385 lines
13 KiB
Zig
385 lines
13 KiB
Zig
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const assert = std.debug.assert;
|
|
const mem = std.mem;
|
|
const meta = std.meta;
|
|
|
|
/// Describes how pointer types should be hashed.
|
|
pub const HashStrategy = enum {
|
|
/// Do not follow pointers, only hash their value.
|
|
Shallow,
|
|
|
|
/// Follow pointers, hash the pointee content.
|
|
/// Only dereferences one level, ie. it is changed into .Shallow when a
|
|
/// pointer type is encountered.
|
|
Deep,
|
|
|
|
/// Follow pointers, hash the pointee content.
|
|
/// Dereferences all pointers encountered.
|
|
/// Assumes no cycle.
|
|
DeepRecursive,
|
|
};
|
|
|
|
/// Helper function to hash a pointer and mutate the strategy if needed.
|
|
pub fn hashPointer(hasher: var, key: var, comptime strat: HashStrategy) void {
|
|
const info = @typeInfo(@typeOf(key));
|
|
|
|
switch (info.Pointer.size) {
|
|
builtin.TypeInfo.Pointer.Size.One => switch (strat) {
|
|
.Shallow => hash(hasher, @ptrToInt(key), .Shallow),
|
|
.Deep => hash(hasher, key.*, .Shallow),
|
|
.DeepRecursive => hash(hasher, key.*, .DeepRecursive),
|
|
},
|
|
|
|
builtin.TypeInfo.Pointer.Size.Slice => switch (strat) {
|
|
.Shallow => {
|
|
hashPointer(hasher, key.ptr, .Shallow);
|
|
hash(hasher, key.len, .Shallow);
|
|
},
|
|
.Deep => hashArray(hasher, key, .Shallow),
|
|
.DeepRecursive => hashArray(hasher, key, .DeepRecursive),
|
|
},
|
|
|
|
builtin.TypeInfo.Pointer.Size.Many,
|
|
builtin.TypeInfo.Pointer.Size.C,
|
|
=> switch (strat) {
|
|
.Shallow => hash(hasher, @ptrToInt(key), .Shallow),
|
|
else => @compileError(
|
|
\\ unknown-length pointers and C pointers cannot be hashed deeply.
|
|
\\ Consider providing your own hash function.
|
|
),
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Helper function to hash a set of contiguous objects, from an array or slice.
|
|
pub fn hashArray(hasher: var, key: var, comptime strat: HashStrategy) void {
|
|
switch (strat) {
|
|
.Shallow => {
|
|
// TODO detect via a trait when Key has no padding bits to
|
|
// hash it as an array of bytes.
|
|
// Otherwise, hash every element.
|
|
for (key) |element| {
|
|
hash(hasher, element, .Shallow);
|
|
}
|
|
},
|
|
else => {
|
|
for (key) |element| {
|
|
hash(hasher, element, strat);
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Provides generic hashing for any eligible type.
|
|
/// Strategy is provided to determine if pointers should be followed or not.
|
|
pub fn hash(hasher: var, key: var, comptime strat: HashStrategy) void {
|
|
const Key = @typeOf(key);
|
|
switch (@typeInfo(Key)) {
|
|
.NoReturn,
|
|
.Opaque,
|
|
.Undefined,
|
|
.ArgTuple,
|
|
.Void,
|
|
.Null,
|
|
.BoundFn,
|
|
.ComptimeFloat,
|
|
.ComptimeInt,
|
|
.Type,
|
|
.EnumLiteral,
|
|
.Frame,
|
|
=> @compileError("cannot hash this type"),
|
|
|
|
// Help the optimizer see that hashing an int is easy by inlining!
|
|
// TODO Check if the situation is better after #561 is resolved.
