zig/src-self-hosted/link.zig

858 lines
33 KiB
Zig

const std = @import("std");
const mem = std.mem;
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const ir = @import("ir.zig");
const fs = std.fs;
const elf = std.elf;
const codegen = @import("codegen.zig");
const default_entry_addr = 0x8000000;
pub const ErrorMsg = struct {
byte_offset: usize,
msg: []const u8,
};
pub const Result = struct {
errors: []ErrorMsg,
pub fn deinit(self: *Result, allocator: *mem.Allocator) void {
for (self.errors) |err| {
allocator.free(err.msg);
}
allocator.free(self.errors);
self.* = undefined;
}
};
/// Attempts incremental linking, if the file already exists.
/// If incremental linking fails, falls back to truncating the file and rewriting it.
/// A malicious file is detected as incremental link failure and does not cause Illegal Behavior.
/// This operation is not atomic.
pub fn updateFilePath(
allocator: *Allocator,
module: ir.Module,
dir: fs.Dir,
sub_path: []const u8,
) !Result {
const file = try dir.createFile(sub_path, .{ .truncate = false, .read = true, .mode = determineMode(module) });
defer file.close();
return updateFile(allocator, module, file);
}
/// Atomically overwrites the old file, if present.
pub fn writeFilePath(
allocator: *Allocator,
module: ir.Module,
dir: fs.Dir,
sub_path: []const u8,
) !Result {
const af = try dir.atomicFile(sub_path, .{ .mode = determineMode(module) });
defer af.deinit();
const result = try writeFile(allocator, module, af.file);
try af.finish();
return result;
}
/// Attempts incremental linking, if the file already exists.
/// If incremental linking fails, falls back to truncating the file and rewriting it.
/// Returns an error if `file` is not already open with +read +write +seek abilities.
/// A malicious file is detected as incremental link failure and does not cause Illegal Behavior.
/// This operation is not atomic.
pub fn updateFile(allocator: *Allocator, module: ir.Module, file: fs.File) !Result {
return updateFileInner(allocator, module, file) catch |err| switch (err) {
error.IncrFailed => {
return writeFile(allocator, module, file);
},
else => |e| return e,
};
}
const Update = struct {
file: fs.File,
module: *const ir.Module,
/// Stored in native-endian format, depending on target endianness needs to be bswapped on read/write.
/// Same order as in the file.
sections: std.ArrayList(elf.Elf64_Shdr),
shdr_table_offset: ?u64,
/// Stored in native-endian format, depending on target endianness needs to be bswapped on read/write.
/// Same order as in the file.
program_headers: std.ArrayList(elf.Elf64_Phdr),
phdr_table_offset: ?u64,
/// The index into the program headers of a PT_LOAD program header with Read and Execute flags
phdr_load_re_index: ?u16,
entry_addr: ?u64,
shstrtab: std.ArrayList(u8),
shstrtab_index: ?u16,
text_section_index: ?u16,
symtab_section_index: ?u16,
/// The same order as in the file
symbols: std.ArrayList(elf.Elf64_Sym),
errors: std.ArrayList(ErrorMsg),
fn deinit(self: *Update) void {
self.sections.deinit();
self.program_headers.deinit();
self.shstrtab.deinit();
self.symbols.deinit();
self.errors.deinit();
}
// `expand_num / expand_den` is the factor of padding when allocation
const alloc_num = 4;
const alloc_den = 3;
/// Returns end pos of collision, if any.
