zig/src-self-hosted/ir.zig

2163 lines
89 KiB
Zig

const std = @import("std");
const mem = std.mem;
const Allocator = std.mem.Allocator;
const ArrayListUnmanaged = std.ArrayListUnmanaged;
const Value = @import("value.zig").Value;
const Type = @import("type.zig").Type;
const TypedValue = @import("TypedValue.zig");
const assert = std.debug.assert;
const BigIntConst = std.math.big.int.Const;
const BigIntMutable = std.math.big.int.Mutable;
const Target = std.Target;
const Package = @import("Package.zig");
const link = @import("link.zig");
pub const text = @import("ir/text.zig");
/// These are in-memory, analyzed instructions. See `text.Inst` for the representation
/// of instructions that correspond to the ZIR text format.
/// This struct owns the `Value` and `Type` memory. When the struct is deallocated,
/// so are the `Value` and `Type`. The value of a constant must be copied into
/// a memory location for the value to survive after a const instruction.
pub const Inst = struct {
tag: Tag,
ty: Type,
/// Byte offset into the source.
src: usize,
pub const Tag = enum {
assembly,
bitcast,
breakpoint,
call,
cmp,
condbr,
constant,
isnonnull,
isnull,
ptrtoint,
ret,
unreach,
};
pub fn cast(base: *Inst, comptime T: type) ?*T {
if (base.tag != T.base_tag)
return null;
return @fieldParentPtr(T, "base", base);
}
pub fn Args(comptime T: type) type {
return std.meta.fieldInfo(T, "args").field_type;
}
/// Returns `null` if runtime-known.
pub fn value(base: *Inst) ?Value {
if (base.ty.onePossibleValue())
return Value.initTag(.the_one_possible_value);
const inst = base.cast(Constant) orelse return null;
return inst.val;
}
pub const Assembly = struct {
pub const base_tag = Tag.assembly;
base: Inst,
args: struct {
asm_source: []const u8,
is_volatile: bool,
output: ?[]const u8,
inputs: []const []const u8,
clobbers: []const []const u8,
args: []const *Inst,
},
};
pub const BitCast = struct {
pub const base_tag = Tag.bitcast;
base: Inst,
args: struct {
operand: *Inst,
},
};
pub const Breakpoint = struct {
pub const base_tag = Tag.breakpoint;
base: Inst,
args: void,
};
pub const Call = struct {
pub const base_tag = Tag.call;
base: Inst,
args: struct {
func: *Inst,
args: []const *Inst,
},
};
pub const Cmp = struct {
pub const base_tag = Tag.cmp;
base: Inst,
args: struct {
lhs: *Inst,
op: std.math.CompareOperator,
rhs: *Inst,
},
};
pub const CondBr = struct {
pub const base_tag = Tag.condbr;
base: Inst,
args: struct {
condition: *Inst,
true_body: Module.Body,
false_body: Module.Body,
},
};
pub const Constant = struct {
pub const base_tag = Tag.constant;
base: Inst,
val: Value,
};
pub const IsNonNull = struct {
pub const base_tag = Tag.isnonnull;
base: Inst,
args: struct {
operand: *Inst,
},
};
pub const IsNull = struct {
pub const base_tag = Tag.isnull;
base: Inst,
args: struct {
operand: *Inst,
},
};
pub const PtrToInt = struct {
pub const base_tag = Tag.ptrtoint;
base: Inst,
args: struct {
ptr: *Inst,
},
};
pub const Ret = struct {
pub const base_tag = Tag.ret;
base: Inst,
args: void,
};
pub const Unreach = struct {
pub const base_tag = Tag.unreach;
base: Inst,
args: void,
};
};
pub const Module = struct {
/// General-purpose allocator.
allocator: *Allocator,
/// Module owns this resource.
root_pkg: *Package,
/// Module owns this resource.
root_scope: *Scope.ZIRModule,
/// Pointer to externally managed resource.
bin_file: *link.ElfFile,
/// It's rare for a decl to be exported, so we save memory by having a sparse map of
/// Decl pointers to details about them being exported.
/// The Export memory is owned by the `export_owners` table; the slice itself is owned by this table.
decl_exports: std.AutoHashMap(*Decl, []*Export),
/// This models the Decls that perform exports, so that `decl_exports` can be updated when a Decl
/// is modified. Note that the key of this table is not the Decl being exported, but the Decl that
/// is performing the export of another Decl.
/// This table owns the Export memory.
export_owners: std.AutoHashMap(*Decl, []*Export),
/// Maps fully qualified namespaced names to the Decl struct for them.
decl_table: std.AutoHashMap(Decl.Hash, *Decl),
optimize_mode: std.builtin.Mode,
link_error_flags: link.ElfFile.ErrorFlags = link.ElfFile.ErrorFlags{},
work_queue: std.fifo.LinearFifo(WorkItem, .Dynamic),
/// We optimize memory usage for a compilation with no compile errors by storing the
/// error messages and mapping outside of `Decl`.
/// The ErrorMsg memory is owned by the decl, using Module's allocator.
/// Note that a Decl can succeed but the Fn it represents can fail. In this case,
/// a Decl can have a failed_decls entry but have analysis status of success.
failed_decls: std.AutoHashMap(*Decl, *ErrorMsg),
/// Using a map here for consistency with the other fields here.
/// The ErrorMsg memory is owned by the `Scope.ZIRModule`, using Module's allocator.
failed_files: std.AutoHashMap(*Scope.ZIRModule, *ErrorMsg),
/// Using a map here for consistency with the other fields here.
/// The ErrorMsg memory is owned by the `Export`, using Module's allocator.
failed_exports: std.AutoHashMap(*Export, *ErrorMsg),
pub const WorkItem = union(enum) {
/// Write the machine code for a Decl to the output file.
codegen_decl: *Decl,
};
pub const Export = struct {
options: std.builtin.ExportOptions,
/// Byte offset into the file that contains the export directive.
src: usize,
/// Represents the position of the export, if any, in the output file.
link: link.ElfFile.Export,
/// The Decl that performs the export. Note that this is *not* the Decl being exported.
owner_decl: *Decl,
status: enum {
in_progress,
failed,
/// Indicates that the failure was due to a temporary issue, such as an I/O error
/// when writing to the output file. Retrying the export may succeed.
failed_retryable,
complete,
},
};
pub const Decl = struct {
/// This name is relative to the containing namespace of the decl. It uses a null-termination
/// to save bytes, since there can be a lot of decls in a compilation. The null byte is not allowed
/// in symbol names, because executable file formats use null-terminated strings for symbol names.
/// All Decls have names, even values that are not bound to a zig namespace. This is necessary for
/// mapping them to an address in the output file.
/// Memory owned by this decl, using Module's allocator.
name: [*:0]const u8,
/// The direct parent container of the Decl. This field will need to get more fleshed out when
/// self-hosted supports proper struct types and Zig AST => ZIR.
/// Reference to externally owned memory.
scope: *Scope.ZIRModule,
/// Byte offset into the source file that contains this declaration.
/// This is the base offset that src offsets within this Decl are relative to.
src: usize,
/// The most recent value of the Decl after a successful semantic analysis.
/// The tag for this union is determined by the tag value of the analysis field.
typed_value: union {
never_succeeded: void,
most_recent: TypedValue.Managed,
},
/// Represents the "shallow" analysis status. For example, for decls that are functions,
/// the function type is analyzed with this set to `in_progress`, however, the semantic
/// analysis of the function body is performed with this value set to `success`. Functions
/// have their own analysis status field.
analysis: enum {
initial_in_progress,
/// This Decl might be OK but it depends on another one which did not successfully complete
/// semantic analysis. This Decl never had a value computed.
initial_dependency_failure,
/// Semantic analysis failure. This Decl never had a value computed.
/// There will be a corresponding ErrorMsg in Module.failed_decls.
initial_sema_failure,
/// In this case the `typed_value.most_recent` can still be accessed.
/// There will be a corresponding ErrorMsg in Module.failed_decls.
codegen_failure,
/// In this case the `typed_value.most_recent` can still be accessed.
/// There will be a corresponding ErrorMsg in Module.failed_decls.
/// This indicates the failure was something like running out of disk space,
/// and attempting codegen again may succeed.
codegen_failure_retryable,
/// This Decl might be OK but it depends on another one which did not successfully complete
/// semantic analysis. There is a most recent value available.
repeat_dependency_failure,
/// Semantic anlaysis failure, but the `typed_value.most_recent` can be accessed.
/// There will be a corresponding ErrorMsg in Module.failed_decls.
repeat_sema_failure,
/// Completed successfully before; the `typed_value.most_recent` can be accessed, and
/// new semantic analysis is in progress.
repeat_in_progress,
/// Everything is done and updated.
complete,
},
/// Represents the position of the code in the output file.
/// This is populated regardless of semantic analysis and code generation.
link: link.ElfFile.Decl = link.ElfFile.Decl.empty,
/// The shallow set of other decls whose typed_value could possibly change if this Decl's
/// typed_value is modified.
/// TODO look into using a lightweight map/set data structure rather than a linear array.
dependants: ArrayListUnmanaged(*Decl) = ArrayListUnmanaged(*Decl){},
contents_hash: Hash,
pub fn destroy(self: *Decl, allocator: *Allocator) void {
allocator.free(mem.spanZ(self.name));
if (self.typedValueManaged()) |tvm| {
tvm.deinit(allocator);
}
allocator.destroy(self);
}
pub const Hash = [16]u8;
/// If the name is small enough, it is used directly as the hash.
/// If it is long, blake3 hash is computed.
pub fn hashSimpleName(name: []const u8) Hash {
var out: Hash = undefined;
if (name.len <= Hash.len) {
mem.copy(u8, &out, name);
mem.set(u8, out[name.len..], 0);
} else {
std.crypto.Blake3.hash(name, &out);
}
return out;
}
/// Must generate unique bytes with no collisions with other decls.
