zig/std/io.zig

378 lines
9.6 KiB
Zig

const linux = @import("linux.zig");
const errno = @import("errno.zig");
const math = @import("math.zig");
pub const stdin_fileno = 0;
pub const stdout_fileno = 1;
pub const stderr_fileno = 2;
pub var stdin = InStream {
.fd = stdin_fileno,
};
pub var stdout = OutStream {
.fd = stdout_fileno,
.buffer = undefined,
.index = 0,
};
pub var stderr = OutStream {
.fd = stderr_fileno,
.buffer = undefined,
.index = 0,
};
/// The function received invalid input at runtime. An Invalid error means a
/// bug in the program that called the function.
pub error Invalid;
/// When an Unexpected error occurs, code that emitted the error likely needs
/// a patch to recognize the unexpected case so that it can handle it and emit
/// a more specific error.
pub error Unexpected;
pub error DiskQuota;
pub error FileTooBig;
pub error SigInterrupt;
pub error Io;
pub error NoSpaceLeft;
pub error BadPerm;
pub error PipeFail;
pub error BadFd;
const buffer_size = 4 * 1024;
const max_u64_base10_digits = 20;
const max_f64_digits = 65;
pub struct OutStream {
fd: isize,
buffer: [buffer_size]u8,
index: isize,
pub fn print_str(os: &OutStream, str: []const u8) -> %isize {
var src_bytes_left = str.len;
var src_index: @typeof(str.len) = 0;
const dest_space_left = os.buffer.len - os.index;
while (src_bytes_left > 0) {
const copy_amt = math.min_isize(dest_space_left, src_bytes_left);
@memcpy(&os.buffer[os.index], &str[src_index], copy_amt);
os.index += copy_amt;
if (os.index == os.buffer.len) {
%return os.flush();
}
src_bytes_left -= copy_amt;
}
return str.len;
}
/// Prints a byte buffer, flushes the buffer, then returns the number of
/// bytes printed. The "f" is for "flush".
pub fn printf(os: &OutStream, str: []const u8) -> %isize {
const byte_count = %return os.print_str(str);
%return os.flush();
return byte_count;
}
pub fn print_u64(os: &OutStream, x: u64) -> %isize {
if (os.index + max_u64_base10_digits >= os.buffer.len) {
%return os.flush();
}
const amt_printed = buf_print_u64(os.buffer[os.index...], x);
os.index += amt_printed;
return amt_printed;
}
pub fn print_i64(os: &OutStream, x: i64) -> %isize {
if (os.index + max_u64_base10_digits >= os.buffer.len) {
%return os.flush();
}
const amt_printed = buf_print_i64(os.buffer[os.index...], x);
os.index += amt_printed;
return amt_printed;
}
pub fn print_f64(os: &OutStream, x: f64) -> %isize {
if (os.index + max_f64_digits >= os.buffer.len) {
%return os.flush();
}
const amt_printed = buf_print_f64(os.buffer[os.index...], x, 4);
os.index += amt_printed;
return amt_printed;
}
pub fn flush(os: &OutStream) -> %void {
const amt_written = linux.write(os.fd, &os.buffer[0], os.index);
os.index = 0;
if (amt_written < 0) {
return switch (-amt_written) {
errno.EINVAL => unreachable{},
errno.EDQUOT => error.DiskQuota,
errno.EFBIG => error.FileTooBig,
errno.EINTR => error.SigInterrupt,
errno.EIO => error.Io,
errno.ENOSPC => error.NoSpaceLeft,
errno.EPERM => error.BadPerm,
errno.EPIPE => error.PipeFail,
else => error.Unexpected,
}
}
}
pub fn close(os: &OutStream) -> %void {
const closed = linux.close(os.fd);
if (closed < 0) {
return switch (-closed) {
errno.EIO => error.Io,
errno.EBADF => error.BadFd,
errno.EINTR => error.SigInterrupt,
else => error.Unexpected,
}
}
}
}
pub struct InStream {
fd: isize,
pub fn read(is: &InStream, buf: []u8) -> %isize {
const amt_read = linux.read(is.fd, &buf[0], buf.len);
if (amt_read < 0) {
return switch (-amt_read) {
errno.EINVAL => unreachable{},
errno.EFAULT => unreachable{},
errno.EBADF => error.BadFd,
errno.EINTR => error.SigInterrupt,
errno.EIO => error.Io,
else => error.Unexpected,
}
}
return amt_read;
}
pub fn close(is: &InStream) -> %void {
const closed = linux.close(is.fd);
if (closed < 0) {
return switch (-closed) {
errno.EIO => error.Io,
errno.EBADF => error.BadFd,