fn detectAllocCollision(self: *Update, start: u64, size: u64) ?u64 {
const small_ptr = self.module.target.cpu.arch.ptrBitWidth() == 32;
const ehdr_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Ehdr) else @sizeOf(elf.Elf64_Ehdr);
if (start < ehdr_size)
return ehdr_size;
const end = start + satMul(size, alloc_num) / alloc_den;
if (self.shdr_table_offset) |off| {
const shdr_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Shdr) else @sizeOf(elf.Elf64_Shdr);
const tight_size = self.sections.items.len * shdr_size;
const increased_size = satMul(tight_size, alloc_num) / alloc_den;
const test_end = off + increased_size;
if (end > off and start < test_end) {
return test_end;
}
}
if (self.phdr_table_offset) |off| {
const phdr_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Phdr) else @sizeOf(elf.Elf64_Phdr);
const tight_size = self.sections.items.len * phdr_size;
const increased_size = satMul(tight_size, alloc_num) / alloc_den;
const test_end = off + increased_size;
if (end > off and start < test_end) {
return test_end;
}
}
for (self.sections.items) |section| {
const increased_size = satMul(section.sh_size, alloc_num) / alloc_den;
const test_end = section.sh_offset + increased_size;
if (end > section.sh_offset and start < test_end) {
return test_end;
}
}
for (self.program_headers.items) |program_header| {
const increased_size = satMul(program_header.p_filesz, alloc_num) / alloc_den;
const test_end = program_header.p_offset + increased_size;
if (end > program_header.p_offset and start < test_end) {
return test_end;
}
}
return null;
}
fn allocatedSize(self: *Update, start: u64) u64 {
var min_pos: u64 = std.math.maxInt(u64);
if (self.shdr_table_offset) |off| {
if (off > start and off < min_pos) min_pos = off;
}
if (self.phdr_table_offset) |off| {
if (off > start and off < min_pos) min_pos = off;
}
for (self.sections.items) |section| {
if (section.sh_offset <= start) continue;
if (section.sh_offset < min_pos) min_pos = section.sh_offset;
}
for (self.program_headers.items) |program_header| {
if (program_header.p_offset <= start) continue;
if (program_header.p_offset < min_pos) min_pos = program_header.p_offset;
}
return min_pos - start;
}
fn findFreeSpace(self: *Update, object_size: u64, min_alignment: u16) u64 {
var start: u64 = 0;
while (self.detectAllocCollision(start, object_size)) |item_end| {
start = mem.alignForwardGeneric(u64, item_end, min_alignment);
}
return start;
}
fn makeString(self: *Update, bytes: []const u8) !u32 {
const result = self.shstrtab.items.len;
try self.shstrtab.appendSlice(bytes);
try self.shstrtab.append(0);
return @intCast(u32, result);
}
fn perform(self: *Update) !void {
const ptr_width: enum { p32, p64 } = switch (self.module.target.cpu.arch.ptrBitWidth()) {
32 => .p32,
64 => .p64,
else => return error.UnsupportedArchitecture,
};
const small_ptr = switch (ptr_width) {
.p32 => true,
.p64 => false,
};
// This means the entire read-only executable program code needs to be rewritten.
var phdr_load_re_dirty = false;
var phdr_table_dirty = false;
