Mypal/image/test/gtest/TestSurfacePipeIntegration.cpp

509 lines
19 KiB
C++
Raw Normal View History

2019-03-11 03:26:37 -07:00
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gtest/gtest.h"
#include "mozilla/gfx/2D.h"
#include "Common.h"
#include "Decoder.h"
#include "DecoderFactory.h"
#include "SourceBuffer.h"
#include "SurfacePipe.h"
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::image;
namespace mozilla {
namespace image {
class TestSurfacePipeFactory
{
public:
static SurfacePipe SimpleSurfacePipe()
{
SurfacePipe pipe;
return Move(pipe);
}
template <typename T>
static SurfacePipe SurfacePipeFromPipeline(T&& aPipeline)
{
return SurfacePipe { Move(aPipeline) };
}
private:
TestSurfacePipeFactory() { }
};
} // namespace image
} // namespace mozilla
void
CheckSurfacePipeMethodResults(SurfacePipe* aPipe,
Decoder* aDecoder,
const IntRect& aRect = IntRect(0, 0, 100, 100))
{
// Check that the pipeline ended up in the state we expect. Note that we're
// explicitly testing the SurfacePipe versions of these methods, so we don't
// want to use AssertCorrectPipelineFinalState() here.
EXPECT_TRUE(aPipe->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aPipe->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mInputSpaceRect);
EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mOutputSpaceRect);
// Check the generated image.
CheckGeneratedImage(aDecoder, aRect);
// Reset and clear the image before the next test.
aPipe->ResetToFirstRow();
EXPECT_FALSE(aPipe->IsSurfaceFinished());
invalidRect = aPipe->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
uint32_t count = 0;
auto result = aPipe->WritePixels<uint32_t>([&]() {
++count;
return AsVariant(BGRAColor::Transparent().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u * 100u, count);
EXPECT_TRUE(aPipe->IsSurfaceFinished());
invalidRect = aPipe->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mInputSpaceRect);
EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mOutputSpaceRect);
aPipe->ResetToFirstRow();
EXPECT_FALSE(aPipe->IsSurfaceFinished());
invalidRect = aPipe->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
}
void
CheckPalettedSurfacePipeMethodResults(SurfacePipe* aPipe,
Decoder* aDecoder,
const IntRect& aRect
= IntRect(0, 0, 100, 100))
{
// Check that the pipeline ended up in the state we expect. Note that we're
// explicitly testing the SurfacePipe versions of these methods, so we don't
// want to use AssertCorrectPipelineFinalState() here.
EXPECT_TRUE(aPipe->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aPipe->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mInputSpaceRect);
EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mOutputSpaceRect);
// Check the generated image.
CheckGeneratedPalettedImage(aDecoder, aRect);
// Reset and clear the image before the next test.
aPipe->ResetToFirstRow();
EXPECT_FALSE(aPipe->IsSurfaceFinished());
invalidRect = aPipe->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
uint32_t count = 0;
auto result = aPipe->WritePixels<uint8_t>([&]() {
++count;
return AsVariant(uint8_t(0));
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u * 100u, count);
EXPECT_TRUE(aPipe->IsSurfaceFinished());
invalidRect = aPipe->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mInputSpaceRect);
EXPECT_EQ(IntRect(0, 0, 100, 100), invalidRect->mOutputSpaceRect);
aPipe->ResetToFirstRow();
EXPECT_FALSE(aPipe->IsSurfaceFinished());
invalidRect = aPipe->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
}
class ImageSurfacePipeIntegration : public ::testing::Test
{
protected:
AutoInitializeImageLib mInit;
};
TEST_F(ImageSurfacePipeIntegration, SurfacePipe)
{
// Test that SurfacePipe objects can be initialized and move constructed.
SurfacePipe pipe = TestSurfacePipeFactory::SimpleSurfacePipe();
// Test that SurfacePipe objects can be move assigned.
pipe = TestSurfacePipeFactory::SimpleSurfacePipe();
// Test that SurfacePipe objects can be initialized with a pipeline.
