405 lines
12 KiB
Zig
405 lines
12 KiB
Zig
const debug = @import("debug.zig");
|
|
const assert = debug.assert;
|
|
const math = @import("math/index.zig");
|
|
const os = @import("os/index.zig");
|
|
const io = @import("io.zig");
|
|
const builtin = @import("builtin");
|
|
const Os = builtin.Os;
|
|
|
|
pub const Cmp = math.Cmp;
|
|
|
|
error NoMem;
|
|
|
|
pub const Allocator = struct {
|
|
allocFn: fn (self: &Allocator, n: usize) -> %[]u8,
|
|
/// Note that old_mem may be a slice of length 0, in which case reallocFn
|
|
/// should simply call allocFn.
|
|
reallocFn: fn (self: &Allocator, old_mem: []u8, new_size: usize) -> %[]u8,
|
|
/// Note that mem may be a slice of length 0, in which case freeFn
|
|
/// should do nothing.
|
|
freeFn: fn (self: &Allocator, mem: []u8),
|
|
|
|
/// Aborts the program if an allocation fails.
|
|
fn checkedAlloc(self: &Allocator, comptime T: type, n: usize) -> []T {
|
|
alloc(self, T, n) %% |err| {
|
|
%%io.stderr.printf("allocation failure: {}\n", @errorName(err));
|
|
os.abort()
|
|
}
|
|
}
|
|
|
|
fn create(self: &Allocator, comptime T: type) -> %&T {
|
|
&(%return self.alloc(T, 1))[0]
|
|
}
|
|
|
|
fn destroy(self: &Allocator, ptr: var) {
|
|
self.free(ptr[0..1]);
|
|
}
|
|
|
|
fn alloc(self: &Allocator, comptime T: type, n: usize) -> %[]T {
|
|
const byte_count = %return math.mul(usize, @sizeOf(T), n);
|
|
([]T)(%return self.allocFn(self, byte_count))
|
|
}
|
|
|
|
fn realloc(self: &Allocator, comptime T: type, old_mem: []T, n: usize) -> %[]T {
|
|
const byte_count = %return math.mul(usize, @sizeOf(T), n);
|
|
([]T)(%return self.reallocFn(self, ([]u8)(old_mem), byte_count))
|
|
}
|
|
|
|
fn free(self: &Allocator, mem: var) {
|
|
self.freeFn(self, ([]u8)(mem));
|
|
}
|
|
};
|
|
|
|
pub const IncrementingAllocator = struct {
|
|
allocator: Allocator,
|
|
bytes: []u8,
|
|
end_index: usize,
|
|
|
|
fn init(capacity: usize) -> %IncrementingAllocator {
|
|
switch (builtin.os) {
|
|
Os.linux, Os.darwin, Os.macosx, Os.ios => {
|
|
const p = os.posix;
|
|
const addr = p.mmap(null, capacity, p.PROT_READ|p.PROT_WRITE,
|
|
p.MAP_PRIVATE|p.MAP_ANONYMOUS|p.MAP_NORESERVE, -1, 0);
|
|
if (addr == p.MAP_FAILED) {
|
|
return error.NoMem;
|
|
}
|
|
return IncrementingAllocator {
|
|
.allocator = Allocator {
|
|
.allocFn = alloc,
|
|
.reallocFn = realloc,
|
|
.freeFn = free,
|
|
},
|
|
.bytes = @intToPtr(&u8, addr)[0..capacity],
|
|
.end_index = 0,
|
|
};
|
|
},
|
|
else => @compileError("Unsupported OS"),
|
|
}
|
|
}
|
|
|
|
fn deinit(self: &IncrementingAllocator) {
|
|
_ = os.posix.munmap(self.bytes.ptr, self.bytes.len);
|
|
}
|
|
|
|
fn alloc(allocator: &Allocator, n: usize) -> %[]u8 {
|
|
const self = @fieldParentPtr(IncrementingAllocator, "allocator", allocator);
|
|
const new_end_index = self.end_index + n;
|
|
if (new_end_index > self.bytes.len) {
|
|
return error.NoMem;
|
|
}
|
|
const result = self.bytes[self.end_index..new_end_index];
|
|
self.end_index = new_end_index;
|
|
return result;
|
|
}
|
|
|
|
fn realloc(allocator: &Allocator, old_mem: []u8, new_size: usize) -> %[]u8 {
|
|
const result = %return alloc(allocator, new_size);
|
|
copy(u8, result, old_mem);
|
|
return result;
|
|
}
|
|
|
|
fn free(allocator: &Allocator, bytes: []u8) {
|
|
// Do nothing. That's the point of an incrementing allocator.