var shdr_table_dirty = false;
var shstrtab_dirty = false;
var symtab_dirty = false;
if (self.phdr_load_re_index == null) {
self.phdr_load_re_index = @intCast(u16, self.program_headers.items.len);
const file_size = 256 * 1024;
const p_align = 0x1000;
const off = self.findFreeSpace(file_size, p_align);
//std.debug.warn("found PT_LOAD free space 0x{x} to 0x{x}\n", .{ off, off + file_size });
try self.program_headers.append(.{
.p_type = elf.PT_LOAD,
.p_offset = off,
.p_filesz = file_size,
.p_vaddr = default_entry_addr,
.p_paddr = default_entry_addr,
.p_memsz = 0,
.p_align = p_align,
.p_flags = elf.PF_X | elf.PF_R,
});
self.entry_addr = null;
phdr_load_re_dirty = true;
phdr_table_dirty = true;
}
if (self.sections.items.len == 0) {
// There must always be a null section in index 0
try self.sections.append(.{
.sh_name = 0,
.sh_type = elf.SHT_NULL,
.sh_flags = 0,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = 0,
.sh_entsize = 0,
});
shdr_table_dirty = true;
}
if (self.shstrtab_index == null) {
self.shstrtab_index = @intCast(u16, self.sections.items.len);
assert(self.shstrtab.items.len == 0);
try self.shstrtab.append(0); // need a 0 at position 0
const off = self.findFreeSpace(self.shstrtab.items.len, 1);
//std.debug.warn("found shstrtab free space 0x{x} to 0x{x}\n", .{ off, off + self.shstrtab.items.len });
try self.sections.append(.{
.sh_name = try self.makeString(".shstrtab"),
.sh_type = elf.SHT_STRTAB,
.sh_flags = 0,
.sh_addr = 0,
.sh_offset = off,
.sh_size = self.shstrtab.items.len,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = 1,
.sh_entsize = 0,
});
shstrtab_dirty = true;
shdr_table_dirty = true;
}
if (self.text_section_index == null) {
self.text_section_index = @intCast(u16, self.sections.items.len);
const phdr = &self.program_headers.items[self.phdr_load_re_index.?];
try self.sections.append(.{
.sh_name = try self.makeString(".text"),
.sh_type = elf.SHT_PROGBITS,
.sh_flags = elf.SHF_ALLOC | elf.SHF_EXECINSTR,
.sh_addr = phdr.p_vaddr,
.sh_offset = phdr.p_offset,
.sh_size = phdr.p_filesz,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = phdr.p_align,
.sh_entsize = 0,
});
shdr_table_dirty = true;
}
if (self.symtab_section_index == null) {
self.symtab_section_index = @intCast(u16, self.sections.items.len);
const min_align: u16 = if (small_ptr) @alignOf(elf.Elf32_Sym) else @alignOf(elf.Elf64_Sym);
const each_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Sym) else @sizeOf(elf.Elf64_Sym);
const file_size = self.module.exports.len * each_size;
const off = self.findFreeSpace(file_size, min_align);
//std.debug.warn("found symtab free space 0x{x} to 0x{x}\n", .{ off, off + file_size });
try self.sections.append(.{
.sh_name = try self.makeString(".symtab"),
.sh_type = elf.SHT_SYMTAB,
.sh_flags = 0,
.sh_addr = 0,
.sh_offset = off,
.sh_size = file_size,
// The section header index of the associated string table.
.sh_link = self.shstrtab_index.?,
.sh_info = @intCast(u32, self.module.exports.len),
.sh_addralign = min_align,
.sh_entsize = each_size,
});