/// The point of hashing here is only to limit the number of bytes of
/// the unique identifier to a fixed size (16 bytes).
pub fn fullyQualifiedNameHash(self: Decl) Hash {
// Right now we only have ZIRModule as the source. So this is simply the
// relative name of the decl.
return hashSimpleName(mem.spanZ(u8, self.name));
}
pub fn typedValue(self: *Decl) error{AnalysisFail}!TypedValue {
const tvm = self.typedValueManaged() orelse return error.AnalysisFail;
return tvm.typed_value;
}
pub fn value(self: *Decl) error{AnalysisFail}!Value {
return (try self.typedValue()).val;
}
pub fn dump(self: *Decl) void {
const loc = std.zig.findLineColumn(self.scope.source.bytes, self.src);
std.debug.warn("{}:{}:{} name={} status={}", .{
self.scope.sub_file_path,
loc.line + 1,
loc.column + 1,
mem.spanZ(self.name),
@tagName(self.analysis),
});
if (self.typedValueManaged()) |tvm| {
std.debug.warn(" ty={} val={}", .{ tvm.typed_value.ty, tvm.typed_value.val });
}
std.debug.warn("\n", .{});
}
fn typedValueManaged(self: *Decl) ?*TypedValue.Managed {
switch (self.analysis) {
.initial_in_progress,
.initial_dependency_failure,
.initial_sema_failure,
=> return null,
.codegen_failure,
.codegen_failure_retryable,
.repeat_dependency_failure,
.repeat_sema_failure,
.repeat_in_progress,
.complete,
=> return &self.typed_value.most_recent,
}
}
};
/// Fn struct memory is owned by the Decl's TypedValue.Managed arena allocator.
pub const Fn = struct {
/// This memory owned by the Decl's TypedValue.Managed arena allocator.
fn_type: Type,
analysis: union(enum) {
/// The value is the source instruction.
queued: *text.Inst.Fn,
in_progress: *Analysis,
/// There will be a corresponding ErrorMsg in Module.failed_decls
sema_failure,
/// This Fn might be OK but it depends on another Decl which did not successfully complete
/// semantic analysis.
dependency_failure,
success: Body,
},
/// This memory is temporary and points to stack memory for the duration
/// of Fn analysis.
pub const Analysis = struct {
inner_block: Scope.Block,
/// TODO Performance optimization idea: instead of this inst_table,
/// use a field in the text.Inst instead to track corresponding instructions
inst_table: std.AutoHashMap(*text.Inst, *Inst),
needed_inst_capacity: usize,
};
};
pub const Scope = struct {
tag: Tag,
pub fn cast(base: *Scope, comptime T: type) ?*T {
if (base.tag != T.base_tag)
return null;
return @fieldParentPtr(T, "base", base);
}
/// Asserts the scope has a parent which is a DeclAnalysis and
/// returns the arena Allocator.
pub fn arena(self: *Scope) *Allocator {
switch (self.tag) {
.block => return self.cast(Block).?.arena,
.decl => return &self.cast(DeclAnalysis).?.arena.allocator,
.zir_module => return &self.cast(ZIRModule).?.contents.module.arena.allocator,
}
}
/// Asserts the scope has a parent which is a DeclAnalysis and
/// returns the Decl.
pub fn decl(self: *Scope) *Decl {
switch (self.tag) {
.block => return self.cast(Block).?.decl,
.decl => return self.cast(DeclAnalysis).?.decl,
.zir_module => unreachable,
}
}
/// Asserts the scope has a parent which is a ZIRModule and
/// returns it.
pub fn namespace(self: *Scope) *ZIRModule {
switch (self.tag) {
.block => return self.cast(Block).?.decl.scope,
.decl => return self.cast(DeclAnalysis).?.decl.scope,
.zir_module => return self.cast(ZIRModule).?,
}
}
pub fn dumpInst(self: *Scope, inst: *Inst) void {
const zir_module = self.namespace();
const loc = std.zig.findLineColumn(zir_module.source.bytes, inst.src);
std.debug.warn("{}:{}:{}: {}: ty={}\n", .{
zir_module.sub_file_path,
loc.line + 1,
loc.column + 1,
@tagName(inst.tag),
inst.ty,
});
}
pub const Tag = enum {
zir_module,
block,
decl,
};
pub const ZIRModule = struct {
pub const base_tag: Tag = .zir_module;
base: Scope = Scope{ .tag = base_tag },
/// Relative to the owning package's root_src_dir.
/// Reference to external memory, not owned by ZIRModule.
sub_file_path: []const u8,
source: union {
unloaded: void,
bytes: [:0]const u8,
},
contents: union {
not_available: void,
module: *text.Module,
},
status: enum {
never_loaded,
unloaded_success,
unloaded_parse_failure,
unloaded_sema_failure,
loaded_parse_failure,
loaded_sema_failure,
loaded_success,
},
pub fn unload(self: *ZIRModule, allocator: *Allocator) void {
switch (self.status) {
.never_loaded,
.unloaded_parse_failure,
.unloaded_sema_failure,
.unloaded_success,
=> {},
.loaded_success => {
allocator.free(self.source.bytes);
self.contents.module.deinit(allocator);
self.status = .unloaded_success;
},
.loaded_sema_failure => {
allocator.free(self.source.bytes);
self.contents.module.deinit(allocator);
self.status = .unloaded_sema_failure;
},
.loaded_parse_failure => {
allocator.free(self.source.bytes);
self.status = .unloaded_parse_failure;
},
}
}
pub fn deinit(self: *ZIRModule, allocator: *Allocator) void {
self.unload(allocator);
self.* = undefined;
}
pub fn dumpSrc(self: *ZIRModule, src: usize) void {
const loc = std.zig.findLineColumn(self.source.bytes, src);
std.debug.warn("{}:{}:{}\n", .{ self.sub_file_path, loc.line + 1, loc.column + 1 });
}
};
/// This is a temporary structure, references to it are valid only
/// during semantic analysis of the block.
pub const Block = struct {
pub const base_tag: Tag = .block;
base: Scope = Scope{ .tag = base_tag },
func: *Fn,
decl: *Decl,
instructions: ArrayListUnmanaged(*Inst),
/// Points to the arena allocator of DeclAnalysis
arena: *Allocator,
};
/// This is a temporary structure, references to it are valid only
/// during semantic analysis of the decl.
pub const DeclAnalysis = struct {
pub const base_tag: Tag = .decl;
base: Scope = Scope{ .tag = base_tag },
decl: *Decl,
arena: std.heap.ArenaAllocator,
};
};
pub const Body = struct {
instructions: []*Inst,
};
pub const AllErrors = struct {
arena: std.heap.ArenaAllocator.State,
list: []const Message,
pub const Message = struct {
src_path: []const u8,
line: usize,
column: usize,
byte_offset: usize,
msg: []const u8,
};
pub fn deinit(self: *AllErrors, allocator: *Allocator) void {
self.arena.promote(allocator).deinit();
}
fn add(
arena: *std.heap.ArenaAllocator,
errors: *std.ArrayList(Message),
sub_file_path: []const u8,
source: []const u8,
simple_err_msg: ErrorMsg,
) !void {
const loc = std.zig.findLineColumn(source, simple_err_msg.byte_offset);
try errors.append(.{
.src_path = try arena.allocator.dupe(u8, sub_file_path),
.msg = try arena.allocator.dupe(u8, simple_err_msg.msg),
.byte_offset = simple_err_msg.byte_offset,
.line = loc.line,
.column = loc.column,
});
}
};
pub fn deinit(self: *Module) void {
const allocator = self.allocator;
self.work_queue.deinit();
{
var it = self.decl_table.iterator();
while (it.next()) |kv| {
kv.value.destroy(allocator);
}
self.decl_table.deinit();
}
{
var it = self.failed_decls.iterator();
while (it.next()) |kv| {
kv.value.destroy(allocator);
}
self.failed_decls.deinit();
}
{
var it = self.failed_files.iterator();
while (it.next()) |kv| {
kv.value.destroy(allocator);
}
self.failed_files.deinit();
}
{
var it = self.failed_exports.iterator();
while (it.next()) |kv| {
kv.value.destroy(allocator);
}
self.failed_exports.deinit();
}
self.decl_exports.deinit();
{
var it = self.export_owners.iterator();
while (it.next()) |kv| {
const export_list = kv.value;
for (export_list) |exp| {
allocator.destroy(exp);
}
allocator.free(export_list);
}
self.failed_exports.deinit();
}
self.root_pkg.destroy();
{
self.root_scope.deinit(allocator);
allocator.destroy(self.root_scope);
}
self.* = undefined;
}
pub fn target(self: Module) std.Target {
return self.bin_file.options.target;
}
/// Detect changes to source files, perform semantic analysis, and update the output files.
pub fn update(self: *Module) !void {
// TODO Use the cache hash file system to detect which source files changed.
// Here we simulate a full cache miss.