|
|
}
|
|
};
|
|
|
|
/// Copy all of source into dest at position 0.
|
|
/// dest.len must be >= source.len.
|
|
pub fn copy(comptime T: type, dest: []T, source: []const T) {
|
|
// TODO instead of manually doing this check for the whole array
|
|
// and turning off debug safety, the compiler should detect loops like
|
|
// this and automatically omit safety checks for loops
|
|
@setDebugSafety(this, false);
|
|
assert(dest.len >= source.len);
|
|
for (source) |s, i| dest[i] = s;
|
|
}
|
|
|
|
pub fn set(comptime T: type, dest: []T, value: T) {
|
|
for (dest) |*d| *d = value;
|
|
}
|
|
|
|
/// Return < 0, == 0, or > 0 if memory a is less than, equal to, or greater than,
|
|
/// memory b, respectively.
|
|
pub fn cmp(comptime T: type, a: []const T, b: []const T) -> Cmp {
|
|
const n = math.min(a.len, b.len);
|
|
var i: usize = 0;
|
|
while (i < n) : (i += 1) {
|
|
if (a[i] == b[i]) continue;
|
|
return if (a[i] > b[i]) Cmp.Greater else if (a[i] < b[i]) Cmp.Less else Cmp.Equal;
|
|
}
|
|
|
|
return if (a.len > b.len) Cmp.Greater else if (a.len < b.len) Cmp.Less else Cmp.Equal;
|
|
}
|
|
|
|
/// Compares two slices and returns whether they are equal.
|
|
pub fn eql(comptime T: type, a: []const T, b: []const T) -> bool {
|
|
if (a.len != b.len) return false;
|
|
for (a) |item, index| {
|
|
if (b[index] != item) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Copies ::m to newly allocated memory. Caller is responsible to free it.
|
|
pub fn dupe(allocator: &Allocator, comptime T: type, m: []const T) -> %[]T {
|
|
const new_buf = %return allocator.alloc(T, m.len);
|
|
copy(T, new_buf, m);
|
|
return new_buf;
|
|
}
|
|
|
|
/// Linear search for the index of a scalar value inside a slice.
|
|
pub fn indexOfScalar(comptime T: type, slice: []const T, value: T) -> ?usize {
|
|
for (slice) |item, i| {
|
|
if (item == value) {
|
|
return i;
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
// TODO boyer-moore algorithm
|
|
pub fn indexOf(comptime T: type, haystack: []const T, needle: []const T) -> ?usize {
|
|
if (needle.len > haystack.len)
|
|
return null;
|
|
|
|
var i: usize = 0;
|
|
const end = haystack.len - needle.len;
|
|
while (i <= end) : (i += 1) {
|
|
if (eql(T, haystack[i .. i + needle.len], needle))
|
|
return i;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
test "mem.indexOf" {
|
|
assert(??indexOf(u8, "one two three four", "four") == 14);
|
|
assert(indexOf(u8, "one two three four", "gour") == null);
|
|
assert(??indexOf(u8, "foo", "foo") == 0);
|
|
assert(indexOf(u8, "foo", "fool") == null);
|
|
}
|
|
|
|
/// Reads an integer from memory with size equal to bytes.len.
|
|
/// T specifies the return type, which must be large enough to store
|
|
/// the result.