symtab_dirty = true;
shdr_table_dirty = true;
}
const shsize: u64 = switch (ptr_width) {
.p32 => @sizeOf(elf.Elf32_Shdr),
.p64 => @sizeOf(elf.Elf64_Shdr),
};
const shalign: u16 = switch (ptr_width) {
.p32 => @alignOf(elf.Elf32_Shdr),
.p64 => @alignOf(elf.Elf64_Shdr),
};
if (self.shdr_table_offset == null) {
self.shdr_table_offset = self.findFreeSpace(self.sections.items.len * shsize, shalign);
shdr_table_dirty = true;
}
const phsize: u64 = switch (ptr_width) {
.p32 => @sizeOf(elf.Elf32_Phdr),
.p64 => @sizeOf(elf.Elf64_Phdr),
};
const phalign: u16 = switch (ptr_width) {
.p32 => @alignOf(elf.Elf32_Phdr),
.p64 => @alignOf(elf.Elf64_Phdr),
};
if (self.phdr_table_offset == null) {
self.phdr_table_offset = self.findFreeSpace(self.program_headers.items.len * phsize, phalign);
phdr_table_dirty = true;
}
const foreign_endian = self.module.target.cpu.arch.endian() != std.Target.current.cpu.arch.endian();
try self.writeCodeAndSymbols(phdr_table_dirty, shdr_table_dirty);
if (phdr_table_dirty) {
const allocated_size = self.allocatedSize(self.phdr_table_offset.?);
const needed_size = self.program_headers.items.len * phsize;
if (needed_size > allocated_size) {
self.phdr_table_offset = null; // free the space
self.phdr_table_offset = self.findFreeSpace(needed_size, phalign);
}
const allocator = self.program_headers.allocator;
switch (ptr_width) {
.p32 => {
const buf = try allocator.alloc(elf.Elf32_Phdr, self.program_headers.items.len);
defer allocator.free(buf);
for (buf) |*phdr, i| {
phdr.* = progHeaderTo32(self.program_headers.items[i]);
if (foreign_endian) {
bswapAllFields(elf.Elf32_Phdr, phdr);
}
}
try self.file.pwriteAll(mem.sliceAsBytes(buf), self.phdr_table_offset.?);
},
.p64 => {
const buf = try allocator.alloc(elf.Elf64_Phdr, self.program_headers.items.len);
defer allocator.free(buf);
for (buf) |*phdr, i| {
phdr.* = self.program_headers.items[i];
if (foreign_endian) {
bswapAllFields(elf.Elf64_Phdr, phdr);
}
}
try self.file.pwriteAll(mem.sliceAsBytes(buf), self.phdr_table_offset.?);
},
}
}
{
const shstrtab_sect = &self.sections.items[self.shstrtab_index.?];
if (shstrtab_dirty or self.shstrtab.items.len != shstrtab_sect.sh_size) {
const allocated_size = self.allocatedSize(shstrtab_sect.sh_offset);
const needed_size = self.shstrtab.items.len;
if (needed_size > allocated_size) {
shstrtab_sect.sh_size = 0; // free the space
shstrtab_sect.sh_offset = self.findFreeSpace(needed_size, 1);
}
shstrtab_sect.sh_size = needed_size;
//std.debug.warn("shstrtab start=0x{x} end=0x{x}\n", .{ shstrtab_sect.sh_offset, shstrtab_sect.sh_offset + needed_size });
try self.file.pwriteAll(self.shstrtab.items, shstrtab_sect.sh_offset);
if (!shdr_table_dirty) {
// Then it won't get written with the others and we need to do it.
try self.writeSectHeader(self.shstrtab_index.?);
}
}
}
if (shdr_table_dirty) {
const allocated_size = self.allocatedSize(self.shdr_table_offset.?);
const needed_size = self.sections.items.len * phsize;
if (needed_size > allocated_size) {
self.shdr_table_offset = null; // free the space
