414 lines
15 KiB
Zig
414 lines
15 KiB
Zig
const std = @import("index.zig");
|
|
const debug = std.debug;
|
|
const assert = debug.assert;
|
|
const mem = std.mem;
|
|
const os = std.os;
|
|
const builtin = @import("builtin");
|
|
const Os = builtin.Os;
|
|
const c = std.c;
|
|
|
|
const Allocator = mem.Allocator;
|
|
|
|
pub const c_allocator = &c_allocator_state;
|
|
var c_allocator_state = Allocator {
|
|
.allocFn = cAlloc,
|
|
.reallocFn = cRealloc,
|
|
.freeFn = cFree,
|
|
};
|
|
|
|
fn cAlloc(self: &Allocator, n: usize, alignment: u29) ![]u8 {
|
|
assert(alignment <= @alignOf(c_longdouble));
|
|
return if (c.malloc(n)) |buf|
|
|
@ptrCast(&u8, buf)[0..n]
|
|
else
|
|
error.OutOfMemory;
|
|
}
|
|
|
|
fn cRealloc(self: &Allocator, old_mem: []u8, new_size: usize, alignment: u29) ![]u8 {
|
|
const old_ptr = @ptrCast(&c_void, old_mem.ptr);
|
|
if (c.realloc(old_ptr, new_size)) |buf| {
|
|
return @ptrCast(&u8, buf)[0..new_size];
|
|
} else if (new_size <= old_mem.len) {
|
|
return old_mem[0..new_size];
|
|
} else {
|
|
return error.OutOfMemory;
|
|
}
|
|
}
|
|
|
|
fn cFree(self: &Allocator, old_mem: []u8) void {
|
|
const old_ptr = @ptrCast(&c_void, old_mem.ptr);
|
|
c.free(old_ptr);
|
|
}
|
|
|
|
/// This allocator makes a syscall directly for every allocation and free.
|
|
pub const DirectAllocator = struct {
|
|
allocator: Allocator,
|
|
heap_handle: ?HeapHandle,
|
|
|
|
const HeapHandle = if (builtin.os == Os.windows) os.windows.HANDLE else void;
|
|
|
|
//pub const canary_bytes = []u8 {48, 239, 128, 46, 18, 49, 147, 9, 195, 59, 203, 3, 245, 54, 9, 122};
|
|
//pub const want_safety = switch (builtin.mode) {
|
|
// builtin.Mode.Debug => true,
|
|
// builtin.Mode.ReleaseSafe => true,
|
|
// else => false,
|
|
//};
|
|
|
|
pub fn init() DirectAllocator {
|
|
return DirectAllocator {
|
|
.allocator = Allocator {
|
|
.allocFn = alloc,
|
|
.reallocFn = realloc,
|
|
.freeFn = free,
|
|
},
|
|
.heap_handle = if (builtin.os == Os.windows) null else {},
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: &DirectAllocator) void {
|
|
switch (builtin.os) {
|
|
Os.windows => if (self.heap_handle) |heap_handle| {
|
|
_ = os.windows.HeapDestroy(heap_handle);
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
fn alloc(allocator: &Allocator, n: usize, alignment: u29) ![]u8 {
|
|
const self = @fieldParentPtr(DirectAllocator, "allocator", allocator);
|
|
|
|
switch (builtin.os) {
|
|
Os.linux, Os.macosx, Os.ios => {
|
|
const p = os.posix;
|
|
const alloc_size = if(alignment <= os.page_size) n else n + alignment;
|
|
const addr = p.mmap(null, alloc_size, p.PROT_READ|p.PROT_WRITE,
|
|
p.MAP_PRIVATE|p.MAP_ANONYMOUS, -1, 0);
|
|
if(addr == p.MAP_FAILED) return error.OutOfMemory;
|
|
|
|
if(alloc_size == n) return @intToPtr(&u8, addr)[0..n];
|
|
|
|
var aligned_addr = addr & ~usize(alignment - 1);
|
|
aligned_addr += alignment;
|
|
|
|
//We can unmap the unused portions of our mmap, but we must only
|
|
// pass munmap bytes that exist outside our allocated pages or it
|
|
// will happily eat us too
|
|
|
|
//Since alignment > page_size, we are by definition on a page boundry
|
|
const unused_start = addr;
|
|
const unused_len = aligned_addr - 1 - unused_start;
|
|
|
|
var err = p.munmap(@intToPtr(&u8, unused_start), unused_len);
|
|
debug.assert(p.getErrno(err) == 0);
|
|
|
|
//It is impossible that there is an unoccupied page at the top of our
|
|
// mmap.
