Mypal/dom/media/webaudio/DelayBuffer.cpp

264 lines
8.7 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DelayBuffer.h"
#include "mozilla/PodOperations.h"
#include "AudioChannelFormat.h"
#include "AudioNodeEngine.h"
namespace mozilla {
size_t
DelayBuffer::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t amount = 0;
amount += mChunks.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (size_t i = 0; i < mChunks.Length(); i++) {
amount += mChunks[i].SizeOfExcludingThis(aMallocSizeOf, false);
}
amount += mUpmixChannels.ShallowSizeOfExcludingThis(aMallocSizeOf);
return amount;
}
void
DelayBuffer::Write(const AudioBlock& aInputChunk)
{
// We must have a reference to the buffer if there are channels
MOZ_ASSERT(aInputChunk.IsNull() == !aInputChunk.ChannelCount());
#ifdef DEBUG
MOZ_ASSERT(!mHaveWrittenBlock);
mHaveWrittenBlock = true;
#endif
if (!EnsureBuffer()) {
return;
}
if (mCurrentChunk == mLastReadChunk) {
mLastReadChunk = -1; // invalidate cache
}
mChunks[mCurrentChunk] = aInputChunk.AsAudioChunk();
}
void
DelayBuffer::Read(const double aPerFrameDelays[WEBAUDIO_BLOCK_SIZE],
AudioBlock* aOutputChunk,
ChannelInterpretation aChannelInterpretation)
{
int chunkCount = mChunks.Length();
if (!chunkCount) {
aOutputChunk->SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
// Find the maximum number of contributing channels to determine the output
// channel count that retains all signal information. Buffered blocks will
// be upmixed if necessary.
//
// First find the range of "delay" offsets backwards from the current
// position. Note that these may be negative for frames that are after the
// current position (including i).
double minDelay = aPerFrameDelays[0];
double maxDelay = minDelay;
for (unsigned i = 1; i < WEBAUDIO_BLOCK_SIZE; ++i) {
minDelay = std::min(minDelay, aPerFrameDelays[i] - i);
maxDelay = std::max(maxDelay, aPerFrameDelays[i] - i);
}
// Now find the chunks touched by this range and check their channel counts.
int oldestChunk = ChunkForDelay(int(maxDelay) + 1);
int youngestChunk = ChunkForDelay(minDelay);
uint32_t channelCount = 0;
for (int i = oldestChunk; true; i = (i + 1) % chunkCount) {
channelCount = GetAudioChannelsSuperset(channelCount,
mChunks[i].ChannelCount());
if (i == youngestChunk) {
break;
}
}
if (channelCount) {
aOutputChunk->AllocateChannels(channelCount);
ReadChannels(aPerFrameDelays, aOutputChunk,
0, channelCount, aChannelInterpretation);
} else {
aOutputChunk->SetNull(WEBAUDIO_BLOCK_SIZE);
}
// Remember currentDelayFrames for the next ProcessBlock call
mCurrentDelay = aPerFrameDelays[WEBAUDIO_BLOCK_SIZE - 1];
}
void
DelayBuffer::ReadChannel(const double aPerFrameDelays[WEBAUDIO_BLOCK_SIZE],
AudioBlock* aOutputChunk, uint32_t aChannel,
ChannelInterpretation aChannelInterpretation)
{
if (!mChunks.Length()) {
float* outputChannel = aOutputChunk->ChannelFloatsForWrite(aChannel);
PodZero(outputChannel, WEBAUDIO_BLOCK_SIZE);
return;
}
ReadChannels(aPerFrameDelays, aOutputChunk,
aChannel, 1, aChannelInterpretation);
}
void
DelayBuffer::ReadChannels(const double aPerFrameDelays[WEBAUDIO_BLOCK_SIZE],
AudioBlock* aOutputChunk,
uint32_t aFirstChannel, uint32_t aNumChannelsToRead,
ChannelInterpretation aChannelInterpretation)
{
uint32_t totalChannelCount = aOutputChunk->ChannelCount();
uint32_t readChannelsEnd = aFirstChannel + aNumChannelsToRead;
MOZ_ASSERT(readChannelsEnd <= totalChannelCount);
if (mUpmixChannels.Length() != totalChannelCount) {
mLastReadChunk = -1; // invalidate cache
}
for (uint32_t channel = aFirstChannel;
channel < readChannelsEnd; ++channel) {
PodZero(aOutputChunk->ChannelFloatsForWrite(channel), WEBAUDIO_BLOCK_SIZE);
}
for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
double currentDelay = aPerFrameDelays[i];
MOZ_ASSERT(currentDelay >= 0.0);
MOZ_ASSERT(currentDelay <= (mChunks.Length() - 1) * WEBAUDIO_BLOCK_SIZE);
// Interpolate two input frames in case the read position does not match
// an integer index.