self.shdr_table_offset = self.findFreeSpace(needed_size, phalign);
}
const allocator = self.sections.allocator;
switch (ptr_width) {
.p32 => {
const buf = try allocator.alloc(elf.Elf32_Shdr, self.sections.items.len);
defer allocator.free(buf);
for (buf) |*shdr, i| {
shdr.* = sectHeaderTo32(self.sections.items[i]);
if (foreign_endian) {
bswapAllFields(elf.Elf32_Shdr, shdr);
}
}
try self.file.pwriteAll(mem.sliceAsBytes(buf), self.shdr_table_offset.?);
},
.p64 => {
const buf = try allocator.alloc(elf.Elf64_Shdr, self.sections.items.len);
defer allocator.free(buf);
for (buf) |*shdr, i| {
shdr.* = self.sections.items[i];
//std.debug.warn("writing section {}\n", .{shdr.*});
if (foreign_endian) {
bswapAllFields(elf.Elf64_Shdr, shdr);
}
}
try self.file.pwriteAll(mem.sliceAsBytes(buf), self.shdr_table_offset.?);
},
}
}
if (self.entry_addr == null and self.module.output_mode == .Exe) {
const msg = try std.fmt.allocPrint(self.errors.allocator, "no entry point found", .{});
errdefer self.errors.allocator.free(msg);
try self.errors.append(.{
.byte_offset = 0,
.msg = msg,
});
} else {
try self.writeElfHeader();
}
// TODO find end pos and truncate
}
fn writeElfHeader(self: *Update) !void {
var hdr_buf: [@sizeOf(elf.Elf64_Ehdr)]u8 = undefined;
var index: usize = 0;
hdr_buf[0..4].* = "\x7fELF".*;
index += 4;
const ptr_width: enum { p32, p64 } = switch (self.module.target.cpu.arch.ptrBitWidth()) {
32 => .p32,
64 => .p64,
else => return error.UnsupportedArchitecture,
};
hdr_buf[index] = switch (ptr_width) {
.p32 => elf.ELFCLASS32,
.p64 => elf.ELFCLASS64,
};
index += 1;
const endian = self.module.target.cpu.arch.endian();
hdr_buf[index] = switch (endian) {
.Little => elf.ELFDATA2LSB,
.Big => elf.ELFDATA2MSB,
};
index += 1;
hdr_buf[index] = 1; // ELF version
index += 1;
// OS ABI, often set to 0 regardless of target platform
// ABI Version, possibly used by glibc but not by static executables
// padding
mem.set(u8, hdr_buf[index..][0..9], 0);
index += 9;
assert(index == 16);
const elf_type = switch (self.module.output_mode) {
.Exe => elf.ET.EXEC,
.Obj => elf.ET.REL,
.Lib => switch (self.module.link_mode) {
.Static => elf.ET.REL,
.Dynamic => elf.ET.DYN,
},
};
mem.writeInt(u16, hdr_buf[index..][0..2], @enumToInt(elf_type), endian);
index += 2;
const machine = self.module.target.cpu.arch.toElfMachine();
mem.writeInt(u16, hdr_buf[index..][0..2], @enumToInt(machine), endian);
index += 2;
// ELF Version, again
mem.writeInt(u32, hdr_buf[index..][0..4], 1, endian);
index += 4;
const e_entry = if (elf_type == .REL) 0 else self.entry_addr.?;
switch (ptr_width) {
.p32 => {
mem.writeInt(u32, hdr_buf[index..][0..4], @intCast(u32, e_entry), endian);
index += 4;
// e_phoff
mem.writeInt(u32, hdr_buf[index..][0..4], @intCast(u32, self.phdr_table_offset.?), endian);
index += 4;
// e_shoff
mem.writeInt(u32, hdr_buf[index..][0..4], @intCast(u32, self.shdr_table_offset.?), endian);
index += 4;
},
.p64 => {
// e_entry
mem.writeInt(u64, hdr_buf[index..][0..8], e_entry, endian);
index += 8;
// e_phoff
