbOriginScaled = thumbOrigin * yScale;
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
yTranslation -= thumbOriginDeltaPL;
if (metrics.IsRootContent()) {
// Scrollbar for the root are painted at the same resolution as the
// content. Since the coordinate space we apply this transform in includes
// the resolution, we need to adjust for it as well here. Note that in
// another metrics.IsRootContent() hunk below we apply a
// resolution-cancelling transform which ensures the scroll thumb isn't
// actually rendered at a larger scale.
yTranslation *= metrics.GetPresShellResolution();
}
scrollbarTransform.PostScale(1.f, yScale, 1.f);
scrollbarTransform.PostTranslate(0, yTranslation, 0);
}
if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) {
// See detailed comments under the VERTICAL case.
const ParentLayerCoord asyncScrollX = asyncTransform._41;
const float asyncZoomX = asyncTransform._11;
const float xScale = 1.f / asyncZoomX;
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().xScale * asyncZoomX);
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
(metrics.GetPresShellResolution() * asyncZoomX);
ParentLayerCoord xTranslation = -asyncScrollX * ratio;
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().x * ratio);
const CSSCoord thumbOriginScaled = thumbOrigin * xScale;
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
xTranslation -= thumbOriginDeltaPL;
if (metrics.IsRootContent()) {
xTranslation *= metrics.GetPresShellResolution();
}
scrollbarTransform.PostScale(xScale, 1.f, 1.f);
scrollbarTransform.PostTranslate(xTranslation, 0, 0);
}
LayerToParentLayerMatrix4x4 transform =
aScrollbar->GetLocalTransformTyped() * scrollbarTransform;
AsyncTransformComponentMatrix compensation;
// If the scrollbar layer is for the root then the content's resolution
// applies to the scrollbar as well. Since we don't actually want the scroll
// thumb's size to vary with the zoom (other than its length reflecting the
// fraction of the scrollable length that's in view, which is taken care of
// above), we apply a transform to cancel out this resolution.
if (metrics.IsRootContent()) {
compensation =
AsyncTransformComponentMatrix::Scaling(
metrics.GetPresShellResolution(),
metrics.GetPresShellResolution(),
1.0f).Inverse();
}
// If the scrollbar layer is a child of the content it is a scrollbar for,
// then we need to adjust for any async transform (including an overscroll
// transform) on the content. This needs to be cancelled out because layout
// positions and sizes the scrollbar on the assumption that there is no async
// transform, and without this adjustment the scrollbar will end up in the
// wrong place.
//
// Note that since the async transform is applied on top of the content's
// regular transform, we need to make sure to unapply the async transform in
// the same coordinate space. This requires applying the content transform
// and then unapplying it after unapplying the async transform.
if (aScrollbarIsDescendant) {
AsyncTransformComponentMatrix overscroll =
apzc->GetOverscrollTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
Matrix4x4 asyncUntransform = (asyncTransform * overscroll).Inverse().ToUnknownMatrix();
Matrix4x4 contentTransform = aContent.GetTransform();
Matrix4x4 contentUntransform = contentTransform.Inverse();
AsyncTransformComponentMatrix asyncCompensation =
ViewAs<AsyncTransformComponentMatrix>(
contentTransform
* asyncUntransform
* contentUntransform);
compensation = compensation * asyncCompensation;
// We also need to make a corresponding change on the clip rect of all the
// layers on the ancestor chain from the scrollbar layer up to but not
// including the layer with the async transform. Otherwise the scrollbar
// shifts but gets clipped and so appears to flicker.
for (Layer* ancestor = aScrollbar; ancestor != aContent.GetLayer(); ancestor = ancestor->GetParent()) {
TransformClipRect(ancestor, asyncCompensation);
}
}
transform = transform * compensation;
SetShadowTransform(aScrollbar, transform);
}
static LayerMetricsWrapper
FindScrolledLayerForScrollbar(Layer* aScrollbar, bool* aOutIsAncestor)
{
// First check if the scrolled layer is an ancestor of the scrollbar layer.
LayerMetricsWrapper root(aScrollbar->Manager()->GetRoot());
LayerMetricsWrapper prevAncestor(aScrollbar);
LayerMetricsWrapper scrolledLayer;
for (LayerMetricsWrapper ancestor(aScrollbar); ancestor; ancestor = ancestor.GetParent()) {
// Don't walk into remote layer trees; the scrollbar will always be in
// the same layer space.
if (ancestor.AsRefLayer()) {
root = prevAncestor;
break;
}
prevAncestor = ancestor;
if (LayerIsScrollbarTarget(ancestor, aScrollbar)) {
*aOutIsAncestor = true;
return ancestor;
}
}
// Search the entire layer space of the scrollbar.