// Use the larger delay, for the older frame, first, as this is more
// likely to use the cached upmixed channel arrays.
int floorDelay = int(currentDelay);
double interpolationFactor = currentDelay - floorDelay;
int positions[2];
positions[1] = PositionForDelay(floorDelay) + i;
positions[0] = positions[1] - 1;
for (unsigned tick = 0; tick < ArrayLength(positions); ++tick) {
int readChunk = ChunkForPosition(positions[tick]);
// mVolume is not set on default initialized chunks so handle null
// chunks specially.
if (!mChunks[readChunk].IsNull()) {
int readOffset = OffsetForPosition(positions[tick]);
UpdateUpmixChannels(readChunk, totalChannelCount,
aChannelInterpretation);
double multiplier = interpolationFactor * mChunks[readChunk].mVolume;
for (uint32_t channel = aFirstChannel;
channel < readChannelsEnd; ++channel) {
aOutputChunk->ChannelFloatsForWrite(channel)[i] += multiplier *
mUpmixChannels[channel][readOffset];
}
}
interpolationFactor = 1.0 - interpolationFactor;
}
}
}
void
DelayBuffer::Read(double aDelayTicks, AudioBlock* aOutputChunk,
ChannelInterpretation aChannelInterpretation)
{
const bool firstTime = mCurrentDelay < 0.0;
double currentDelay = firstTime ? aDelayTicks : mCurrentDelay;
double computedDelay[WEBAUDIO_BLOCK_SIZE];
for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
// If the value has changed, smoothly approach it
currentDelay += (aDelayTicks - currentDelay) * mSmoothingRate;
computedDelay[i] = currentDelay;
}
Read(computedDelay, aOutputChunk, aChannelInterpretation);
}
bool
DelayBuffer::EnsureBuffer()
{
if (mChunks.Length() == 0) {
// The length of the buffer is at least one block greater than the maximum
// delay so that writing an input block does not overwrite the block that
// would subsequently be read at maximum delay. Also round up to the next
// block size, so that no block of writes will need to wrap.
const int chunkCount = (mMaxDelayTicks + 2 * WEBAUDIO_BLOCK_SIZE - 1) >>
WEBAUDIO_BLOCK_SIZE_BITS;
if (!mChunks.SetLength(chunkCount, fallible)) {
return false;
}
mLastReadChunk = -1;
}
return true;
}
int
DelayBuffer::PositionForDelay(int aDelay) {
// Adding mChunks.Length() keeps integers positive for defined and
// appropriate bitshift, remainder, and bitwise operations.
return ((mCurrentChunk + mChunks.Length()) * WEBAUDIO_BLOCK_SIZE) - aDelay;
}
int
DelayBuffer::ChunkForPosition(int aPosition)
{
MOZ_ASSERT(aPosition >= 0);
return (aPosition >> WEBAUDIO_BLOCK_SIZE_BITS) % mChunks.Length();
}
int
DelayBuffer::OffsetForPosition(int aPosition)
{
MOZ_ASSERT(aPosition >= 0);
return aPosition & (WEBAUDIO_BLOCK_SIZE - 1);
}
int
DelayBuffer::ChunkForDelay(int aDelay)
{
return ChunkForPosition(PositionForDelay(aDelay));
}
void
DelayBuffer::UpdateUpmixChannels(int aNewReadChunk, uint32_t aChannelCount,
ChannelInterpretation aChannelInterpretation)
{
if (aNewReadChunk == mLastReadChunk) {
MOZ_ASSERT(mUpmixChannels.Length() == aChannelCount);
return;
}
NS_WARNING_ASSERTION(mHaveWrittenBlock || aNewReadChunk != mCurrentChunk,
"Smoothing is making feedback delay too small.");
mLastReadChunk = aNewReadChunk;
mUpmixChannels = mChunks[aNewReadChunk].ChannelData<float>();
MOZ_ASSERT(mUpmixChannels.Length() <= aChannelCount);
if (mUpmixChannels.Length() < aChannelCount) {
if (aChannelInterpretation == ChannelInterpretation::Speakers) {
AudioChannelsUpMix(&mUpmixChannels,
aChannelCount, SilentChannel::ZeroChannel<float>());
MOZ_ASSERT(mUpmixChannels.Length() == aChannelCount,
"We called GetAudioChannelsSuperset to avoid this");
} else {
// Fill up the remaining channels with zeros
for (uint32_t channel = mUpmixChannels.Length();
channel < aChannelCount; ++channel) {
mUpmixChannels.AppendElement(SilentChannel::ZeroChannel<float>());
}
}
}
}
} // namespace mozilla