mem.writeInt(u64, hdr_buf[index..][0..8], self.phdr_table_offset.?, endian);
index += 8;
// e_shoff
mem.writeInt(u64, hdr_buf[index..][0..8], self.shdr_table_offset.?, endian);
index += 8;
},
}
const e_flags = 0;
mem.writeInt(u32, hdr_buf[index..][0..4], e_flags, endian);
index += 4;
const e_ehsize: u16 = switch (ptr_width) {
.p32 => @sizeOf(elf.Elf32_Ehdr),
.p64 => @sizeOf(elf.Elf64_Ehdr),
};
mem.writeInt(u16, hdr_buf[index..][0..2], e_ehsize, endian);
index += 2;
const e_phentsize: u16 = switch (ptr_width) {
.p32 => @sizeOf(elf.Elf32_Phdr),
.p64 => @sizeOf(elf.Elf64_Phdr),
};
mem.writeInt(u16, hdr_buf[index..][0..2], e_phentsize, endian);
index += 2;
const e_phnum = @intCast(u16, self.program_headers.items.len);
mem.writeInt(u16, hdr_buf[index..][0..2], e_phnum, endian);
index += 2;
const e_shentsize: u16 = switch (ptr_width) {
.p32 => @sizeOf(elf.Elf32_Shdr),
.p64 => @sizeOf(elf.Elf64_Shdr),
};
mem.writeInt(u16, hdr_buf[index..][0..2], e_shentsize, endian);
index += 2;
const e_shnum = @intCast(u16, self.sections.items.len);
mem.writeInt(u16, hdr_buf[index..][0..2], e_shnum, endian);
index += 2;
mem.writeInt(u16, hdr_buf[index..][0..2], self.shstrtab_index.?, endian);
index += 2;
assert(index == e_ehsize);
try self.file.pwriteAll(hdr_buf[0..index], 0);
}
fn writeCodeAndSymbols(self: *Update, phdr_table_dirty: bool, shdr_table_dirty: bool) !void {
// index 0 is always a null symbol
try self.symbols.resize(1);
self.symbols.items[0] = .{
.st_name = 0,
.st_info = 0,
.st_other = 0,
.st_shndx = 0,
.st_value = 0,
.st_size = 0,
};
const phdr = &self.program_headers.items[self.phdr_load_re_index.?];
var vaddr: u64 = phdr.p_vaddr;
var file_off: u64 = phdr.p_offset;
var code = std.ArrayList(u8).init(self.sections.allocator);
defer code.deinit();
for (self.module.exports) |exp| {
code.shrink(0);
var symbol = try codegen.generateSymbol(exp.typed_value, self.module.*, &code);
defer symbol.deinit(code.allocator);
if (symbol.errors.len != 0) {
for (symbol.errors) |err| {
const msg = try mem.dupe(self.errors.allocator, u8, err.msg);
errdefer self.errors.allocator.free(msg);
try self.errors.append(.{
.byte_offset = err.byte_offset,
.msg = msg,
});
}
continue;
}
try self.file.pwriteAll(code.items, file_off);
if (mem.eql(u8, exp.name, "_start")) {
self.entry_addr = vaddr;
}
(try self.symbols.addOne()).* = .{
.st_name = try self.makeString(exp.name),
.st_info = (elf.STB_LOCAL << 4) | elf.STT_FUNC,
.st_other = 0,
.st_shndx = self.text_section_index.?,
.st_value = vaddr,
.st_size = code.items.len,
};
vaddr += code.items.len;
}
{
// Now that we know the code size, we need to update the program header for executable code
phdr.p_memsz = vaddr - phdr.p_vaddr;
phdr.p_filesz = phdr.p_memsz;
const shdr = &self.sections.items[self.text_section_index.?];
shdr.sh_size = phdr.p_filesz;
if (!phdr_table_dirty) {
// Then it won't get written with the others and we need to do it.
try self.writeProgHeader(self.phdr_load_re_index.?);
}
if (!shdr_table_dirty) {
// Then it won't get written with the others and we need to do it.