|
|
pub fn readInt(bytes: []const u8, comptime T: type, big_endian: bool) -> T {
|
|
if (T.bit_count == 8) {
|
|
return bytes[0];
|
|
}
|
|
var result: T = 0;
|
|
if (big_endian) {
|
|
for (bytes) |b| {
|
|
result = (result << 8) | b;
|
|
}
|
|
} else {
|
|
const ShiftType = math.Log2Int(T);
|
|
for (bytes) |b, index| {
|
|
result = result | (T(b) << ShiftType(index * 8));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Writes an integer to memory with size equal to bytes.len. Pads with zeroes
|
|
/// to fill the entire buffer provided.
|
|
/// value must be an integer.
|
|
pub fn writeInt(buf: []u8, value: var, big_endian: bool) {
|
|
const uint = @IntType(false, @typeOf(value).bit_count);
|
|
var bits = @truncate(uint, value);
|
|
if (big_endian) {
|
|
var index: usize = buf.len;
|
|
while (index != 0) {
|
|
index -= 1;
|
|
|
|
buf[index] = @truncate(u8, bits);
|
|
bits >>= 8;
|
|
}
|
|
} else {
|
|
for (buf) |*b| {
|
|
*b = @truncate(u8, bits);
|
|
bits >>= 8;
|
|
}
|
|
}
|
|
assert(bits == 0);
|
|
}
|
|
|
|
|
|
pub fn hash_slice_u8(k: []const u8) -> u32 {
|
|
// FNV 32-bit hash
|
|
var h: u32 = 2166136261;
|
|
for (k) |b| {
|
|
h = (h ^ b) *% 16777619;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
pub fn eql_slice_u8(a: []const u8, b: []const u8) -> bool {
|
|
return eql(u8, a, b);
|
|
}
|
|
|
|
/// Returns an iterator that iterates over the slices of ::s that are not
|
|
/// the byte ::c.
|
|
/// split(" abc def ghi ")
|
|
/// Will return slices for "abc", "def", "ghi", null, in that order.
|
|
pub fn split(s: []const u8, c: u8) -> SplitIterator {
|
|
SplitIterator {
|
|
.index = 0,
|
|
.s = s,
|
|
.c = c,
|
|
}
|
|
}
|
|
|
|
test "mem.split" {
|
|
var it = split(" abc def ghi ", ' ');
|
|
assert(eql(u8, ??it.next(), "abc"));
|
|
assert(eql(u8, ??it.next(), "def"));
|
|
assert(eql(u8, ??it.next(), "ghi"));
|
|
assert(it.next() == null);
|
|
}
|
|
|
|
pub fn startsWith(comptime T: type, haystack: []const T, needle: []const T) -> bool {
|
|
return if (needle.len > haystack.len) false else eql(T, haystack[0 .. needle.len], needle);
|
|
}
|
|
|
|
const SplitIterator = struct {
|
|
s: []const u8,
|
|
c: u8,
|
|
index: usize,
|
|
|
|
pub fn next(self: &SplitIterator) -> ?[]const u8 {
|
|
// move to beginning of token
|
|
while (self.index < self.s.len and self.s[self.index] == self.c) : (self.index += 1) {}
|
|
const start = self.index;
|
|
if (start == self.s.len) {
|
|
return null;
|
|
}
|
|
|
|
// move to end of token
|
|
while (self.index < self.s.len and self.s[self.index] != self.c) : (self.index += 1) {}
|
|
const end = self.index;
|
|
|
|
return self.s[start..end];
|
|
}
|
|
|
|
/// Returns a slice of the remaining bytes. Does not affect iterator state.
|
|
pub fn rest(self: &const SplitIterator) -> []const u8 {
|
|
// move to beginning of token
|
|
var index: usize = self.index;
|
|
while (index < self.s.len and self.s[index] == self.c) : (index += 1) {}
|
|
return self.s[index..];
|
|
}
|
|
};
|
|
|
|
/// Naively combines a series of strings with a separator.
|
|
/// Allocates memory for the result, which must be freed by the caller.