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
auto sink = MakeUnique<SurfaceSink>();
nsresult rv =
sink->Configure(SurfaceConfig { decoder, IntSize(100, 100),
SurfaceFormat::B8G8R8A8, false });
ASSERT_TRUE(NS_SUCCEEDED(rv));
pipe = TestSurfacePipeFactory::SurfacePipeFromPipeline(sink);
// Test that WritePixels() gets passed through to the underlying pipeline.
{
uint32_t count = 0;
auto result = pipe.WritePixels<uint32_t>([&]() {
++count;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u * 100u, count);
CheckSurfacePipeMethodResults(&pipe, decoder);
}
// Create a buffer the same size as one row of the surface, containing all
// green pixels. We'll use this for the WriteBuffer() tests.
uint32_t buffer[100];
for (int i = 0; i < 100; ++i) {
buffer[i] = BGRAColor::Green().AsPixel();
}
// Test that WriteBuffer() gets passed through to the underlying pipeline.
{
uint32_t count = 0;
WriteState result = WriteState::NEED_MORE_DATA;
while (result == WriteState::NEED_MORE_DATA) {
result = pipe.WriteBuffer(buffer);
++count;
}
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u, count);
CheckSurfacePipeMethodResults(&pipe, decoder);
}
// Test that the 3 argument version of WriteBuffer() gets passed through to
// the underlying pipeline.
{
uint32_t count = 0;
WriteState result = WriteState::NEED_MORE_DATA;
while (result == WriteState::NEED_MORE_DATA) {
result = pipe.WriteBuffer(buffer, 0, 100);
++count;
}
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u, count);
CheckSurfacePipeMethodResults(&pipe, decoder);
}
// Test that WriteEmptyRow() gets passed through to the underlying pipeline.
{
uint32_t count = 0;
WriteState result = WriteState::NEED_MORE_DATA;
while (result == WriteState::NEED_MORE_DATA) {
result = pipe.WriteEmptyRow();
++count;
}
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u, count);
CheckSurfacePipeMethodResults(&pipe, decoder, IntRect(0, 0, 0, 0));
}
// Mark the frame as finished so we don't get an assertion.
RawAccessFrameRef currentFrame = decoder->GetCurrentFrameRef();
currentFrame->Finish();
}
TEST_F(ImageSurfacePipeIntegration, PalettedSurfacePipe)
{
// Create a SurfacePipe containing a PalettedSurfaceSink.
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
auto sink = MakeUnique<PalettedSurfaceSink>();
nsresult rv =
sink->Configure(PalettedSurfaceConfig { decoder, IntSize(100, 100),
IntRect(0, 0, 100, 100),
SurfaceFormat::B8G8R8A8,
8, false });
ASSERT_TRUE(NS_SUCCEEDED(rv));
SurfacePipe pipe = TestSurfacePipeFactory::SurfacePipeFromPipeline(sink);
// Test that WritePixels() gets passed through to the underlying pipeline.
{
uint32_t count = 0;
auto result = pipe.WritePixels<uint8_t>([&]() {
++count;
return AsVariant(uint8_t(255));
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u * 100u, count);
CheckPalettedSurfacePipeMethodResults(&pipe, decoder);
}
// Create a buffer the same size as one row of the surface, containing all
// 255 pixels. We'll use this for the WriteBuffer() tests.
uint8_t buffer[100];
for (int i = 0; i < 100; ++i) {
buffer[i] = 255;
}
// Test that WriteBuffer() gets passed through to the underlying pipeline.
{
uint32_t count = 0;
WriteState result = WriteState::NEED_MORE_DATA;
while (result == WriteState::NEED_MORE_DATA) {
result = pipe.WriteBuffer(buffer);
++count;
}
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u, count);
CheckPalettedSurfacePipeMethodResults(&pipe, decoder);
}
// Test that the 3 argument version of WriteBuffer() gets passed through to
// the underlying pipeline.
{
uint32_t count = 0;
WriteState result = WriteState::NEED_MORE_DATA;
while (result == WriteState::NEED_MORE_DATA) {
result = pipe.WriteBuffer(buffer, 0, 100);
++count;
}
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u, count);
CheckPalettedSurfacePipeMethodResults(&pipe, decoder);
}
// Test that WriteEmptyRow() gets passed through to the underlying pipeline.