ForEachNode<ForwardIterator>(
root,
[&root, &scrolledLayer, &aScrollbar](LayerMetricsWrapper aLayerMetrics)
{
// Do not recurse into RefLayers, since our initial aSubtreeRoot is the
// root (or RefLayer root) of a single layer space to search.
if (root != aLayerMetrics && aLayerMetrics.AsRefLayer()) {
return TraversalFlag::Skip;
}
if (LayerIsScrollbarTarget(aLayerMetrics, aScrollbar)) {
scrolledLayer = aLayerMetrics;
return TraversalFlag::Abort;
}
return TraversalFlag::Continue;
}
);
return scrolledLayer;
}
void
AsyncCompositionManager::ApplyAsyncTransformToScrollbar(Layer* aLayer)
{
// If this layer corresponds to a scrollbar, then there should be a layer that
// is a previous sibling or a parent that has a matching ViewID on its FrameMetrics.
// That is the content that this scrollbar is for. We pick up the transient
// async transform from that layer and use it to update the scrollbar position.
// Note that it is possible that the content layer is no longer there; in
// this case we don't need to do anything because there can't be an async
// transform on the content.
bool isAncestor = false;
const LayerMetricsWrapper& scrollTarget = FindScrolledLayerForScrollbar(aLayer, &isAncestor);
if (scrollTarget) {
ApplyAsyncTransformToScrollbarForContent(aLayer, scrollTarget, isAncestor);
}
}
void
AsyncCompositionManager::GetFrameUniformity(FrameUniformityData* aOutData)
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
mLayerTransformRecorder.EndTest(aOutData);
}
bool
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame,
TimeDuration aVsyncRate,
TransformsToSkip aSkip)
{
PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree",
js::ProfileEntry::Category::GRAPHICS);
Layer* root = mLayerManager->GetRoot();
if (!root) {
return false;
}
// First, compute and set the shadow transforms from OMT animations.
// NB: we must sample animations *before* sampling pan/zoom
// transforms.
// Use a previous vsync time to make main thread animations and compositor
// more in sync with each other.
// On the initial frame we use aVsyncTimestamp here so the timestamp on the
// second frame are the same as the initial frame, but it does not matter.
bool wantNextFrame = SampleAnimations(root,
!mPreviousFrameTimeStamp.IsNull() ?
mPreviousFrameTimeStamp : aCurrentFrame);
// Reset the previous time stamp if we don't already have any running
// animations to avoid using the time which is far behind for newly
// started animations.
mPreviousFrameTimeStamp = wantNextFrame ? aCurrentFrame : TimeStamp();
if (!(aSkip & TransformsToSkip::APZ)) {
// FIXME/bug 775437: unify this interface with the ~native-fennec
// derived code
//
// Attempt to apply an async content transform to any layer that has
// an async pan zoom controller (which means that it is rendered
// async using Gecko). If this fails, fall back to transforming the
// primary scrollable layer. "Failing" here means that we don't
// find a frame that is async scrollable. Note that the fallback
// code also includes Fennec which is rendered async. Fennec uses
// its own platform-specific async rendering that is done partially
// in Gecko and partially in Java.
bool foundRoot = false;
if (ApplyAsyncContentTransformToTree(root, &foundRoot)) {
#if defined(MOZ_WIDGET_ANDROID)
MOZ_ASSERT(foundRoot);
if (foundRoot && mFixedLayerMargins != ScreenMargin()) {
MoveScrollbarForLayerMargin(root, mRootScrollableId, mFixedLayerMargins);
}
#endif
}
// Advance APZ animations to the next expected vsync timestamp, if we can
// get it.
TimeStamp nextFrame = aCurrentFrame;
MOZ_ASSERT(aVsyncRate != TimeDuration::Forever());
if (aVsyncRate != TimeDuration::Forever()) {
nextFrame += aVsyncRate;
}
wantNextFrame |= SampleAPZAnimations(LayerMetricsWrapper(root), nextFrame);
}
LayerComposite* rootComposite = root->AsLayerComposite();
gfx::Matrix4x4 trans = rootComposite->GetShadowBaseTransform();
trans *= gfx::Matrix4x4::From2D(mWorldTransform);
rootComposite->SetShadowBaseTransform(trans);
if (gfxPrefs::CollectScrollTransforms()) {
RecordShadowTransforms(root);
}
return wantNextFrame;
}
void
AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset,
const CSSToLayerScale& aZoom,
const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
widget::AndroidCompositorWidget* widget =
mLayerManager->GetCompositor()->GetWidget()->AsAndroid();
if (!widget) {
return;
}
widget->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect);
#endif
}
void
AsyncCompositionManager::SyncFrameMetrics(const ParentLayerPoint& aScrollOffset,
const CSSToParentLayerScale& aZoom,
const CSSRect& aCssPageRect,
const CSSRect& aDisplayPort,
const CSSToLayerScale& aPaintedResolution,
bool aLayersUpdated,
int32_t aPaintSyncId,
ScreenMargin& aFixedLayerMargins)
{
#ifdef MOZ_WIDGET_ANDROID
widget::AndroidCompositorWidget* widget =
mLayerManager->GetCompositor()->GetWidget()->AsAndroid();
if (!widget) {
return;
}
widget->SyncFrameMetrics(
aScrollOffset, aZoom, aCssPageRect, aDisplayPort, aPaintedResolution,
aLayersUpdated, aPaintSyncId, aFixedLayerMargins);
#endif
}
} // namespace layers
} // namespace mozilla