// Analyze the root source file now.
self.analyzeRoot(self.root_scope) catch |err| switch (err) {
error.AnalysisFail => {
assert(self.totalErrorCount() != 0);
},
else => |e| return e,
};
try self.performAllTheWork();
// Unload all the source files from memory.
self.root_scope.unload(self.allocator);
try self.bin_file.flush();
self.link_error_flags = self.bin_file.error_flags;
}
pub fn totalErrorCount(self: *Module) usize {
return self.failed_decls.size +
self.failed_files.size +
self.failed_exports.size +
@boolToInt(self.link_error_flags.no_entry_point_found);
}
pub fn getAllErrorsAlloc(self: *Module) !AllErrors {
var arena = std.heap.ArenaAllocator.init(self.allocator);
errdefer arena.deinit();
var errors = std.ArrayList(AllErrors.Message).init(self.allocator);
defer errors.deinit();
{
var it = self.failed_files.iterator();
while (it.next()) |kv| {
const scope = kv.key;
const err_msg = kv.value;
const source = scope.source.bytes;
try AllErrors.add(&arena, &errors, scope.sub_file_path, source, err_msg.*);
}
}
{
var it = self.failed_decls.iterator();
while (it.next()) |kv| {
const decl = kv.key;
const err_msg = kv.value;
const source = decl.scope.source.bytes;
try AllErrors.add(&arena, &errors, decl.scope.sub_file_path, source, err_msg.*);
}
}
{
var it = self.failed_exports.iterator();
while (it.next()) |kv| {
const decl = kv.key.owner_decl;
const err_msg = kv.value;
const source = decl.scope.source.bytes;
try AllErrors.add(&arena, &errors, decl.scope.sub_file_path, source, err_msg.*);
}
}
if (self.link_error_flags.no_entry_point_found) {
try errors.append(.{
.src_path = self.root_pkg.root_src_path,
.line = 0,
.column = 0,
.byte_offset = 0,
.msg = try std.fmt.allocPrint(&arena.allocator, "no entry point found", .{}),
});
}
assert(errors.items.len == self.totalErrorCount());
return AllErrors{
.arena = arena.state,
.list = try arena.allocator.dupe(AllErrors.Message, errors.items),
};
}
const InnerError = error{ OutOfMemory, AnalysisFail };
pub fn performAllTheWork(self: *Module) error{OutOfMemory}!void {
while (self.work_queue.readItem()) |work_item| switch (work_item) {
.codegen_decl => |decl| switch (decl.analysis) {
.initial_in_progress,
.repeat_in_progress,
=> unreachable,
.initial_sema_failure,
.repeat_sema_failure,
.codegen_failure,
.initial_dependency_failure,
.repeat_dependency_failure,
=> continue,
.complete, .codegen_failure_retryable => {
if (decl.typed_value.most_recent.typed_value.val.cast(Value.Payload.Function)) |payload| {
switch (payload.func.analysis) {
.queued => self.analyzeFnBody(decl, payload.func) catch |err| switch (err) {
error.AnalysisFail => {
if (payload.func.analysis == .queued) {
payload.func.analysis = .dependency_failure;
}
continue;
},
else => |e| return e,
},
.in_progress => unreachable,
.sema_failure, .dependency_failure => continue,
.success => {},
}
}
assert(decl.typed_value.most_recent.typed_value.ty.hasCodeGenBits());
self.bin_file.updateDecl(self, decl) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {
decl.analysis = .repeat_dependency_failure;
},
else => {
try self.failed_decls.ensureCapacity(self.failed_decls.size + 1);
self.failed_decls.putAssumeCapacityNoClobber(decl, try ErrorMsg.create(
self.allocator,
decl.src,
"unable to codegen: {}",
.{@errorName(err)},
));
decl.analysis = .codegen_failure_retryable;
},
};
},
},
};
}
fn getTextModule(self: *Module, root_scope: *Scope.ZIRModule) !*text.Module {
switch (root_scope.status) {
.never_loaded, .unloaded_success => {
try self.failed_files.ensureCapacity(self.failed_files.size + 1);
var keep_source = false;
const source = try self.root_pkg.root_src_dir.readFileAllocOptions(
self.allocator,
self.root_pkg.root_src_path,
std.math.maxInt(u32),
1,
0,
);
defer if (!keep_source) self.allocator.free(source);
var keep_zir_module = false;
const zir_module = try self.allocator.create(text.Module);
defer if (!keep_zir_module) self.allocator.destroy(zir_module);
zir_module.* = try text.parse(self.allocator, source);
defer if (!keep_zir_module) zir_module.deinit(self.allocator);
if (zir_module.error_msg) |src_err_msg| {
self.failed_files.putAssumeCapacityNoClobber(
root_scope,
try ErrorMsg.create(self.allocator, src_err_msg.byte_offset, "{}", .{src_err_msg.msg}),
);
root_scope.status = .loaded_parse_failure;
root_scope.source = .{ .bytes = source };
keep_source = true;
return error.AnalysisFail;
}
root_scope.status = .loaded_success;
root_scope.source = .{ .bytes = source };
keep_source = true;
root_scope.contents = .{ .module = zir_module };
keep_zir_module = true;
return zir_module;
},
.unloaded_parse_failure,
.unloaded_sema_failure,
.loaded_parse_failure,
.loaded_sema_failure,
=> return error.AnalysisFail,
.loaded_success => return root_scope.contents.module,
}
}
fn analyzeRoot(self: *Module, root_scope: *Scope.ZIRModule) !void {
// TODO use the cache to identify, from the modified source files, the decls which have
// changed based on the span of memory that represents the decl in the re-parsed source file.
// Use the cached dependency graph to recursively determine the set of decls which need
// regeneration.
// Here we simulate adding a source file which was previously not part of the compilation,
// which means scanning the decls looking for exports.
// TODO also identify decls that need to be deleted.
switch (root_scope.status) {
.never_loaded => {
const src_module = try self.getTextModule(root_scope);
// Here we ensure enough queue capacity to store all the decls, so that later we can use
// appendAssumeCapacity.
try self.work_queue.ensureUnusedCapacity(src_module.decls.len);
for (src_module.decls) |decl| {
if (decl.cast(text.Inst.Export)) |export_inst| {
_ = try self.resolveDecl(&root_scope.base, &export_inst.base, link.ElfFile.Decl.empty);
}
}
},
.unloaded_parse_failure,
.unloaded_sema_failure,
.loaded_parse_failure,
.loaded_sema_failure,
.loaded_success,
.unloaded_success,
=> {
const src_module = try self.getTextModule(root_scope);
// Look for changed decls.
for (src_module.decls) |src_decl| {
const name_hash = Decl.hashSimpleName(src_decl.name);
if (self.decl_table.get(name_hash)) |kv| {
const decl = kv.value;
const new_contents_hash = Decl.hashSimpleName(src_decl.contents);
if (!mem.eql(u8, &new_contents_hash, &decl.contents_hash)) {
// TODO recursive dependency management
std.debug.warn("noticed that '{}' changed\n", .{src_decl.name});
self.decl_table.removeAssertDiscard(name_hash);
const saved_link = decl.link;
decl.destroy(self.allocator);
if (self.export_owners.getValue(decl)) |exports| {
@panic("TODO handle updating a decl that does an export");
}
const new_decl = self.resolveDecl(
&root_scope.base,
src_decl,
saved_link,
) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => continue,
};
if (self.decl_exports.remove(decl)) |entry| {
self.decl_exports.putAssumeCapacityNoClobber(new_decl, entry.value);
}
}
} else if (src_decl.cast(text.Inst.Export)) |export_inst| {
_ = try self.resolveDecl(&root_scope.base, &export_inst.base, link.ElfFile.Decl.empty);
}
}
},
}
}
fn analyzeFnBody(self: *Module, decl: *Decl, func: *Fn) !void {
// Use the Decl's arena for function memory.
var arena = decl.typed_value.most_recent.arena.?.promote(self.allocator);
defer decl.typed_value.most_recent.arena.?.* = arena.state;
var analysis: Fn.Analysis = .{
.inner_block = .{
.func = func,
.decl = decl,
.instructions = .{},
.arena = &arena.allocator,
},
.needed_inst_capacity = 0,
.inst_table = std.AutoHashMap(*text.Inst, *Inst).init(self.allocator),
};
defer analysis.inner_block.instructions.deinit(self.allocator);
defer analysis.inst_table.deinit();
const fn_inst = func.analysis.queued;
func.analysis = .{ .in_progress = &analysis };
try self.analyzeBody(&analysis.inner_block.base, fn_inst.positionals.body);
func.analysis = .{
.success = .{
.instructions = try arena.allocator.dupe(*Inst, analysis.inner_block.instructions.items),
},
};
}
fn resolveDecl(
self: *Module,
scope: *Scope,
old_inst: *text.Inst,
bin_file_link: link.ElfFile.Decl,
) InnerError!*Decl {
const hash = Decl.hashSimpleName(old_inst.name);
if (self.decl_table.get(hash)) |kv| {
return kv.value;
} else {
const new_decl = blk: {
try self.decl_table.ensureCapacity(self.decl_table.size + 1);
const new_decl = try self.allocator.create(Decl);
errdefer self.allocator.destroy(new_decl);
const name = try mem.dupeZ(self.allocator, u8, old_inst.name);
errdefer self.allocator.free(name);
new_decl.* = .{
.name = name,
.scope = scope.namespace(),
.src = old_inst.src,
.typed_value = .{ .never_succeeded = {} },
.analysis = .initial_in_progress,
.contents_hash = Decl.hashSimpleName(old_inst.contents),
.link = bin_file_link,
};
self.decl_table.putAssumeCapacityNoClobber(hash, new_decl);
break :blk new_decl;
};
var decl_scope: Scope.DeclAnalysis = .{
.decl = new_decl,
.arena = std.heap.ArenaAllocator.init(self.allocator),
};
errdefer decl_scope.arena.deinit();
const typed_value = self.analyzeInstConst(&decl_scope.base, old_inst) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {
switch (new_decl.analysis) {
.initial_in_progress => new_decl.analysis = .initial_dependency_failure,
.repeat_in_progress => new_decl.analysis = .repeat_dependency_failure,
else => {},
}
return error.AnalysisFail;
},
};
const arena_state = try decl_scope.arena.allocator.create(std.heap.ArenaAllocator.State);
const has_codegen_bits = typed_value.ty.hasCodeGenBits();
if (has_codegen_bits) {
// We don't fully codegen the decl until later, but we do need to reserve a global
// offset table index for it. This allows us to codegen decls out of dependency order,
// increasing how many computations can be done in parallel.