|
|
.Int => @inlineCall(hasher.update, std.mem.asBytes(&key)),
|
|
|
|
.Float => |info| hash(hasher, @bitCast(@IntType(false, info.bits), key), strat),
|
|
|
|
.Bool => hash(hasher, @boolToInt(key), strat),
|
|
.Enum => hash(hasher, @enumToInt(key), strat),
|
|
.ErrorSet => hash(hasher, @errorToInt(key), strat),
|
|
.AnyFrame, .Fn => hash(hasher, @ptrToInt(key), strat),
|
|
|
|
.Pointer => @inlineCall(hashPointer, hasher, key, strat),
|
|
|
|
.Optional => if (key) |k| hash(hasher, k, strat),
|
|
|
|
.Array => hashArray(hasher, key, strat),
|
|
|
|
.Vector => |info| {
|
|
if (info.child.bit_count % 8 == 0) {
|
|
// If there's no unused bits in the child type, we can just hash
|
|
// this as an array of bytes.
|
|
hasher.update(mem.asBytes(&key));
|
|
} else {
|
|
// Otherwise, hash every element.
|
|
// TODO remove the copy to an array once field access is done.
|
|
const array: [info.len]info.child = key;
|
|
comptime var i = 0;
|
|
inline while (i < info.len) : (i += 1) {
|
|
hash(hasher, array[i], strat);
|
|
}
|
|
}
|
|
},
|
|
|
|
.Struct => |info| {
|
|
// TODO detect via a trait when Key has no padding bits to
|
|
// hash it as an array of bytes.
|
|
// Otherwise, hash every field.
|
|
inline for (info.fields) |field| {
|
|
// We reuse the hash of the previous field as the seed for the
|
|
// next one so that they're dependant.
|
|
hash(hasher, @field(key, field.name), strat);
|
|
}
|
|
},
|
|
|
|
.Union => |info| blk: {
|
|
if (info.tag_type) |tag_type| {
|
|
const tag = meta.activeTag(key);
|
|
const s = hash(hasher, tag, strat);
|
|
inline for (info.fields) |field| {
|
|
const enum_field = field.enum_field.?;
|
|
if (enum_field.value == @enumToInt(tag)) {
|
|
hash(hasher, @field(key, enum_field.name), strat);
|
|
// TODO use a labelled break when it does not crash the compiler. cf #2908
|
|
// break :blk;
|
|
return;
|
|
}
|
|
}
|
|
unreachable;
|
|
} else @compileError("cannot hash untagged union type: " ++ @typeName(Key) ++ ", provide your own hash function");
|
|
},
|
|
|
|
.ErrorUnion => blk: {
|
|
const payload = key catch |err| {
|
|
hash(hasher, err, strat);
|
|
break :blk;
|
|
};
|
|
hash(hasher, payload, strat);
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Provides generic hashing for any eligible type.
|
|
/// Only hashes `key` itself, pointers are not followed.
|
|
/// Slices are rejected to avoid ambiguity on the user's intention.
|
|
pub fn autoHash(hasher: var, key: var) void {
|
|
const Key = @typeOf(key);
|
|
if (comptime meta.trait.isSlice(Key)) {
|
|
comptime assert(@hasDecl(std, "StringHashMap")); // detect when the following message needs updated
|
|
const extra_help = if (Key == []const u8)
|
|
" Consider std.StringHashMap for hashing the contents of []const u8."
|
|
else
|
|
"";
|
|
|
|
@compileError("std.auto_hash.autoHash does not allow slices (here " ++ @typeName(Key) ++
|
|
") because the intent is unclear. Consider using std.auto_hash.hash or providing your own hash function instead." ++
|
|
extra_help);
|
|
}
|
|
|
|
hash(hasher, key, .Shallow);
|
|
}
|
|
|
|
const testing = std.testing;
|
|
const Wyhash = std.hash.Wyhash;
|
|
|
|
fn testHash(key: var) u64 {
|
|
// Any hash could be used here, for testing autoHash.
|
|
var hasher = Wyhash.init(0);
|
|
hash(&hasher, key, .Shallow);
|
|
return hasher.final();
|
|
}
|
|
|
|
fn testHashShallow(key: var) u64 {
|
|
// Any hash could be used here, for testing autoHash.
|
|
var hasher = Wyhash.init(0);
|
|
hash(&hasher, key, .Shallow);
|
|
return hasher.final();
|
|
}
|
|
|
|
fn testHashDeep(key: var) u64 {
|
|
// Any hash could be used here, for testing autoHash.