try self.writeSectHeader(self.text_section_index.?);
}
}
return self.writeSymbols();
}
fn writeProgHeader(self: *Update, index: usize) !void {
const foreign_endian = self.module.target.cpu.arch.endian() != std.Target.current.cpu.arch.endian();
const offset = self.program_headers.items[index].p_offset;
switch (self.module.target.cpu.arch.ptrBitWidth()) {
32 => {
var phdr = [1]elf.Elf32_Phdr{progHeaderTo32(self.program_headers.items[index])};
if (foreign_endian) {
bswapAllFields(elf.Elf32_Phdr, &phdr[0]);
}
return self.file.pwriteAll(mem.sliceAsBytes(&phdr), offset);
},
64 => {
var phdr = [1]elf.Elf64_Phdr{self.program_headers.items[index]};
if (foreign_endian) {
bswapAllFields(elf.Elf64_Phdr, &phdr[0]);
}
return self.file.pwriteAll(mem.sliceAsBytes(&phdr), offset);
},
else => return error.UnsupportedArchitecture,
}
}
fn writeSectHeader(self: *Update, index: usize) !void {
const foreign_endian = self.module.target.cpu.arch.endian() != std.Target.current.cpu.arch.endian();
const offset = self.sections.items[index].sh_offset;
switch (self.module.target.cpu.arch.ptrBitWidth()) {
32 => {
var shdr: [1]elf.Elf32_Shdr = undefined;
shdr[0] = sectHeaderTo32(self.sections.items[index]);
if (foreign_endian) {
bswapAllFields(elf.Elf32_Shdr, &shdr[0]);
}
return self.file.pwriteAll(mem.sliceAsBytes(&shdr), offset);
},
64 => {
var shdr = [1]elf.Elf64_Shdr{self.sections.items[index]};
if (foreign_endian) {
bswapAllFields(elf.Elf64_Shdr, &shdr[0]);
}
return self.file.pwriteAll(mem.sliceAsBytes(&shdr), offset);
},
else => return error.UnsupportedArchitecture,
}
}
fn writeSymbols(self: *Update) !void {
const ptr_width: enum { p32, p64 } = switch (self.module.target.cpu.arch.ptrBitWidth()) {
32 => .p32,
64 => .p64,
else => return error.UnsupportedArchitecture,
};
const small_ptr = ptr_width == .p32;
const syms_sect = &self.sections.items[self.symtab_section_index.?];
const sym_align: u16 = if (small_ptr) @alignOf(elf.Elf32_Sym) else @alignOf(elf.Elf64_Sym);
const sym_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Sym) else @sizeOf(elf.Elf64_Sym);
const allocated_size = self.allocatedSize(syms_sect.sh_offset);
const needed_size = self.symbols.items.len * sym_size;
if (needed_size > allocated_size) {
syms_sect.sh_size = 0; // free the space
syms_sect.sh_offset = self.findFreeSpace(needed_size, sym_align);
//std.debug.warn("moved symtab to 0x{x} to 0x{x}\n", .{ syms_sect.sh_offset, syms_sect.sh_offset + needed_size });
}
//std.debug.warn("symtab start=0x{x} end=0x{x}\n", .{ syms_sect.sh_offset, syms_sect.sh_offset + needed_size });
syms_sect.sh_size = needed_size;
syms_sect.sh_info = @intCast(u32, self.symbols.items.len);
const allocator = self.symbols.allocator;
const foreign_endian = self.module.target.cpu.arch.endian() != std.Target.current.cpu.arch.endian();
switch (ptr_width) {
.p32 => {
const buf = try allocator.alloc(elf.Elf32_Sym, self.symbols.items.len);
defer allocator.free(buf);
for (buf) |*sym, i| {
sym.* = .{
.st_name = self.symbols.items[i].st_name,
.st_value = @intCast(u32, self.symbols.items[i].st_value),
.st_size = @intCast(u32, self.symbols.items[i].st_size),
.st_info = self.symbols.items[i].st_info,
.st_other = self.symbols.items[i].st_other,
.st_shndx = self.symbols.items[i].st_shndx,
};
if (foreign_endian) {
bswapAllFields(elf.Elf32_Sym, sym);
}
}
try self.file.pwriteAll(mem.sliceAsBytes(buf), syms_sect.sh_offset);
},
.p64 => {
const buf = try allocator.alloc(elf.Elf64_Sym, self.symbols.items.len);
defer allocator.free(buf);
for (buf) |*sym, i| {
sym.* = .{
.st_name = self.symbols.items[i].st_name,
.st_value = self.symbols.items[i].st_value,
.st_size = self.symbols.items[i].st_size,
.st_info = self.symbols.items[i].st_info,
.st_other = self.symbols.items[i].st_other,
.st_shndx = self.symbols.items[i].st_shndx,
};
if (foreign_endian) {
bswapAllFields(elf.Elf64_Sym, sym);
}
}
try self.file.pwriteAll(mem.sliceAsBytes(buf), syms_sect.sh_offset);
},
}
}
};
/// Truncates the existing file contents and overwrites the contents.