try self.bin_file.allocateDeclIndexes(new_decl);
}
arena_state.* = decl_scope.arena.state;
new_decl.typed_value = .{
.most_recent = .{
.typed_value = typed_value,
.arena = arena_state,
},
};
new_decl.analysis = .complete;
if (has_codegen_bits) {
// We ensureCapacity when scanning for decls.
self.work_queue.writeItemAssumeCapacity(.{ .codegen_decl = new_decl });
}
return new_decl;
}
}
fn resolveCompleteDecl(self: *Module, scope: *Scope, old_inst: *text.Inst) InnerError!*Decl {
const decl = try self.resolveDecl(scope, old_inst, link.ElfFile.Decl.empty);
switch (decl.analysis) {
.initial_in_progress => unreachable,
.repeat_in_progress => unreachable,
.initial_dependency_failure,
.repeat_dependency_failure,
.initial_sema_failure,
.repeat_sema_failure,
.codegen_failure,
.codegen_failure_retryable,
=> return error.AnalysisFail,
.complete => return decl,
}
}
fn resolveInst(self: *Module, scope: *Scope, old_inst: *text.Inst) InnerError!*Inst {
if (scope.cast(Scope.Block)) |block| {
if (block.func.analysis.in_progress.inst_table.get(old_inst)) |kv| {
return kv.value;
}
}
const decl = try self.resolveCompleteDecl(scope, old_inst);
const decl_ref = try self.analyzeDeclRef(scope, old_inst.src, decl);
return self.analyzeDeref(scope, old_inst.src, decl_ref, old_inst.src);
}
fn requireRuntimeBlock(self: *Module, scope: *Scope, src: usize) !*Scope.Block {
return scope.cast(Scope.Block) orelse
return self.fail(scope, src, "instruction illegal outside function body", .{});
}
fn resolveInstConst(self: *Module, scope: *Scope, old_inst: *text.Inst) InnerError!TypedValue {
const new_inst = try self.resolveInst(scope, old_inst);
const val = try self.resolveConstValue(scope, new_inst);
return TypedValue{
.ty = new_inst.ty,
.val = val,
};
}
fn resolveConstValue(self: *Module, scope: *Scope, base: *Inst) !Value {
return (try self.resolveDefinedValue(scope, base)) orelse
return self.fail(scope, base.src, "unable to resolve comptime value", .{});
}
fn resolveDefinedValue(self: *Module, scope: *Scope, base: *Inst) !?Value {
if (base.value()) |val| {
if (val.isUndef()) {
return self.fail(scope, base.src, "use of undefined value here causes undefined behavior", .{});
}
return val;
}
return null;
}
fn resolveConstString(self: *Module, scope: *Scope, old_inst: *text.Inst) ![]u8 {
const new_inst = try self.resolveInst(scope, old_inst);
const wanted_type = Type.initTag(.const_slice_u8);
const coerced_inst = try self.coerce(scope, wanted_type, new_inst);
const val = try self.resolveConstValue(scope, coerced_inst);
return val.toAllocatedBytes(scope.arena());
}
fn resolveType(self: *Module, scope: *Scope, old_inst: *text.Inst) !Type {
const new_inst = try self.resolveInst(scope, old_inst);
const wanted_type = Type.initTag(.@"type");
const coerced_inst = try self.coerce(scope, wanted_type, new_inst);
const val = try self.resolveConstValue(scope, coerced_inst);
return val.toType();
}
fn analyzeExport(self: *Module, scope: *Scope, export_inst: *text.Inst.Export) InnerError!void {
try self.decl_exports.ensureCapacity(self.decl_exports.size + 1);
try self.export_owners.ensureCapacity(self.export_owners.size + 1);
const symbol_name = try self.resolveConstString(scope, export_inst.positionals.symbol_name);
const exported_decl = try self.resolveCompleteDecl(scope, export_inst.positionals.value);
const typed_value = exported_decl.typed_value.most_recent.typed_value;
switch (typed_value.ty.zigTypeTag()) {
.Fn => {},
else => return self.fail(
scope,
export_inst.positionals.value.src,
"unable to export type '{}'",
.{typed_value.ty},
),
}
const new_export = try self.allocator.create(Export);
errdefer self.allocator.destroy(new_export);
const owner_decl = scope.decl();
new_export.* = .{
.options = .{ .name = symbol_name },
.src = export_inst.base.src,
.link = .{},
.owner_decl = owner_decl,
.status = .in_progress,
};
// Add to export_owners table.
const eo_gop = self.export_owners.getOrPut(owner_decl) catch unreachable;
if (!eo_gop.found_existing) {
eo_gop.kv.value = &[0]*Export{};
}
eo_gop.kv.value = try self.allocator.realloc(eo_gop.kv.value, eo_gop.kv.value.len + 1);
eo_gop.kv.value[eo_gop.kv.value.len - 1] = new_export;
errdefer eo_gop.kv.value = self.allocator.shrink(eo_gop.kv.value, eo_gop.kv.value.len - 1);
// Add to exported_decl table.
const de_gop = self.decl_exports.getOrPut(exported_decl) catch unreachable;
if (!de_gop.found_existing) {
de_gop.kv.value = &[0]*Export{};
}
de_gop.kv.value = try self.allocator.realloc(de_gop.kv.value, de_gop.kv.value.len + 1);
de_gop.kv.value[de_gop.kv.value.len - 1] = new_export;
errdefer de_gop.kv.value = self.allocator.shrink(de_gop.kv.value, de_gop.kv.value.len - 1);
self.bin_file.updateDeclExports(self, exported_decl, de_gop.kv.value) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => {
try self.failed_exports.ensureCapacity(self.failed_exports.size + 1);
self.failed_exports.putAssumeCapacityNoClobber(new_export, try ErrorMsg.create(
self.allocator,
export_inst.base.src,
"unable to export: {}",
.{@errorName(err)},
));
new_export.status = .failed_retryable;
},
};
}
/// TODO should not need the cast on the last parameter at the callsites
fn addNewInstArgs(
self: *Module,
block: *Scope.Block,
src: usize,
ty: Type,
comptime T: type,
args: Inst.Args(T),
) !*Inst {
const inst = try self.addNewInst(block, src, ty, T);
inst.args = args;
return &inst.base;
}
fn addNewInst(self: *Module, block: *Scope.Block, src: usize, ty: Type, comptime T: type) !*T {
const inst = try block.arena.create(T);
inst.* = .{
.base = .{
.tag = T.base_tag,
.ty = ty,
.src = src,
},
.args = undefined,
};
try block.instructions.append(self.allocator, &inst.base);
return inst;
}
fn constInst(self: *Module, scope: *Scope, src: usize, typed_value: TypedValue) !*Inst {
const const_inst = try scope.arena().create(Inst.Constant);
const_inst.* = .{
.base = .{
.tag = Inst.Constant.base_tag,
.ty = typed_value.ty,
.src = src,
},
.val = typed_value.val,
};
return &const_inst.base;
}
fn constStr(self: *Module, scope: *Scope, src: usize, str: []const u8) !*Inst {
const ty_payload = try scope.arena().create(Type.Payload.Array_u8_Sentinel0);
ty_payload.* = .{ .len = str.len };
const bytes_payload = try scope.arena().create(Value.Payload.Bytes);
bytes_payload.* = .{ .data = str };
return self.constInst(scope, src, .{
.ty = Type.initPayload(&ty_payload.base),
.val = Value.initPayload(&bytes_payload.base),
});
}
fn constType(self: *Module, scope: *Scope, src: usize, ty: Type) !*Inst {
return self.constInst(scope, src, .{
.ty = Type.initTag(.type),
.val = try ty.toValue(scope.arena()),
});
}
fn constVoid(self: *Module, scope: *Scope, src: usize) !*Inst {
return self.constInst(scope, src, .{
.ty = Type.initTag(.void),
.val = Value.initTag(.the_one_possible_value),
});
}
fn constUndef(self: *Module, scope: *Scope, src: usize, ty: Type) !*Inst {
return self.constInst(scope, src, .{
.ty = ty,
.val = Value.initTag(.undef),
});
}
fn constBool(self: *Module, scope: *Scope, src: usize, v: bool) !*Inst {
return self.constInst(scope, src, .{
.ty = Type.initTag(.bool),
.val = ([2]Value{ Value.initTag(.bool_false), Value.initTag(.bool_true) })[@boolToInt(v)],
});
}
fn constIntUnsigned(self: *Module, scope: *Scope, src: usize, ty: Type, int: u64) !*Inst {
const int_payload = try scope.arena().create(Value.Payload.Int_u64);
int_payload.* = .{ .int = int };
return self.constInst(scope, src, .{
.ty = ty,
.val = Value.initPayload(&int_payload.base),
});
}
fn constIntSigned(self: *Module, scope: *Scope, src: usize, ty: Type, int: i64) !*Inst {
const int_payload = try scope.arena().create(Value.Payload.Int_i64);
int_payload.* = .{ .int = int };
return self.constInst(scope, src, .{
.ty = ty,
.val = Value.initPayload(&int_payload.base),
});
}
fn constIntBig(self: *Module, scope: *Scope, src: usize, ty: Type, big_int: BigIntConst) !*Inst {
const val_payload = if (big_int.positive) blk: {
if (big_int.to(u64)) |x| {
return self.constIntUnsigned(scope, src, ty, x);
} else |err| switch (err) {
error.NegativeIntoUnsigned => unreachable,
error.TargetTooSmall => {}, // handled below
}
const big_int_payload = try scope.arena().create(Value.Payload.IntBigPositive);
big_int_payload.* = .{ .limbs = big_int.limbs };
break :blk &big_int_payload.base;
} else blk: {
if (big_int.to(i64)) |x| {
return self.constIntSigned(scope, src, ty, x);
} else |err| switch (err) {
error.NegativeIntoUnsigned => unreachable,
error.TargetTooSmall => {}, // handled below
}
const big_int_payload = try scope.arena().create(Value.Payload.IntBigNegative);
big_int_payload.* = .{ .limbs = big_int.limbs };
break :blk &big_int_payload.base;
};
return self.constInst(scope, src, .{
.ty = ty,
.val = Value.initPayload(val_payload),
});
}
fn analyzeInstConst(self: *Module, scope: *Scope, old_inst: *text.Inst) InnerError!TypedValue {
const new_inst = try self.analyzeInst(scope, old_inst);
return TypedValue{
.ty = new_inst.ty,
.val = try self.resolveConstValue(scope, new_inst),
};
}
fn analyzeInst(self: *Module, scope: *Scope, old_inst: *text.Inst) InnerError!*Inst {
switch (old_inst.tag) {
.breakpoint => return self.analyzeInstBreakpoint(scope, old_inst.cast(text.Inst.Breakpoint).?),
.call => return self.analyzeInstCall(scope, old_inst.cast(text.Inst.Call).?),
.declref => return self.analyzeInstDeclRef(scope, old_inst.cast(text.Inst.DeclRef).?),
.str => {
const bytes = old_inst.cast(text.Inst.Str).?.positionals.bytes;
// The bytes references memory inside the ZIR text module, which can get deallocated
// after semantic analysis is complete. We need the memory to be in the Decl's arena.