{
uint32_t count = 0;
WriteState result = WriteState::NEED_MORE_DATA;
while (result == WriteState::NEED_MORE_DATA) {
result = pipe.WriteEmptyRow();
++count;
}
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u, count);
CheckPalettedSurfacePipeMethodResults(&pipe, decoder, IntRect(0, 0, 0, 0));
}
// Mark the frame as finished so we don't get an assertion.
RawAccessFrameRef currentFrame = decoder->GetCurrentFrameRef();
currentFrame->Finish();
}
TEST_F(ImageSurfacePipeIntegration, DeinterlaceDownscaleWritePixels)
{
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 25, 25)));
};
WithFilterPipeline(decoder, test,
DeinterlacingConfig<uint32_t> { /* mProgressiveDisplay = */ true },
DownscalingConfig { IntSize(100, 100),
SurfaceFormat::B8G8R8A8 },
SurfaceConfig { decoder, IntSize(25, 25),
SurfaceFormat::B8G8R8A8, false });
}
TEST_F(ImageSurfacePipeIntegration, RemoveFrameRectBottomRightDownscaleWritePixels)
{
// This test case uses a frame rect that extends beyond the borders of the
// image to the bottom and to the right. It looks roughly like this (with the
// box made of '#'s representing the frame rect):
//
// +------------+
// + +
// + +------------+
// + +############+
// +------+############+
// +############+
// +------------+
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
// Note that aInputWriteRect is 100x50 because RemoveFrameRectFilter ignores
// trailing rows that don't show up in the output. (Leading rows unfortunately
// can't be ignored.) So the action of the pipeline is as follows:
//
// (1) RemoveFrameRectFilter reads a 100x50 region of the input.
// (aInputWriteRect captures this fact.) The remaining 50 rows are ignored
// because they extend off the bottom of the image due to the frame rect's
// (50, 50) offset. The 50 columns on the right also don't end up in the
// output, so ultimately only a 50x50 region in the output contains data
// from the input. The filter's output is not 50x50, though, but 100x100,
// because what RemoveFrameRectFilter does is introduce blank rows or
// columns as necessary to transform an image that needs a frame rect into
// an image that doesn't.
//
// (2) DownscalingFilter reads the output of RemoveFrameRectFilter (100x100)
// and downscales it to 20x20.
//
// (3) The surface owned by SurfaceSink logically has only a 10x10 region
// region in it that's non-blank; this is the downscaled version of the
// 50x50 region discussed in (1). (aOutputWriteRect captures this fact.)
// Some fuzz, as usual, is necessary when dealing with Lanczos downscaling.
auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 20, 20)),
/* aInputRect = */ Some(IntRect(0, 0, 100, 100)),
/* aInputWriteRect = */ Some(IntRect(50, 50, 100, 50)),
/* aOutputWriteRect = */ Some(IntRect(10, 10, 10, 10)),
/* aFuzz = */ 0x33);
};
WithFilterPipeline(decoder, test,
RemoveFrameRectConfig { IntRect(50, 50, 100, 100) },
DownscalingConfig { IntSize(100, 100),
SurfaceFormat::B8G8R8A8 },
SurfaceConfig { decoder, IntSize(20, 20),
SurfaceFormat::B8G8R8A8, false });
}
TEST_F(ImageSurfacePipeIntegration, RemoveFrameRectTopLeftDownscaleWritePixels)
{
// This test case uses a frame rect that extends beyond the borders of the
// image to the top and to the left. It looks roughly like this (with the
// box made of '#'s representing the frame rect):
//
// +------------+
// +############+
// +############+------+
// +############+ +
// +------------+ +
// + +
// +------------+
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 20, 20)),
/* aInputRect = */ Some(IntRect(0, 0, 100, 100)),
/* aInputWriteRect = */ Some(IntRect(0, 0, 100, 100)),
/* aOutputWriteRect = */ Some(IntRect(0, 0, 10, 10)),
/* aFuzz = */ 0x21);
};
WithFilterPipeline(decoder, test,
RemoveFrameRectConfig { IntRect(-50, -50, 100, 100) },
DownscalingConfig { IntSize(100, 100),
SurfaceFormat::B8G8R8A8 },
SurfaceConfig { decoder, IntSize(20, 20),
SurfaceFormat::B8G8R8A8, false });
}
TEST_F(ImageSurfacePipeIntegration, DeinterlaceRemoveFrameRectWritePixels)
{
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
// Note that aInputRect is the full 100x100 size even though
// RemoveFrameRectFilter is part of this pipeline, because deinterlacing
// requires reading every row.
auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 100, 100)),
/* aInputRect = */ Some(IntRect(0, 0, 100, 100)),
/* aInputWriteRect = */ Some(IntRect(50, 50, 100, 100)),
/* aOutputWriteRect = */ Some(IntRect(50, 50, 50, 50)));
};
WithFilterPipeline(decoder, test,
DeinterlacingConfig<uint32_t> { /* mProgressiveDisplay = */ true },
RemoveFrameRectConfig { IntRect(50, 50, 100, 100) },
SurfaceConfig { decoder, IntSize(100, 100),
SurfaceFormat::B8G8R8A8, false });
}
TEST_F(ImageSurfacePipeIntegration, DeinterlaceRemoveFrameRectDownscaleWritePixels)
{
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
auto test = [](Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 20, 20)),
/* aInputRect = */ Some(IntRect(0, 0, 100, 100)),
/* aInputWriteRect = */ Some(IntRect(50, 50, 100, 100)),
/* aOutputWriteRect = */ Some(IntRect(10, 10, 10, 10)),
/* aFuzz = */ 33);
};
WithFilterPipeline(decoder, test,
DeinterlacingConfig<uint32_t> { /* mProgressiveDisplay = */ true },
RemoveFrameRectConfig { IntRect(50, 50, 100, 100) },
DownscalingConfig { IntSize(100, 100),
SurfaceFormat::B8G8R8A8 },
SurfaceConfig { decoder, IntSize(20, 20),
SurfaceFormat::B8G8R8A8, false });
}
TEST_F(ImageSurfacePipeIntegration, ConfiguringPalettedRemoveFrameRectDownscaleFails)
{
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
// This is an invalid pipeline for paletted images, so configuration should
// fail.
AssertConfiguringPipelineFails(decoder,
RemoveFrameRectConfig { IntRect(0, 0, 50, 50) },
DownscalingConfig { IntSize(100, 100),
SurfaceFormat::B8G8R8A8 },
PalettedSurfaceConfig { decoder, IntSize(100, 100),
IntRect(0, 0, 50, 50),
SurfaceFormat::B8G8R8A8, 8,
false });
}
TEST_F(ImageSurfacePipeIntegration, ConfiguringPalettedDeinterlaceDownscaleFails)
{
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
// This is an invalid pipeline for paletted images, so configuration should
// fail.
AssertConfiguringPipelineFails(decoder,
DeinterlacingConfig<uint8_t> { /* mProgressiveDisplay = */ true},
DownscalingConfig { IntSize(100, 100),
SurfaceFormat::B8G8R8A8 },
PalettedSurfaceConfig { decoder, IntSize(100, 100),
IntRect(0, 0, 20, 20),
SurfaceFormat::B8G8R8A8, 8,
false });
}
TEST_F(ImageSurfacePipeIntegration, ConfiguringHugeDeinterlacingBufferFails)
{
RefPtr<Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
// When DownscalingFilter is used, we may succeed in allocating an output
// surface for huge images, because we only need to store the scaled-down
// version of the image. However, regardless of downscaling,
// DeinterlacingFilter needs to allocate a buffer as large as the size of the
// input. This can cause OOMs on operating systems that allow overcommit. This
// test makes sure that we reject such allocations.
AssertConfiguringPipelineFails(decoder,
DeinterlacingConfig<uint32_t> { /* mProgressiveDisplay = */ true},
DownscalingConfig { IntSize(60000, 60000),
SurfaceFormat::B8G8R8A8 },
SurfaceConfig { decoder, IntSize(600, 600),
SurfaceFormat::B8G8R8A8, false });
}