/// Returns an error if `file` is not already open with +read +write +seek abilities.
pub fn writeFile(allocator: *Allocator, module: ir.Module, file: fs.File) !Result {
switch (module.output_mode) {
.Exe => {},
.Obj => {},
.Lib => return error.TODOImplementWritingLibFiles,
}
switch (module.object_format) {
.unknown => unreachable, // TODO remove this tag from the enum
.coff => return error.TODOImplementWritingCOFF,
.elf => {},
.macho => return error.TODOImplementWritingMachO,
.wasm => return error.TODOImplementWritingWasmObjects,
}
var update = Update{
.file = file,
.module = &module,
.sections = std.ArrayList(elf.Elf64_Shdr).init(allocator),
.shdr_table_offset = null,
.program_headers = std.ArrayList(elf.Elf64_Phdr).init(allocator),
.phdr_table_offset = null,
.phdr_load_re_index = null,
.entry_addr = null,
.shstrtab = std.ArrayList(u8).init(allocator),
.shstrtab_index = null,
.text_section_index = null,
.symtab_section_index = null,
.symbols = std.ArrayList(elf.Elf64_Sym).init(allocator),
.errors = std.ArrayList(ErrorMsg).init(allocator),
};
defer update.deinit();
try update.perform();
return Result{
.errors = update.errors.toOwnedSlice(),
};
}
/// Returns error.IncrFailed if incremental update could not be performed.
fn updateFileInner(allocator: *Allocator, module: ir.Module, file: fs.File) !Result {
//var ehdr_buf: [@sizeOf(elf.Elf64_Ehdr)]u8 = undefined;
// TODO implement incremental linking
return error.IncrFailed;
}
/// Saturating multiplication
fn satMul(a: var, b: var) @TypeOf(a, b) {
const T = @TypeOf(a, b);
return std.math.mul(T, a, b) catch std.math.maxInt(T);
}
fn bswapAllFields(comptime S: type, ptr: *S) void {
@panic("TODO implement bswapAllFields");
}
fn progHeaderTo32(phdr: elf.Elf64_Phdr) elf.Elf32_Phdr {
return .{
.p_type = phdr.p_type,
.p_flags = phdr.p_flags,
.p_offset = @intCast(u32, phdr.p_offset),
.p_vaddr = @intCast(u32, phdr.p_vaddr),
.p_paddr = @intCast(u32, phdr.p_paddr),
.p_filesz = @intCast(u32, phdr.p_filesz),
.p_memsz = @intCast(u32, phdr.p_memsz),
.p_align = @intCast(u32, phdr.p_align),
};
}
fn sectHeaderTo32(shdr: elf.Elf64_Shdr) elf.Elf32_Shdr {
return .{
.sh_name = shdr.sh_name,
.sh_type = shdr.sh_type,
.sh_flags = @intCast(u32, shdr.sh_flags),
.sh_addr = @intCast(u32, shdr.sh_addr),
.sh_offset = @intCast(u32, shdr.sh_offset),
.sh_size = @intCast(u32, shdr.sh_size),
.sh_link = shdr.sh_link,
.sh_info = shdr.sh_info,
.sh_addralign = @intCast(u32, shdr.sh_addralign),
.sh_entsize = @intCast(u32, shdr.sh_entsize),
};
}
fn determineMode(module: ir.Module) fs.File.Mode {
// On common systems with a 0o022 umask, 0o777 will still result in a file created
// with 0o755 permissions, but it works appropriately if the system is configured
// more leniently. As another data point, C's fopen seems to open files with the
// 666 mode.
const executable_mode = if (std.Target.current.os.tag == .windows) 0 else 0o777;
switch (module.output_mode) {
.Lib => return switch (module.link_mode) {
.Dynamic => executable_mode,
.Static => fs.File.default_mode,
},
.Exe => return executable_mode,
.Obj => return fs.File.default_mode,
}
}