const arena_bytes = try scope.arena().dupe(u8, bytes);
return self.constStr(scope, old_inst.src, arena_bytes);
},
.int => {
const big_int = old_inst.cast(text.Inst.Int).?.positionals.int;
return self.constIntBig(scope, old_inst.src, Type.initTag(.comptime_int), big_int);
},
.ptrtoint => return self.analyzeInstPtrToInt(scope, old_inst.cast(text.Inst.PtrToInt).?),
.fieldptr => return self.analyzeInstFieldPtr(scope, old_inst.cast(text.Inst.FieldPtr).?),
.deref => return self.analyzeInstDeref(scope, old_inst.cast(text.Inst.Deref).?),
.as => return self.analyzeInstAs(scope, old_inst.cast(text.Inst.As).?),
.@"asm" => return self.analyzeInstAsm(scope, old_inst.cast(text.Inst.Asm).?),
.@"unreachable" => return self.analyzeInstUnreachable(scope, old_inst.cast(text.Inst.Unreachable).?),
.@"return" => return self.analyzeInstRet(scope, old_inst.cast(text.Inst.Return).?),
.@"fn" => return self.analyzeInstFn(scope, old_inst.cast(text.Inst.Fn).?),
.@"export" => {
try self.analyzeExport(scope, old_inst.cast(text.Inst.Export).?);
return self.constVoid(scope, old_inst.src);
},
.primitive => return self.analyzeInstPrimitive(scope, old_inst.cast(text.Inst.Primitive).?),
.ref => return self.analyzeInstRef(scope, old_inst.cast(text.Inst.Ref).?),
.fntype => return self.analyzeInstFnType(scope, old_inst.cast(text.Inst.FnType).?),
.intcast => return self.analyzeInstIntCast(scope, old_inst.cast(text.Inst.IntCast).?),
.bitcast => return self.analyzeInstBitCast(scope, old_inst.cast(text.Inst.BitCast).?),
.elemptr => return self.analyzeInstElemPtr(scope, old_inst.cast(text.Inst.ElemPtr).?),
.add => return self.analyzeInstAdd(scope, old_inst.cast(text.Inst.Add).?),
.cmp => return self.analyzeInstCmp(scope, old_inst.cast(text.Inst.Cmp).?),
.condbr => return self.analyzeInstCondBr(scope, old_inst.cast(text.Inst.CondBr).?),
.isnull => return self.analyzeInstIsNull(scope, old_inst.cast(text.Inst.IsNull).?),
.isnonnull => return self.analyzeInstIsNonNull(scope, old_inst.cast(text.Inst.IsNonNull).?),
}
}
fn analyzeInstBreakpoint(self: *Module, scope: *Scope, inst: *text.Inst.Breakpoint) InnerError!*Inst {
const b = try self.requireRuntimeBlock(scope, inst.base.src);
return self.addNewInstArgs(b, inst.base.src, Type.initTag(.void), Inst.Breakpoint, Inst.Args(Inst.Breakpoint){});
}
fn analyzeInstRef(self: *Module, scope: *Scope, inst: *text.Inst.Ref) InnerError!*Inst {
const decl = try self.resolveCompleteDecl(scope, inst.positionals.operand);
return self.analyzeDeclRef(scope, inst.base.src, decl);
}
fn analyzeInstDeclRef(self: *Module, scope: *Scope, inst: *text.Inst.DeclRef) InnerError!*Inst {
const decl_name = try self.resolveConstString(scope, inst.positionals.name);
// This will need to get more fleshed out when there are proper structs & namespaces.
const zir_module = scope.namespace();
for (zir_module.contents.module.decls) |src_decl| {
if (mem.eql(u8, src_decl.name, decl_name)) {
const decl = try self.resolveCompleteDecl(scope, src_decl);
return self.analyzeDeclRef(scope, inst.base.src, decl);
}
}
return self.fail(scope, inst.positionals.name.src, "use of undeclared identifier '{}'", .{decl_name});
}
fn analyzeDeclRef(self: *Module, scope: *Scope, src: usize, decl: *Decl) InnerError!*Inst {
const decl_tv = try decl.typedValue();
const ty_payload = try scope.arena().create(Type.Payload.SingleConstPointer);
ty_payload.* = .{ .pointee_type = decl_tv.ty };
const val_payload = try scope.arena().create(Value.Payload.DeclRef);
val_payload.* = .{ .decl = decl };
return self.constInst(scope, src, .{
.ty = Type.initPayload(&ty_payload.base),
.val = Value.initPayload(&val_payload.base),
});
}
fn analyzeInstCall(self: *Module, scope: *Scope, inst: *text.Inst.Call) InnerError!*Inst {
const func = try self.resolveInst(scope, inst.positionals.func);
if (func.ty.zigTypeTag() != .Fn)
return self.fail(scope, inst.positionals.func.src, "type '{}' not a function", .{func.ty});
const cc = func.ty.fnCallingConvention();
if (cc == .Naked) {
// TODO add error note: declared here
return self.fail(
scope,
inst.positionals.func.src,
"unable to call function with naked calling convention",
.{},
);
}
const call_params_len = inst.positionals.args.len;
const fn_params_len = func.ty.fnParamLen();
if (func.ty.fnIsVarArgs()) {
if (call_params_len < fn_params_len) {
// TODO add error note: declared here
return self.fail(
scope,
inst.positionals.func.src,
"expected at least {} arguments, found {}",
.{ fn_params_len, call_params_len },
);
}
return self.fail(scope, inst.base.src, "TODO implement support for calling var args functions", .{});
} else if (fn_params_len != call_params_len) {
// TODO add error note: declared here
return self.fail(
scope,
inst.positionals.func.src,
"expected {} arguments, found {}",
.{ fn_params_len, call_params_len },
);
}
if (inst.kw_args.modifier == .compile_time) {
return self.fail(scope, inst.base.src, "TODO implement comptime function calls", .{});
}
if (inst.kw_args.modifier != .auto) {
return self.fail(scope, inst.base.src, "TODO implement call with modifier {}", .{inst.kw_args.modifier});
}
// TODO handle function calls of generic functions
const fn_param_types = try self.allocator.alloc(Type, fn_params_len);
defer self.allocator.free(fn_param_types);
func.ty.fnParamTypes(fn_param_types);
const casted_args = try scope.arena().alloc(*Inst, fn_params_len);
for (inst.positionals.args) |src_arg, i| {
const uncasted_arg = try self.resolveInst(scope, src_arg);
casted_args[i] = try self.coerce(scope, fn_param_types[i], uncasted_arg);
}
const b = try self.requireRuntimeBlock(scope, inst.base.src);
return self.addNewInstArgs(b, inst.base.src, Type.initTag(.void), Inst.Call, Inst.Args(Inst.Call){
.func = func,
.args = casted_args,
});
}
fn analyzeInstFn(self: *Module, scope: *Scope, fn_inst: *text.Inst.Fn) InnerError!*Inst {
const fn_type = try self.resolveType(scope, fn_inst.positionals.fn_type);
const new_func = try scope.arena().create(Fn);
new_func.* = .{
.fn_type = fn_type,
.analysis = .{ .queued = fn_inst },
};
const fn_payload = try scope.arena().create(Value.Payload.Function);
fn_payload.* = .{ .func = new_func };
return self.constInst(scope, fn_inst.base.src, .{
.ty = fn_type,
.val = Value.initPayload(&fn_payload.base),
});
}
fn analyzeInstFnType(self: *Module, scope: *Scope, fntype: *text.Inst.FnType) InnerError!*Inst {
const return_type = try self.resolveType(scope, fntype.positionals.return_type);
if (return_type.zigTypeTag() == .NoReturn and
fntype.positionals.param_types.len == 0 and
fntype.kw_args.cc == .Unspecified)
{
return self.constType(scope, fntype.base.src, Type.initTag(.fn_noreturn_no_args));
}
if (return_type.zigTypeTag() == .NoReturn and
fntype.positionals.param_types.len == 0 and
fntype.kw_args.cc == .Naked)
{
return self.constType(scope, fntype.base.src, Type.initTag(.fn_naked_noreturn_no_args));
}
if (return_type.zigTypeTag() == .Void and
fntype.positionals.param_types.len == 0 and
fntype.kw_args.cc == .C)
{
return self.constType(scope, fntype.base.src, Type.initTag(.fn_ccc_void_no_args));
}
return self.fail(scope, fntype.base.src, "TODO implement fntype instruction more", .{});
}
fn analyzeInstPrimitive(self: *Module, scope: *Scope, primitive: *text.Inst.Primitive) InnerError!*Inst {
return self.constType(scope, primitive.base.src, primitive.positionals.tag.toType());
}
fn analyzeInstAs(self: *Module, scope: *Scope, as: *text.Inst.As) InnerError!*Inst {
const dest_type = try self.resolveType(scope, as.positionals.dest_type);
const new_inst = try self.resolveInst(scope, as.positionals.value);
return self.coerce(scope, dest_type, new_inst);
}
fn analyzeInstPtrToInt(self: *Module, scope: *Scope, ptrtoint: *text.Inst.PtrToInt) InnerError!*Inst {
const ptr = try self.resolveInst(scope, ptrtoint.positionals.ptr);
if (ptr.ty.zigTypeTag() != .Pointer) {
return self.fail(scope, ptrtoint.positionals.ptr.src, "expected pointer, found '{}'", .{ptr.ty});
}
// TODO handle known-pointer-address
const b = try self.requireRuntimeBlock(scope, ptrtoint.base.src);
const ty = Type.initTag(.usize);
return self.addNewInstArgs(b, ptrtoint.base.src, ty, Inst.PtrToInt, Inst.Args(Inst.PtrToInt){ .ptr = ptr });
}
fn analyzeInstFieldPtr(self: *Module, scope: *Scope, fieldptr: *text.Inst.FieldPtr) InnerError!*Inst {
const object_ptr = try self.resolveInst(scope, fieldptr.positionals.object_ptr);
const field_name = try self.resolveConstString(scope, fieldptr.positionals.field_name);
const elem_ty = switch (object_ptr.ty.zigTypeTag()) {
.Pointer => object_ptr.ty.elemType(),
else => return self.fail(scope, fieldptr.positionals.object_ptr.src, "expected pointer, found '{}'", .{object_ptr.ty}),
};
switch (elem_ty.zigTypeTag()) {
.Array => {
if (mem.eql(u8, field_name, "len")) {
const len_payload = try scope.arena().create(Value.Payload.Int_u64);