|
|
|
|
return @intToPtr(&u8, aligned_addr)[0..n];
|
|
},
|
|
Os.windows => {
|
|
const amt = n + alignment + @sizeOf(usize);
|
|
const heap_handle = self.heap_handle ?? blk: {
|
|
const hh = os.windows.HeapCreate(os.windows.HEAP_NO_SERIALIZE, amt, 0)
|
|
?? return error.OutOfMemory;
|
|
self.heap_handle = hh;
|
|
break :blk hh;
|
|
};
|
|
const ptr = os.windows.HeapAlloc(heap_handle, 0, amt) ?? return error.OutOfMemory;
|
|
const root_addr = @ptrToInt(ptr);
|
|
const rem = @rem(root_addr, alignment);
|
|
const march_forward_bytes = if (rem == 0) 0 else (alignment - rem);
|
|
const adjusted_addr = root_addr + march_forward_bytes;
|
|
const record_addr = adjusted_addr + n;
|
|
*@intToPtr(&align(1) usize, record_addr) = root_addr;
|
|
return @intToPtr(&u8, adjusted_addr)[0..n];
|
|
},
|
|
else => @compileError("Unsupported OS"),
|
|
}
|
|
}
|
|
|
|
fn realloc(allocator: &Allocator, old_mem: []u8, new_size: usize, alignment: u29) ![]u8 {
|
|
const self = @fieldParentPtr(DirectAllocator, "allocator", allocator);
|
|
|
|
switch (builtin.os) {
|
|
Os.linux, Os.macosx, Os.ios => {
|
|
if (new_size <= old_mem.len) {
|
|
const base_addr = @ptrToInt(old_mem.ptr);
|
|
const old_addr_end = base_addr + old_mem.len;
|
|
const new_addr_end = base_addr + new_size;
|
|
const rem = @rem(new_addr_end, os.page_size);
|
|
const new_addr_end_rounded = new_addr_end + if (rem == 0) 0 else (os.page_size - rem);
|
|
if (old_addr_end > new_addr_end_rounded) {
|
|
_ = os.posix.munmap(@intToPtr(&u8, new_addr_end_rounded), old_addr_end - new_addr_end_rounded);
|
|
}
|
|
return old_mem[0..new_size];
|
|
}
|
|
|
|
const result = try alloc(allocator, new_size, alignment);
|
|
mem.copy(u8, result, old_mem);
|
|
return result;
|
|
},
|
|
Os.windows => {
|
|
const old_adjusted_addr = @ptrToInt(old_mem.ptr);
|
|
const old_record_addr = old_adjusted_addr + old_mem.len;
|
|
const root_addr = *@intToPtr(&align(1) usize, old_record_addr);
|
|
const old_ptr = @intToPtr(os.windows.LPVOID, root_addr);
|
|
const amt = new_size + alignment + @sizeOf(usize);
|
|
const new_ptr = os.windows.HeapReAlloc(??self.heap_handle, 0, old_ptr, amt) ?? blk: {
|
|
if (new_size > old_mem.len) return error.OutOfMemory;
|
|
const new_record_addr = old_record_addr - new_size + old_mem.len;
|
|
*@intToPtr(&align(1) usize, new_record_addr) = root_addr;
|
|
return old_mem[0..new_size];
|
|
};
|
|
const offset = old_adjusted_addr - root_addr;
|
|
const new_root_addr = @ptrToInt(new_ptr);
|
|
const new_adjusted_addr = new_root_addr + offset;
|
|
assert(new_adjusted_addr % alignment == 0);
|
|
const new_record_addr = new_adjusted_addr + new_size;
|
|
*@intToPtr(&align(1) usize, new_record_addr) = new_root_addr;
|
|
return @intToPtr(&u8, new_adjusted_addr)[0..new_size];
|
|
},
|
|
else => @compileError("Unsupported OS"),
|
|
}
|
|
}
|
|
|
|
fn free(allocator: &Allocator, bytes: []u8) void {
|
|
const self = @fieldParentPtr(DirectAllocator, "allocator", allocator);
|
|
|
|
switch (builtin.os) {
|
|
Os.linux, Os.macosx, Os.ios => {
|
|
_ = os.posix.munmap(bytes.ptr, bytes.len);
|
|
},
|
|
Os.windows => {
|
|
const record_addr = @ptrToInt(bytes.ptr) + bytes.len;
|
|
const root_addr = *@intToPtr(&align(1) usize, record_addr);
|
|
const ptr = @intToPtr(os.windows.LPVOID, root_addr);
|
|
_ = os.windows.HeapFree(??self.heap_handle, 0, ptr);
|
|
},
|
|
else => @compileError("Unsupported OS"),
|
|
}
|
|
}
|
|
};
|
|
|
|
/// This allocator takes an existing allocator, wraps it, and provides an interface
|
|
/// where you can allocate without freeing, and then free it all together.