|
|
var hasher = Wyhash.init(0);
|
|
hash(&hasher, key, .Deep);
|
|
return hasher.final();
|
|
}
|
|
|
|
fn testHashDeepRecursive(key: var) u64 {
|
|
// Any hash could be used here, for testing autoHash.
|
|
var hasher = Wyhash.init(0);
|
|
hash(&hasher, key, .DeepRecursive);
|
|
return hasher.final();
|
|
}
|
|
|
|
test "hash pointer" {
|
|
const array = [_]u32{ 123, 123, 123 };
|
|
const a = &array[0];
|
|
const b = &array[1];
|
|
const c = &array[2];
|
|
const d = a;
|
|
|
|
testing.expect(testHashShallow(a) == testHashShallow(d));
|
|
testing.expect(testHashShallow(a) != testHashShallow(c));
|
|
testing.expect(testHashShallow(a) != testHashShallow(b));
|
|
|
|
testing.expect(testHashDeep(a) == testHashDeep(a));
|
|
testing.expect(testHashDeep(a) == testHashDeep(c));
|
|
testing.expect(testHashDeep(a) == testHashDeep(b));
|
|
|
|
testing.expect(testHashDeepRecursive(a) == testHashDeepRecursive(a));
|
|
testing.expect(testHashDeepRecursive(a) == testHashDeepRecursive(c));
|
|
testing.expect(testHashDeepRecursive(a) == testHashDeepRecursive(b));
|
|
}
|
|
|
|
test "hash slice shallow" {
|
|
// Allocate one array dynamically so that we're assured it is not merged
|
|
// with the other by the optimization passes.
|
|
const array1 = try std.heap.direct_allocator.create([6]u32);
|
|
defer std.heap.direct_allocator.destroy(array1);
|
|
array1.* = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
|
const array2 = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
|
const a = array1[0..];
|
|
const b = array2[0..];
|
|
const c = array1[0..3];
|
|
testing.expect(testHashShallow(a) == testHashShallow(a));
|
|
testing.expect(testHashShallow(a) != testHashShallow(array1));
|
|
testing.expect(testHashShallow(a) != testHashShallow(b));
|
|
testing.expect(testHashShallow(a) != testHashShallow(c));
|
|
}
|
|
|
|
test "hash slice deep" {
|
|
// Allocate one array dynamically so that we're assured it is not merged
|
|
// with the other by the optimization passes.
|
|
const array1 = try std.heap.direct_allocator.create([6]u32);
|
|
defer std.heap.direct_allocator.destroy(array1);
|
|
array1.* = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
|
const array2 = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
|
const a = array1[0..];
|
|
const b = array2[0..];
|
|
const c = array1[0..3];
|
|
testing.expect(testHashDeep(a) == testHashDeep(a));
|
|
testing.expect(testHashDeep(a) == testHashDeep(array1));
|
|
testing.expect(testHashDeep(a) == testHashDeep(b));
|
|
testing.expect(testHashDeep(a) != testHashDeep(c));
|
|
}
|
|
|
|
test "hash struct deep" {
|
|
const Foo = struct {
|
|
a: u32,
|
|
b: f64,
|
|
c: *bool,
|
|
|
|
const Self = @This();
|
|
|
|
pub fn init(allocator: *mem.Allocator, a_: u32, b_: f64, c_: bool) !Self {
|
|
const ptr = try allocator.create(bool);
|
|
ptr.* = c_;
|
|
return Self{ .a = a_, .b = b_, .c = ptr };
|
|
}
|
|
};
|
|
|
|
const allocator = std.heap.direct_allocator;
|
|
const foo = try Foo.init(allocator, 123, 1.0, true);