len_payload.* = .{ .int = elem_ty.arrayLen() };
const ref_payload = try scope.arena().create(Value.Payload.RefVal);
ref_payload.* = .{ .val = Value.initPayload(&len_payload.base) };
return self.constInst(scope, fieldptr.base.src, .{
.ty = Type.initTag(.single_const_pointer_to_comptime_int),
.val = Value.initPayload(&ref_payload.base),
});
} else {
return self.fail(
scope,
fieldptr.positionals.field_name.src,
"no member named '{}' in '{}'",
.{ field_name, elem_ty },
);
}
},
else => return self.fail(scope, fieldptr.base.src, "type '{}' does not support field access", .{elem_ty}),
}
}
fn analyzeInstIntCast(self: *Module, scope: *Scope, intcast: *text.Inst.IntCast) InnerError!*Inst {
const dest_type = try self.resolveType(scope, intcast.positionals.dest_type);
const new_inst = try self.resolveInst(scope, intcast.positionals.value);
const dest_is_comptime_int = switch (dest_type.zigTypeTag()) {
.ComptimeInt => true,
.Int => false,
else => return self.fail(
scope,
intcast.positionals.dest_type.src,
"expected integer type, found '{}'",
.{
dest_type,
},
),
};
switch (new_inst.ty.zigTypeTag()) {
.ComptimeInt, .Int => {},
else => return self.fail(
scope,
intcast.positionals.value.src,
"expected integer type, found '{}'",
.{new_inst.ty},
),
}
if (dest_is_comptime_int or new_inst.value() != null) {
return self.coerce(scope, dest_type, new_inst);
}
return self.fail(scope, intcast.base.src, "TODO implement analyze widen or shorten int", .{});
}
fn analyzeInstBitCast(self: *Module, scope: *Scope, inst: *text.Inst.BitCast) InnerError!*Inst {
const dest_type = try self.resolveType(scope, inst.positionals.dest_type);
const operand = try self.resolveInst(scope, inst.positionals.operand);
return self.bitcast(scope, dest_type, operand);
}
fn analyzeInstElemPtr(self: *Module, scope: *Scope, inst: *text.Inst.ElemPtr) InnerError!*Inst {
const array_ptr = try self.resolveInst(scope, inst.positionals.array_ptr);
const uncasted_index = try self.resolveInst(scope, inst.positionals.index);
const elem_index = try self.coerce(scope, Type.initTag(.usize), uncasted_index);
if (array_ptr.ty.isSinglePointer() and array_ptr.ty.elemType().zigTypeTag() == .Array) {
if (array_ptr.value()) |array_ptr_val| {
if (elem_index.value()) |index_val| {
// Both array pointer and index are compile-time known.
const index_u64 = index_val.toUnsignedInt();
// @intCast here because it would have been impossible to construct a value that
// required a larger index.
const elem_ptr = try array_ptr_val.elemPtr(scope.arena(), @intCast(usize, index_u64));
const type_payload = try scope.arena().create(Type.Payload.SingleConstPointer);
type_payload.* = .{ .pointee_type = array_ptr.ty.elemType().elemType() };
return self.constInst(scope, inst.base.src, .{
.ty = Type.initPayload(&type_payload.base),
.val = elem_ptr,
});
}
}
}
return self.fail(scope, inst.base.src, "TODO implement more analyze elemptr", .{});
}
fn analyzeInstAdd(self: *Module, scope: *Scope, inst: *text.Inst.Add) InnerError!*Inst {
const lhs = try self.resolveInst(scope, inst.positionals.lhs);
const rhs = try self.resolveInst(scope, inst.positionals.rhs);
if (lhs.ty.zigTypeTag() == .Int and rhs.ty.zigTypeTag() == .Int) {
if (lhs.value()) |lhs_val| {
if (rhs.value()) |rhs_val| {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs_val.toBigInt(&lhs_space);
const rhs_bigint = rhs_val.toBigInt(&rhs_space);
const limbs = try scope.arena().alloc(
std.math.big.Limb,
std.math.max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.add(lhs_bigint, rhs_bigint);
const result_limbs = result_bigint.limbs[0..result_bigint.len];
if (!lhs.ty.eql(rhs.ty)) {
return self.fail(scope, inst.base.src, "TODO implement peer type resolution", .{});
}
const val_payload = if (result_bigint.positive) blk: {
const val_payload = try scope.arena().create(Value.Payload.IntBigPositive);
val_payload.* = .{ .limbs = result_limbs };
break :blk &val_payload.base;
} else blk: {
const val_payload = try scope.arena().create(Value.Payload.IntBigNegative);
val_payload.* = .{ .limbs = result_limbs };
break :blk &val_payload.base;
};
return self.constInst(scope, inst.base.src, .{
.ty = lhs.ty,
.val = Value.initPayload(val_payload),
});
}
}
}
return self.fail(scope, inst.base.src, "TODO implement more analyze add", .{});
}
fn analyzeInstDeref(self: *Module, scope: *Scope, deref: *text.Inst.Deref) InnerError!*Inst {
const ptr = try self.resolveInst(scope, deref.positionals.ptr);
return self.analyzeDeref(scope, deref.base.src, ptr, deref.positionals.ptr.src);
}
fn analyzeDeref(self: *Module, scope: *Scope, src: usize, ptr: *Inst, ptr_src: usize) InnerError!*Inst {
const elem_ty = switch (ptr.ty.zigTypeTag()) {
.Pointer => ptr.ty.elemType(),
else => return self.fail(scope, ptr_src, "expected pointer, found '{}'", .{ptr.ty}),
};
if (ptr.value()) |val| {
return self.constInst(scope, src, .{
.ty = elem_ty,
.val = try val.pointerDeref(scope.arena()),
});
}
return self.fail(scope, src, "TODO implement runtime deref", .{});
}
fn analyzeInstAsm(self: *Module, scope: *Scope, assembly: *text.Inst.Asm) InnerError!*Inst {
const return_type = try self.resolveType(scope, assembly.positionals.return_type);
const asm_source = try self.resolveConstString(scope, assembly.positionals.asm_source);
const output = if (assembly.kw_args.output) |o| try self.resolveConstString(scope, o) else null;
const inputs = try scope.arena().alloc([]const u8, assembly.kw_args.inputs.len);
const clobbers = try scope.arena().alloc([]const u8, assembly.kw_args.clobbers.len);
const args = try scope.arena().alloc(*Inst, assembly.kw_args.args.len);
for (inputs) |*elem, i| {
elem.* = try self.resolveConstString(scope, assembly.kw_args.inputs[i]);
}
for (clobbers) |*elem, i| {
elem.* = try self.resolveConstString(scope, assembly.kw_args.clobbers[i]);
}
for (args) |*elem, i| {
const arg = try self.resolveInst(scope, assembly.kw_args.args[i]);
elem.* = try self.coerce(scope, Type.initTag(.usize), arg);
}
const b = try self.requireRuntimeBlock(scope, assembly.base.src);
return self.addNewInstArgs(b, assembly.base.src, return_type, Inst.Assembly, Inst.Args(Inst.Assembly){
.asm_source = asm_source,
.is_volatile = assembly.kw_args.@"volatile",
.output = output,
.inputs = inputs,
.clobbers = clobbers,
.args = args,
});
}
fn analyzeInstCmp(self: *Module, scope: *Scope, inst: *text.Inst.Cmp) InnerError!*Inst {
const lhs = try self.resolveInst(scope, inst.positionals.lhs);
const rhs = try self.resolveInst(scope, inst.positionals.rhs);
const op = inst.positionals.op;
const is_equality_cmp = switch (op) {
.eq, .neq => true,
else => false,
};
const lhs_ty_tag = lhs.ty.zigTypeTag();
const rhs_ty_tag = rhs.ty.zigTypeTag();
if (is_equality_cmp and lhs_ty_tag == .Null and rhs_ty_tag == .Null) {
// null == null, null != null
return self.constBool(scope, inst.base.src, op == .eq);
} else if (is_equality_cmp and
((lhs_ty_tag == .Null and rhs_ty_tag == .Optional) or
rhs_ty_tag == .Null and lhs_ty_tag == .Optional))
{
// comparing null with optionals
const opt_operand = if (lhs_ty_tag == .Optional) lhs else rhs;
if (opt_operand.value()) |opt_val| {
const is_null = opt_val.isNull();
return self.constBool(scope, inst.base.src, if (op == .eq) is_null else !is_null);
}
const b = try self.requireRuntimeBlock(scope, inst.base.src);
switch (op) {
.eq => return self.addNewInstArgs(
b,
inst.base.src,
Type.initTag(.bool),
Inst.IsNull,
Inst.Args(Inst.IsNull){ .operand = opt_operand },
),
.neq => return self.addNewInstArgs(
b,
inst.base.src,
Type.initTag(.bool),
Inst.IsNonNull,
Inst.Args(Inst.IsNonNull){ .operand = opt_operand },
),
else => unreachable,
}
} else if (is_equality_cmp and
((lhs_ty_tag == .Null and rhs.ty.isCPtr()) or (rhs_ty_tag == .Null and lhs.ty.isCPtr())))
{
return self.fail(scope, inst.base.src, "TODO implement C pointer cmp", .{});
} else if (lhs_ty_tag == .Null or rhs_ty_tag == .Null) {
const non_null_type = if (lhs_ty_tag == .Null) rhs.ty else lhs.ty;
return self.fail(scope, inst.base.src, "comparison of '{}' with null", .{non_null_type});
} else if (is_equality_cmp and
((lhs_ty_tag == .EnumLiteral and rhs_ty_tag == .Union) or
(rhs_ty_tag == .EnumLiteral and lhs_ty_tag == .Union)))
{
return self.fail(scope, inst.base.src, "TODO implement equality comparison between a union's tag value and an enum literal", .{});
} else if (lhs_ty_tag == .ErrorSet and rhs_ty_tag == .ErrorSet) {
if (!is_equality_cmp) {
return self.fail(scope, inst.base.src, "{} operator not allowed for errors", .{@tagName(op)});
}
return self.fail(scope, inst.base.src, "TODO implement equality comparison between errors", .{});
} else if (lhs.ty.isNumeric() and rhs.ty.isNumeric()) {
// This operation allows any combination of integer and float types, regardless of the
// signed-ness, comptime-ness, and bit-width. So peer type resolution is incorrect for
// numeric types.