|
|
pub const ArenaAllocator = struct {
|
|
pub allocator: Allocator,
|
|
|
|
child_allocator: &Allocator,
|
|
buffer_list: std.LinkedList([]u8),
|
|
end_index: usize,
|
|
|
|
const BufNode = std.LinkedList([]u8).Node;
|
|
|
|
pub fn init(child_allocator: &Allocator) ArenaAllocator {
|
|
return ArenaAllocator {
|
|
.allocator = Allocator {
|
|
.allocFn = alloc,
|
|
.reallocFn = realloc,
|
|
.freeFn = free,
|
|
},
|
|
.child_allocator = child_allocator,
|
|
.buffer_list = std.LinkedList([]u8).init(),
|
|
.end_index = 0,
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: &ArenaAllocator) void {
|
|
var it = self.buffer_list.first;
|
|
while (it) |node| {
|
|
// this has to occur before the free because the free frees node
|
|
it = node.next;
|
|
|
|
self.child_allocator.free(node.data);
|
|
}
|
|
}
|
|
|
|
fn createNode(self: &ArenaAllocator, prev_len: usize, minimum_size: usize) !&BufNode {
|
|
const actual_min_size = minimum_size + @sizeOf(BufNode);
|
|
var len = prev_len;
|
|
while (true) {
|
|
len += len / 2;
|
|
len += os.page_size - @rem(len, os.page_size);
|
|
if (len >= actual_min_size) break;
|
|
}
|
|
const buf = try self.child_allocator.alignedAlloc(u8, @alignOf(BufNode), len);
|
|
const buf_node_slice = ([]BufNode)(buf[0..@sizeOf(BufNode)]);
|
|
const buf_node = &buf_node_slice[0];
|
|
*buf_node = BufNode {
|
|
.data = buf,
|
|
.prev = null,
|
|
.next = null,
|
|
};
|
|
self.buffer_list.append(buf_node);
|
|
self.end_index = 0;
|
|
return buf_node;
|
|
}
|
|
|
|
fn alloc(allocator: &Allocator, n: usize, alignment: u29) ![]u8 {
|
|
const self = @fieldParentPtr(ArenaAllocator, "allocator", allocator);
|
|
|
|
var cur_node = if (self.buffer_list.last) |last_node| last_node else try self.createNode(0, n + alignment);
|
|
while (true) {
|
|
const cur_buf = cur_node.data[@sizeOf(BufNode)..];
|
|
const addr = @ptrToInt(cur_buf.ptr) + self.end_index;
|
|
const rem = @rem(addr, alignment);
|
|
const march_forward_bytes = if (rem == 0) 0 else (alignment - rem);
|
|
const adjusted_index = self.end_index + march_forward_bytes;
|
|
const new_end_index = adjusted_index + n;
|
|
if (new_end_index > cur_buf.len) {
|
|
cur_node = try self.createNode(cur_buf.len, n + alignment);
|
|
continue;
|
|
}
|
|
const result = cur_buf[adjusted_index .. new_end_index];
|
|
self.end_index = new_end_index;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
fn realloc(allocator: &Allocator, old_mem: []u8, new_size: usize, alignment: u29) ![]u8 {
|
|
if (new_size <= old_mem.len) {
|
|
return old_mem[0..new_size];
|
|
} else {
|
|
const result = try alloc(allocator, new_size, alignment);
|
|
mem.copy(u8, result, old_mem);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
fn free(allocator: &Allocator, bytes: []u8) void { }
|
|
};
|
|
|
|
pub const FixedBufferAllocator = struct {
|
|
allocator: Allocator,
|
|
end_index: usize,
|
|
buffer: []u8,
|
|
|
|
pub fn init(buffer: []u8) FixedBufferAllocator {
|
|
return FixedBufferAllocator {
|
|
.allocator = Allocator {
|
|
.allocFn = alloc,
|
|
.reallocFn = realloc,
|
|
.freeFn = free,
|
|
},
|
|
.buffer = buffer,
|
|
.end_index = 0,
|
|
};
|
|
}
|
|
|
|
fn alloc(allocator: &Allocator, n: usize, alignment: u29) ![]u8 {
|
|
const self = @fieldParentPtr(FixedBufferAllocator, "allocator", allocator);
|
|
const addr = @ptrToInt(&self.buffer[self.end_index]);
|
|
const rem = @rem(addr, alignment);
|
|
const march_forward_bytes = if (rem == 0) 0 else (alignment - rem);
|
|
const adjusted_index = self.end_index + march_forward_bytes;
|
|
const new_end_index = adjusted_index + n;
|
|