errno.EINTR => error.SigInterrupt,
else => error.Unexpected,
}
}
}
}
#attribute("cold")
pub fn abort() -> unreachable {
linux.raise(linux.SIGABRT);
linux.raise(linux.SIGKILL);
while (true) {}
}
pub error InvalidChar;
pub error Overflow;
pub fn parse_u64(buf: []u8, radix: u8) -> %u64 {
var x : u64 = 0;
for (buf) |c| {
const digit = char_to_digit(c);
if (digit >= radix) {
return error.InvalidChar;
}
// x *= radix
if (@mul_with_overflow(u64, x, radix, &x)) {
return error.Overflow;
}
// x += digit
if (@add_with_overflow(u64, x, digit, &x)) {
return error.Overflow;
}
}
return x;
}
fn char_to_digit(c: u8) -> u8 {
// TODO use switch with range
if ('0' <= c && c <= '9') {
c - '0'
} else if ('A' <= c && c <= 'Z') {
c - 'A' + 10
} else if ('a' <= c && c <= 'z') {
c - 'a' + 10
} else {
@max_value(u8)
}
}
pub fn buf_print_i64(out_buf: []u8, x: i64) -> isize {
if (x < 0) {
out_buf[0] = '-';
return 1 + buf_print_u64(out_buf[1...], u64(-(x + 1)) + 1);
} else {
return buf_print_u64(out_buf, u64(x));
}
}
pub fn buf_print_u64(out_buf: []u8, x: u64) -> isize {
var buf: [max_u64_base10_digits]u8 = undefined;
var a = x;
var index: isize = buf.len;
while (true) {
const digit = a % 10;
index -= 1;
buf[index] = '0' + u8(digit);
a /= 10;
if (a == 0)
break;
}
const len = buf.len - index;
@memcpy(&out_buf[0], &buf[index], len);
return len;
}
pub fn buf_print_f64(out_buf: []u8, x: f64, decimals: isize) -> isize {
const numExpBits = 11;
const numRawSigBits = 52; // not including implicit 1 bit
const expBias = 1023;
var decs = decimals;
if (decs >= max_u64_base10_digits) {
decs = max_u64_base10_digits - 1;
}
if (x == math.f64_get_pos_inf()) {
const buf2 = "+Inf";
@memcpy(&out_buf[0], &buf2[0], buf2.len);
return 4;
} else if (x == math.f64_get_neg_inf()) {
const buf2 = "-Inf";
@memcpy(&out_buf[0], &buf2[0], buf2.len);
return 4;
} else if (math.f64_is_nan(x)) {
const buf2 = "NaN";
@memcpy(&out_buf[0], &buf2[0], buf2.len);
return 3;
}
var buf: [max_f64_digits]u8 = undefined;
var len: isize = 0;
// 1 sign bit
// 11 exponent bits
// 52 significand bits (+ 1 implicit always non-zero bit)
const bits = math.f64_to_bits(x);
if (bits & (1 << 63) != 0) {
buf[0] = '-';
len += 1;
}
const rexponent: i64 = i64((bits >> numRawSigBits) & ((1 << numExpBits) - 1));
const exponent = rexponent - expBias - numRawSigBits;
if (rexponent == 0) {
buf[len] = '0';
len += 1;
@memcpy(&out_buf[0], &buf[0], len);
return len;
}
const sig = (bits & ((1 << numRawSigBits) - 1)) | (1 << numRawSigBits);
if (exponent >= 0) {
// number is an integer
if (exponent >= 64 - 53) {
// use XeX form
// TODO support printing large floats
//len += buf_print_u64(buf[len...], sig << 10);
const str = "LARGEF64";
@memcpy(&buf[len], &str[0], str.len);
len += str.len;
} else {
// use typical form
len += buf_print_u64(buf[len...], sig << u64(exponent));
buf[len] = '.';
len += 1;
var i: isize = 0;
while (i < decs) {
buf[len] = '0';
len += 1;
i += 1;
}
}
} else {
// number is not an integer
// print out whole part
len += buf_print_u64(buf[len...], sig >> u64(-exponent));
buf[len] = '.';
len += 1;
// print out fractional part
// dec_num holds: fractional part * 10 ^ decs
var dec_num: u64 = 0;
var a: isize = 1;
var i: isize = 0;
while (i < decs + 5) {
a *= 10;
i += 1;
}
// create a mask: 1's for the fractional part, 0's for whole part
var masked_sig = sig & ((1 << u64(-exponent)) - 1);
i = -1;
while (i >= exponent) {
var bit_set = ((1 << u64(i-exponent)) & masked_sig) != 0;
if (bit_set) {
dec_num += usize(a) >> usize(-i);
}
i -= 1;
}
dec_num /= 100000;
len += decs;
i = len - 1;
while (i >= len - decs) {
buf[i] = '0' + u8(dec_num % 10);
dec_num /= 10;
i -= 1;
}
}
@memcpy(&out_buf[0], &buf[0], len);
len
}
#attribute("test")
fn parse_u64_digit_too_big() {
parse_u64("123a", 10) %% |err| {
if (err == error.InvalidChar) return;
unreachable{};
};
unreachable{};
}