return self.cmpNumeric(scope, inst.base.src, lhs, rhs, op);
}
return self.fail(scope, inst.base.src, "TODO implement more cmp analysis", .{});
}
fn analyzeInstIsNull(self: *Module, scope: *Scope, inst: *text.Inst.IsNull) InnerError!*Inst {
const operand = try self.resolveInst(scope, inst.positionals.operand);
return self.analyzeIsNull(scope, inst.base.src, operand, true);
}
fn analyzeInstIsNonNull(self: *Module, scope: *Scope, inst: *text.Inst.IsNonNull) InnerError!*Inst {
const operand = try self.resolveInst(scope, inst.positionals.operand);
return self.analyzeIsNull(scope, inst.base.src, operand, false);
}
fn analyzeInstCondBr(self: *Module, scope: *Scope, inst: *text.Inst.CondBr) InnerError!*Inst {
const uncasted_cond = try self.resolveInst(scope, inst.positionals.condition);
const cond = try self.coerce(scope, Type.initTag(.bool), uncasted_cond);
if (try self.resolveDefinedValue(scope, cond)) |cond_val| {
const body = if (cond_val.toBool()) &inst.positionals.true_body else &inst.positionals.false_body;
try self.analyzeBody(scope, body.*);
return self.constVoid(scope, inst.base.src);
}
const parent_block = try self.requireRuntimeBlock(scope, inst.base.src);
var true_block: Scope.Block = .{
.func = parent_block.func,
.decl = parent_block.decl,
.instructions = .{},
.arena = parent_block.arena,
};
defer true_block.instructions.deinit(self.allocator);
try self.analyzeBody(&true_block.base, inst.positionals.true_body);
var false_block: Scope.Block = .{
.func = parent_block.func,
.decl = parent_block.decl,
.instructions = .{},
.arena = parent_block.arena,
};
defer false_block.instructions.deinit(self.allocator);
try self.analyzeBody(&false_block.base, inst.positionals.false_body);
return self.addNewInstArgs(parent_block, inst.base.src, Type.initTag(.void), Inst.CondBr, Inst.Args(Inst.CondBr){
.condition = cond,
.true_body = .{ .instructions = try scope.arena().dupe(*Inst, true_block.instructions.items) },
.false_body = .{ .instructions = try scope.arena().dupe(*Inst, false_block.instructions.items) },
});
}
fn wantSafety(self: *Module, scope: *Scope) bool {
return switch (self.optimize_mode) {
.Debug => true,
.ReleaseSafe => true,
.ReleaseFast => false,
.ReleaseSmall => false,
};
}
fn analyzeInstUnreachable(self: *Module, scope: *Scope, unreach: *text.Inst.Unreachable) InnerError!*Inst {
const b = try self.requireRuntimeBlock(scope, unreach.base.src);
if (self.wantSafety(scope)) {
// TODO Once we have a panic function to call, call it here instead of this.
_ = try self.addNewInstArgs(b, unreach.base.src, Type.initTag(.void), Inst.Breakpoint, {});
}
return self.addNewInstArgs(b, unreach.base.src, Type.initTag(.noreturn), Inst.Unreach, {});
}
fn analyzeInstRet(self: *Module, scope: *Scope, inst: *text.Inst.Return) InnerError!*Inst {
const b = try self.requireRuntimeBlock(scope, inst.base.src);
return self.addNewInstArgs(b, inst.base.src, Type.initTag(.noreturn), Inst.Ret, {});
}
fn analyzeBody(self: *Module, scope: *Scope, body: text.Module.Body) !void {
if (scope.cast(Scope.Block)) |b| {
const analysis = b.func.analysis.in_progress;
analysis.needed_inst_capacity += body.instructions.len;
try analysis.inst_table.ensureCapacity(analysis.needed_inst_capacity);
for (body.instructions) |src_inst| {
const new_inst = try self.analyzeInst(scope, src_inst);
analysis.inst_table.putAssumeCapacityNoClobber(src_inst, new_inst);
}
} else {
for (body.instructions) |src_inst| {
_ = try self.analyzeInst(scope, src_inst);
}
}
}
fn analyzeIsNull(
self: *Module,
scope: *Scope,
src: usize,
operand: *Inst,
invert_logic: bool,
) InnerError!*Inst {
return self.fail(scope, src, "TODO implement analysis of isnull and isnotnull", .{});
}
/// Asserts that lhs and rhs types are both numeric.
fn cmpNumeric(
self: *Module,
scope: *Scope,
src: usize,
lhs: *Inst,
rhs: *Inst,
op: std.math.CompareOperator,
) !*Inst {
assert(lhs.ty.isNumeric());
assert(rhs.ty.isNumeric());
const lhs_ty_tag = lhs.ty.zigTypeTag();
const rhs_ty_tag = rhs.ty.zigTypeTag();
if (lhs_ty_tag == .Vector and rhs_ty_tag == .Vector) {
if (lhs.ty.arrayLen() != rhs.ty.arrayLen()) {
return self.fail(scope, src, "vector length mismatch: {} and {}", .{
lhs.ty.arrayLen(),
rhs.ty.arrayLen(),
});
}
return self.fail(scope, src, "TODO implement support for vectors in cmpNumeric", .{});
} else if (lhs_ty_tag == .Vector or rhs_ty_tag == .Vector) {
return self.fail(scope, src, "mixed scalar and vector operands to comparison operator: '{}' and '{}'", .{
lhs.ty,
rhs.ty,
});
}
if (lhs.value()) |lhs_val| {
if (rhs.value()) |rhs_val| {
return self.constBool(scope, src, Value.compare(lhs_val, op, rhs_val));
}
}
// TODO handle comparisons against lazy zero values
// Some values can be compared against zero without being runtime known or without forcing
// a full resolution of their value, for example `@sizeOf(@Frame(function))` is known to
// always be nonzero, and we benefit from not forcing the full evaluation and stack frame layout
// of this function if we don't need to.
// It must be a runtime comparison.
const b = try self.requireRuntimeBlock(scope, src);
// For floats, emit a float comparison instruction.
const lhs_is_float = switch (lhs_ty_tag) {
.Float, .ComptimeFloat => true,
else => false,
};
const rhs_is_float = switch (rhs_ty_tag) {
.Float, .ComptimeFloat => true,
else => false,
};
if (lhs_is_float and rhs_is_float) {
// Implicit cast the smaller one to the larger one.
const dest_type = x: {
if (lhs_ty_tag == .ComptimeFloat) {
break :x rhs.ty;
} else if (rhs_ty_tag == .ComptimeFloat) {
break :x lhs.ty;
}
if (lhs.ty.floatBits(self.target()) >= rhs.ty.floatBits(self.target())) {
break :x lhs.ty;
} else {
break :x rhs.ty;
}
};
const casted_lhs = try self.coerce(scope, dest_type, lhs);
const casted_rhs = try self.coerce(scope, dest_type, rhs);
return self.addNewInstArgs(b, src, dest_type, Inst.Cmp, Inst.Args(Inst.Cmp){
.lhs = casted_lhs,
.rhs = casted_rhs,
.op = op,
});
}
// For mixed unsigned integer sizes, implicit cast both operands to the larger integer.
// For mixed signed and unsigned integers, implicit cast both operands to a signed
// integer with + 1 bit.