if (new_end_index > self.buffer.len) {
|
|
return error.OutOfMemory;
|
|
}
|
|
const result = self.buffer[adjusted_index .. new_end_index];
|
|
self.end_index = new_end_index;
|
|
|
|
return result;
|
|
}
|
|
|
|
fn realloc(allocator: &Allocator, old_mem: []u8, new_size: usize, alignment: u29) ![]u8 {
|
|
if (new_size <= old_mem.len) {
|
|
return old_mem[0..new_size];
|
|
} else {
|
|
const result = try alloc(allocator, new_size, alignment);
|
|
mem.copy(u8, result, old_mem);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
fn free(allocator: &Allocator, bytes: []u8) void { }
|
|
};
|
|
|
|
|
|
|
|
test "c_allocator" {
|
|
if (builtin.link_libc) {
|
|
var slice = c_allocator.alloc(u8, 50) catch return;
|
|
defer c_allocator.free(slice);
|
|
slice = c_allocator.realloc(u8, slice, 100) catch return;
|
|
}
|
|
}
|
|
|
|
test "DirectAllocator" {
|
|
var direct_allocator = DirectAllocator.init();
|
|
defer direct_allocator.deinit();
|
|
|
|
const allocator = &direct_allocator.allocator;
|
|
try testAllocator(allocator);
|
|
try testAllocatorLargeAlignment(allocator);
|
|
}
|
|
|
|
test "ArenaAllocator" {
|
|
var direct_allocator = DirectAllocator.init();
|
|
defer direct_allocator.deinit();
|
|
|
|
var arena_allocator = ArenaAllocator.init(&direct_allocator.allocator);
|
|
defer arena_allocator.deinit();
|
|
|
|
try testAllocator(&arena_allocator.allocator);
|
|
try testAllocatorLargeAlignment(&arena_allocator.allocator);
|
|
}
|
|
|
|
var test_fixed_buffer_allocator_memory: [30000 * @sizeOf(usize)]u8 = undefined;
|
|
test "FixedBufferAllocator" {
|
|
var fixed_buffer_allocator = FixedBufferAllocator.init(test_fixed_buffer_allocator_memory[0..]);
|
|
|
|
try testAllocator(&fixed_buffer_allocator.allocator);
|
|
try testAllocatorLargeAlignment(&fixed_buffer_allocator.allocator);
|
|
}
|
|
|
|
fn testAllocator(allocator: &mem.Allocator) !void {
|
|
var slice = try allocator.alloc(&i32, 100);
|
|
|
|
for (slice) |*item, i| {
|
|
*item = try allocator.create(i32);
|
|
**item = i32(i);
|
|
}
|
|
|
|
for (slice) |item, i| {
|
|
allocator.destroy(item);
|
|
}
|
|
|
|
slice = try allocator.realloc(&i32, slice, 20000);
|
|
slice = try allocator.realloc(&i32, slice, 50);
|
|
slice = try allocator.realloc(&i32, slice, 25);
|
|
slice = try allocator.realloc(&i32, slice, 10);
|
|
|
|
allocator.free(slice);
|
|
}
|
|
|
|
fn testAllocatorLargeAlignment(allocator: &mem.Allocator) mem.Allocator.Error!void {
|
|
//Maybe a platform's page_size is actually the same as or
|
|
// very near usize?
|
|
if(os.page_size << 2 > @maxValue(usize)) return;
|
|
|
|
const USizeShift = @IntType(false, std.math.log2(usize.bit_count));
|
|
const large_align = u29(os.page_size << 2);
|
|
|
|
var align_mask: usize = undefined;
|
|
_ = @shlWithOverflow(usize, ~usize(0), USizeShift(@ctz(large_align)), &align_mask);
|
|
|
|
var slice = try allocator.allocFn(allocator, 500, large_align);
|
|
debug.assert(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
|
|
|
|
slice = try allocator.reallocFn(allocator, slice, 100, large_align);
|
|
debug.assert(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
|
|
|
|
slice = try allocator.reallocFn(allocator, slice, 5000, large_align);
|
|
debug.assert(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
|
|
|
|
slice = try allocator.reallocFn(allocator, slice, 10, large_align);
|
|
debug.assert(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
|
|
|
|
slice = try allocator.reallocFn(allocator, slice, 20000, large_align);
|
|
debug.assert(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
|
|
|
|
allocator.free(slice);
|
|
}
|