|
|
const bar = try Foo.init(allocator, 123, 1.0, true);
|
|
const baz = try Foo.init(allocator, 123, 1.0, false);
|
|
defer allocator.destroy(foo.c);
|
|
defer allocator.destroy(bar.c);
|
|
defer allocator.destroy(baz.c);
|
|
|
|
testing.expect(testHashDeep(foo) == testHashDeep(bar));
|
|
testing.expect(testHashDeep(foo) != testHashDeep(baz));
|
|
testing.expect(testHashDeep(bar) != testHashDeep(baz));
|
|
|
|
var hasher = Wyhash.init(0);
|
|
const h = testHashDeep(foo);
|
|
autoHash(&hasher, foo.a);
|
|
autoHash(&hasher, foo.b);
|
|
autoHash(&hasher, foo.c.*);
|
|
testing.expectEqual(h, hasher.final());
|
|
|
|
const h2 = testHashDeepRecursive(&foo);
|
|
testing.expect(h2 != testHashDeep(&foo));
|
|
testing.expect(h2 == testHashDeep(foo));
|
|
}
|
|
|
|
test "testHash optional" {
|
|
const a: ?u32 = 123;
|
|
const b: ?u32 = null;
|
|
testing.expectEqual(testHash(a), testHash(u32(123)));
|
|
testing.expect(testHash(a) != testHash(b));
|
|
testing.expectEqual(testHash(b), 0);
|
|
}
|
|
|
|
test "testHash array" {
|
|
const a = [_]u32{ 1, 2, 3 };
|
|
const h = testHash(a);
|
|
var hasher = Wyhash.init(0);
|
|
autoHash(&hasher, u32(1));
|
|
autoHash(&hasher, u32(2));
|
|
autoHash(&hasher, u32(3));
|
|
testing.expectEqual(h, hasher.final());
|
|
}
|
|
|
|
test "testHash struct" {
|
|
const Foo = struct {
|
|
a: u32 = 1,
|
|
b: u32 = 2,
|
|
c: u32 = 3,
|
|
};
|
|
const f = Foo{};
|
|
const h = testHash(f);
|
|
var hasher = Wyhash.init(0);
|
|
autoHash(&hasher, u32(1));
|
|
autoHash(&hasher, u32(2));
|
|
autoHash(&hasher, u32(3));
|
|
testing.expectEqual(h, hasher.final());
|
|
}
|
|
|
|
test "testHash union" {
|
|
const Foo = union(enum) {
|
|
A: u32,
|
|
B: f32,
|
|
C: u32,
|
|
};
|
|
|
|
const a = Foo{ .A = 18 };
|
|
var b = Foo{ .B = 12.34 };
|
|
const c = Foo{ .C = 18 };
|
|
testing.expect(testHash(a) == testHash(a));
|
|
testing.expect(testHash(a) != testHash(b));
|
|
testing.expect(testHash(a) != testHash(c));
|
|
|
|
b = Foo{ .A = 18 };
|
|
testing.expect(testHash(a) == testHash(b));
|
|
}
|
|
|
|
test "testHash vector" {
|
|
// Disabled because of #3317
|
|
if (@import("builtin").arch == .mipsel) return error.SkipZigTest;
|
|
|
|
const a: @Vector(4, u32) = [_]u32{ 1, 2, 3, 4 };
|
|
const b: @Vector(4, u32) = [_]u32{ 1, 2, 3, 5 };
|
|
testing.expect(testHash(a) == testHash(a));
|
|
testing.expect(testHash(a) != testHash(b));
|
|
|
|
const c: @Vector(4, u31) = [_]u31{ 1, 2, 3, 4 };
|
|
const d: @Vector(4, u31) = [_]u31{ 1, 2, 3, 5 };
|
|
testing.expect(testHash(c) == testHash(c));
|
|
testing.expect(testHash(c) != testHash(d));
|
|
}
|
|
|
|
test "testHash error union" {
|
|
const Errors = error{Test};
|
|
const Foo = struct {
|
|
a: u32 = 1,
|
|
b: u32 = 2,
|
|
c: u32 = 3,
|
|
};
|
|
const f = Foo{};
|
|
const g: Errors!Foo = Errors.Test;
|
|
testing.expect(testHash(f) != testHash(g));
|
|
testing.expect(testHash(f) == testHash(Foo{}));
|
|
testing.expect(testHash(g) == testHash(Errors.Test));
|
|
}
|