// For mixed floats and integers, extract the integer part from the float, cast that to
// a signed integer with mantissa bits + 1, and if there was any non-integral part of the float,
// add/subtract 1.
const lhs_is_signed = if (lhs.value()) |lhs_val|
lhs_val.compareWithZero(.lt)
else
(lhs.ty.isFloat() or lhs.ty.isSignedInt());
const rhs_is_signed = if (rhs.value()) |rhs_val|
rhs_val.compareWithZero(.lt)
else
(rhs.ty.isFloat() or rhs.ty.isSignedInt());
const dest_int_is_signed = lhs_is_signed or rhs_is_signed;
var dest_float_type: ?Type = null;
var lhs_bits: usize = undefined;
if (lhs.value()) |lhs_val| {
if (lhs_val.isUndef())
return self.constUndef(scope, src, Type.initTag(.bool));
const is_unsigned = if (lhs_is_float) x: {
var bigint_space: Value.BigIntSpace = undefined;
var bigint = try lhs_val.toBigInt(&bigint_space).toManaged(self.allocator);
defer bigint.deinit();
const zcmp = lhs_val.orderAgainstZero();
if (lhs_val.floatHasFraction()) {
switch (op) {
.eq => return self.constBool(scope, src, false),
.neq => return self.constBool(scope, src, true),
else => {},
}
if (zcmp == .lt) {
try bigint.addScalar(bigint.toConst(), -1);
} else {
try bigint.addScalar(bigint.toConst(), 1);
}
}
lhs_bits = bigint.toConst().bitCountTwosComp();
break :x (zcmp != .lt);
} else x: {
lhs_bits = lhs_val.intBitCountTwosComp();
break :x (lhs_val.orderAgainstZero() != .lt);
};
lhs_bits += @boolToInt(is_unsigned and dest_int_is_signed);
} else if (lhs_is_float) {
dest_float_type = lhs.ty;
} else {
const int_info = lhs.ty.intInfo(self.target());
lhs_bits = int_info.bits + @boolToInt(!int_info.signed and dest_int_is_signed);
}
var rhs_bits: usize = undefined;
if (rhs.value()) |rhs_val| {
if (rhs_val.isUndef())
return self.constUndef(scope, src, Type.initTag(.bool));
const is_unsigned = if (rhs_is_float) x: {
var bigint_space: Value.BigIntSpace = undefined;
var bigint = try rhs_val.toBigInt(&bigint_space).toManaged(self.allocator);
defer bigint.deinit();
const zcmp = rhs_val.orderAgainstZero();
if (rhs_val.floatHasFraction()) {
switch (op) {
.eq => return self.constBool(scope, src, false),
.neq => return self.constBool(scope, src, true),
else => {},
}
if (zcmp == .lt) {
try bigint.addScalar(bigint.toConst(), -1);
} else {
try bigint.addScalar(bigint.toConst(), 1);
}
}
rhs_bits = bigint.toConst().bitCountTwosComp();
break :x (zcmp != .lt);
} else x: {
rhs_bits = rhs_val.intBitCountTwosComp();
break :x (rhs_val.orderAgainstZero() != .lt);
};
rhs_bits += @boolToInt(is_unsigned and dest_int_is_signed);
} else if (rhs_is_float) {
dest_float_type = rhs.ty;
} else {
const int_info = rhs.ty.intInfo(self.target());
rhs_bits = int_info.bits + @boolToInt(!int_info.signed and dest_int_is_signed);
}
const dest_type = if (dest_float_type) |ft| ft else blk: {
const max_bits = std.math.max(lhs_bits, rhs_bits);
const casted_bits = std.math.cast(u16, max_bits) catch |err| switch (err) {
error.Overflow => return self.fail(scope, src, "{} exceeds maximum integer bit count", .{max_bits}),
};
break :blk try self.makeIntType(scope, dest_int_is_signed, casted_bits);
};
const casted_lhs = try self.coerce(scope, dest_type, lhs);
const casted_rhs = try self.coerce(scope, dest_type, lhs);
return self.addNewInstArgs(b, src, dest_type, Inst.Cmp, Inst.Args(Inst.Cmp){
.lhs = casted_lhs,
.rhs = casted_rhs,
.op = op,
});
}
fn makeIntType(self: *Module, scope: *Scope, signed: bool, bits: u16) !Type {
if (signed) {
const int_payload = try scope.arena().create(Type.Payload.IntSigned);
int_payload.* = .{ .bits = bits };
return Type.initPayload(&int_payload.base);
} else {
const int_payload = try scope.arena().create(Type.Payload.IntUnsigned);
int_payload.* = .{ .bits = bits };
return Type.initPayload(&int_payload.base);
}
}
fn coerce(self: *Module, scope: *Scope, dest_type: Type, inst: *Inst) !*Inst {
// If the types are the same, we can return the operand.
if (dest_type.eql(inst.ty))
return inst;
const in_memory_result = coerceInMemoryAllowed(dest_type, inst.ty);
if (in_memory_result == .ok) {
return self.bitcast(scope, dest_type, inst);
}
// *[N]T to []T
if (inst.ty.isSinglePointer() and dest_type.isSlice() and
(!inst.ty.pointerIsConst() or dest_type.pointerIsConst()))
{
const array_type = inst.ty.elemType();
const dst_elem_type = dest_type.elemType();
if (array_type.zigTypeTag() == .Array and
coerceInMemoryAllowed(dst_elem_type, array_type.elemType()) == .ok)
{
return self.coerceArrayPtrToSlice(scope, dest_type, inst);
}
}
// comptime_int to fixed-width integer
if (inst.ty.zigTypeTag() == .ComptimeInt and dest_type.zigTypeTag() == .Int) {
// The representation is already correct; we only need to make sure it fits in the destination type.
const val = inst.value().?; // comptime_int always has comptime known value
if (!val.intFitsInType(dest_type, self.target())) {
return self.fail(scope, inst.src, "type {} cannot represent integer value {}", .{ inst.ty, val });
}
return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val });
}
// integer widening
if (inst.ty.zigTypeTag() == .Int and dest_type.zigTypeTag() == .Int) {
const src_info = inst.ty.intInfo(self.target());
const dst_info = dest_type.intInfo(self.target());
if (src_info.signed == dst_info.signed and dst_info.bits >= src_info.bits) {
if (inst.value()) |val| {
return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val });
} else {
return self.fail(scope, inst.src, "TODO implement runtime integer widening", .{});
}
} else {
return self.fail(scope, inst.src, "TODO implement more int widening {} to {}", .{ inst.ty, dest_type });
}
}
return self.fail(scope, inst.src, "TODO implement type coercion from {} to {}", .{ inst.ty, dest_type });
}
fn bitcast(self: *Module, scope: *Scope, dest_type: Type, inst: *Inst) !*Inst {
if (inst.value()) |val| {
// Keep the comptime Value representation; take the new type.
return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val });
}
// TODO validate the type size and other compile errors
const b = try self.requireRuntimeBlock(scope, inst.src);
return self.addNewInstArgs(b, inst.src, dest_type, Inst.BitCast, Inst.Args(Inst.BitCast){ .operand = inst });
}
fn coerceArrayPtrToSlice(self: *Module, scope: *Scope, dest_type: Type, inst: *Inst) !*Inst {
if (inst.value()) |val| {
// The comptime Value representation is compatible with both types.
return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val });
}
return self.fail(scope, inst.src, "TODO implement coerceArrayPtrToSlice runtime instruction", .{});
}
fn fail(self: *Module, scope: *Scope, src: usize, comptime format: []const u8, args: var) InnerError {
@setCold(true);
try self.failed_decls.ensureCapacity(self.failed_decls.size + 1);
try self.failed_files.ensureCapacity(self.failed_files.size + 1);
const err_msg = try ErrorMsg.create(self.allocator, src, format, args);
switch (scope.tag) {
.decl => {
const decl = scope.cast(Scope.DeclAnalysis).?.decl;
switch (decl.analysis) {
.initial_in_progress => decl.analysis = .initial_sema_failure,
.repeat_in_progress => decl.analysis = .repeat_sema_failure,
else => unreachable,
}
self.failed_decls.putAssumeCapacityNoClobber(decl, err_msg);
},
.block => {
const block = scope.cast(Scope.Block).?;
block.func.analysis = .sema_failure;
self.failed_decls.putAssumeCapacityNoClobber(block.decl, err_msg);
},
.zir_module => {
const zir_module = scope.cast(Scope.ZIRModule).?;
zir_module.status = .loaded_sema_failure;
self.failed_files.putAssumeCapacityNoClobber(zir_module, err_msg);
},
}
return error.AnalysisFail;
}
const InMemoryCoercionResult = enum {
ok,
no_match,
};
fn coerceInMemoryAllowed(dest_type: Type, src_type: Type) InMemoryCoercionResult {
if (dest_type.eql(src_type))
return .ok;
// TODO: implement more of this function
return .no_match;
}
};
pub const ErrorMsg = struct {
byte_offset: usize,
msg: []const u8,
pub fn create(allocator: *Allocator, byte_offset: usize, comptime format: []const u8, args: var) !*ErrorMsg {
const self = try allocator.create(ErrorMsg);
errdefer allocator.destroy(self);
self.* = try init(allocator, byte_offset, format, args);
return self;
}
/// Assumes the ErrorMsg struct and msg were both allocated with allocator.
pub fn destroy(self: *ErrorMsg, allocator: *Allocator) void {
self.deinit(allocator);
allocator.destroy(self);
}
pub fn init(allocator: *Allocator, byte_offset: usize, comptime format: []const u8, args: var) !ErrorMsg {
return ErrorMsg{
.byte_offset = byte_offset,
.msg = try std.fmt.allocPrint(allocator, format, args),
};
}
pub fn deinit(self: *ErrorMsg, allocator: *Allocator) void {
allocator.free(self.msg);
self.* = undefined;
}
};