|
|
pub fn join(allocator: &Allocator, sep: u8, strings: ...) -> %[]u8 {
|
|
comptime assert(strings.len >= 1);
|
|
var total_strings_len: usize = strings.len; // 1 sep per string
|
|
{
|
|
comptime var string_i = 0;
|
|
inline while (string_i < strings.len) : (string_i += 1) {
|
|
const arg = ([]const u8)(strings[string_i]);
|
|
total_strings_len += arg.len;
|
|
}
|
|
}
|
|
|
|
const buf = %return allocator.alloc(u8, total_strings_len);
|
|
%defer allocator.free(buf);
|
|
|
|
var buf_index: usize = 0;
|
|
comptime var string_i = 0;
|
|
inline while (true) {
|
|
const arg = ([]const u8)(strings[string_i]);
|
|
string_i += 1;
|
|
copy(u8, buf[buf_index..], arg);
|
|
buf_index += arg.len;
|
|
if (string_i >= strings.len) break;
|
|
if (buf[buf_index - 1] != sep) {
|
|
buf[buf_index] = sep;
|
|
buf_index += 1;
|
|
}
|
|
}
|
|
|
|
return buf[0..buf_index];
|
|
}
|
|
|
|
test "mem.join" {
|
|
assert(eql(u8, %%join(&debug.global_allocator, ',', "a", "b", "c"), "a,b,c"));
|
|
assert(eql(u8, %%join(&debug.global_allocator, ',', "a"), "a"));
|
|
}
|
|
|
|
test "testStringEquality" {
|
|
assert(eql(u8, "abcd", "abcd"));
|
|
assert(!eql(u8, "abcdef", "abZdef"));
|
|
assert(!eql(u8, "abcdefg", "abcdef"));
|
|
}
|
|
|
|
test "testReadInt" {
|
|
testReadIntImpl();
|
|
comptime testReadIntImpl();
|
|
}
|
|
fn testReadIntImpl() {
|
|
{
|
|
const bytes = []u8{ 0x12, 0x34, 0x56, 0x78 };
|
|
assert(readInt(bytes, u32, true) == 0x12345678);
|
|
assert(readInt(bytes, u32, false) == 0x78563412);
|
|
}
|
|
{
|
|
const buf = []u8{0x00, 0x00, 0x12, 0x34};
|
|
const answer = readInt(buf, u64, true);
|
|
assert(answer == 0x00001234);
|
|
}
|
|
{
|
|
const buf = []u8{0x12, 0x34, 0x00, 0x00};
|
|
const answer = readInt(buf, u64, false);
|
|
assert(answer == 0x00003412);
|
|
}
|
|
}
|
|
|
|
test "testWriteInt" {
|
|
testWriteIntImpl();
|
|
comptime testWriteIntImpl();
|
|
}
|
|
fn testWriteIntImpl() {
|
|
var bytes: [4]u8 = undefined;
|
|
|
|
writeInt(bytes[0..], u32(0x12345678), true);
|
|
assert(eql(u8, bytes, []u8{ 0x12, 0x34, 0x56, 0x78 }));
|
|
|
|
writeInt(bytes[0..], u32(0x78563412), false);
|
|
assert(eql(u8, bytes, []u8{ 0x12, 0x34, 0x56, 0x78 }));
|
|
|
|
writeInt(bytes[0..], u16(0x1234), true);
|
|
assert(eql(u8, bytes, []u8{ 0x00, 0x00, 0x12, 0x34 }));
|
|
|
|
writeInt(bytes[0..], u16(0x1234), false);
|
|
assert(eql(u8, bytes, []u8{ 0x34, 0x12, 0x00, 0x00 }));
|
|
}
|
|
|
|
|
|
pub fn min(comptime T: type, slice: []const T) -> T {
|
|
var best = slice[0];
|
|
var i: usize = 1;
|
|
while (i < slice.len) : (i += 1) {
|
|
best = math.min(best, slice[i]);
|
|
}
|
|
return best;
|
|
}
|
|
|
|
test "mem.min" {
|
|
assert(min(u8, "abcdefg") == 'a');
|
|
}
|
|
|
|
pub fn max(comptime T: type, slice: []const T) -> T {
|
|
var best = slice[0];
|
|
var i: usize = 1;
|
|
while (i < slice.len) : (i += 1) {
|
|
best = math.max(best, slice[i]);
|
|
}
|
|
return best;
|
|
}
|
|
|
|
test "mem.max" {
|
|
assert(max(u8, "abcdefg") == 'g');
|
|
}
|