Go to file
Andrew Kelley d10bbd28e9 use lld instead of system linker 2017-03-13 11:54:56 -04:00
c_headers fix some c header symbol collisions 2016-02-13 22:57:55 -07:00
cmake use lld instead of system linker 2017-03-13 11:54:56 -04:00
doc add basic emacs syntax file 2017-03-02 23:03:44 -05:00
example use lld instead of system linker 2017-03-13 11:54:56 -04:00
src use lld instead of system linker 2017-03-13 11:54:56 -04:00
std break off some of std.io into std.fmt, generalize printf 2017-03-09 19:12:15 -05:00
test codegen nullable void the same way as bool 2017-03-10 11:21:41 -05:00
.gitignore build: fix release mode 2016-02-01 15:26:01 -07:00
CMakeLists.txt use lld instead of system linker 2017-03-13 11:54:56 -04:00
LICENSE add license 2015-08-05 16:22:18 -07:00
README.md update to llvm 4.0 2017-03-10 02:29:01 -05:00

README.md

ZIG

A system programming language which prioritizes optimality, safety, and readability.

Zig is a small language, yet powerful enough to solve any computing problem.

Zig intends to replace C. Therefore, porting a C project to Zig should be a pleasant experience. For every use case C can solve, the same use case must be handled in Zig in an equally or more satisfying way.

Zig is not afraid to roll the major version number of the language if it improves simplicity, fixes poor design decisions, or adds a new feature which compromises backward compatibility.

ziglang.org

Existing Features

  • Compatible with C libraries with no wrapper necessary. Directly include C .h files and get access to the functions and symbols therein.
  • Compile units do not depend on libc unless explicitly linked.
  • Provides standard library which competes with the C standard library and is always compiled against statically in source form.
  • Pointer types do not allow the null value. Instead you can use a maybe type which has several syntactic constructs to ensure that the null pointer is not missed.
  • Provides an error type with several syntatic constructs which makes writing robust code convenient and straightforward. Writing correct code is easier than writing buggy code.
  • No header files required. Top level declarations are entirely order-independent.
  • Compile-time code execution. Compile-time reflection.
  • Partial compile-time function evaluation with eliminates the need for a preprocessor or macros.
  • Tagged union enum type. No more accidentally reading the wrong union field.
  • Generics so that one can write efficient data structures that work for any data type.
  • Easy to parse language so that humans and machines have no trouble with the syntax.
  • The binaries produced by Zig have complete debugging information so you can, for example, use GDB to debug your software.
  • Debug mode optimizes for fast compilation time and crashing when undefined behavior would happen.
  • Release mode produces heavily optimized code. What other projects call "Link Time Optimization" Zig does automatically.
  • Mark functions as tests and automatically run them with zig test.
  • Currently supported architectures: x86_64, i386
  • Currently supported operating systems: linux, macosx
  • Friendly toward package maintainers. Reproducible build, bootstrapping process carefully documented. Issues filed by package maintainers are considered especially important.
  • Easy cross-compiling.

Planned Features

  • In addition to creating executables, creating a C library is a primary use case. You can export an auto-generated .h file.
  • Eliminate the need for configure, make, cmake, etc.
  • Automatically provide test coverage.
  • Ability to declare dependencies as Git URLS with commit locking (can provide a tag or sha256).
  • Include documentation generator.
  • Compiler exposes itself as a library.
  • Support for all popular architectures and operating systems.

Community

Building

Dependencies

Build Dependencies

These compile tools must be available on your system and are used to build the Zig compiler itself:

  • gcc >= 5.0.0 or clang >= 3.6.0
  • cmake >= 2.8.5

Runtime Dependencies

These libraries must be installed on your system, with the development files available. The Zig compiler dynamically links against them.

  • LLVM == 4.x
  • libclang == 4.x

Debug / Development Build

If you have gcc or clang installed, you can find out what ZIG_LIBC_LIB_DIR, ZIG_LIBC_STATIC_LIB_DIR, and ZIG_LIBC_INCLUDE_DIR should be set to (example below).

For MacOS, ZIG_LIBC_LIB_DIR and ZIG_LIBC_STATIC_LIB_DIR are unused.

mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$(pwd) -DZIG_LIBC_LIB_DIR=$(dirname $(cc -print-file-name=crt1.o)) -DZIG_LIBC_INCLUDE_DIR=$(echo -n | cc -E -x c - -v 2>&1 | grep -B1 "End of search list." | head -n1 | cut -c 2- | sed "s/ .*//") -DZIG_LIBC_STATIC_LIB_DIR=$(dirname $(cc -print-file-name=crtbegin.o))
make
make install
./run_tests

Release / Install Build

Once installed, ZIG_LIBC_LIB_DIR and ZIG_LIBC_INCLUDE_DIR can be overridden by the --libc-lib-dir and --libc-include-dir parameters to the zig binary.

mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DZIG_LIBC_LIB_DIR=/some/path -DZIG_LIBC_INCLUDE_DIR=/some/path -DZIG_LIBC_STATIC_INCLUDE_DIR=/some/path
make
sudo make install

Test Coverage

To see test coverage in Zig, configure with -DZIG_TEST_COVERAGE=ON as an additional parameter to the Debug build.

You must have lcov installed and available.

Then make coverage.

With GCC you will get a nice HTML view of the coverage data. With clang, the last step will fail, but you can execute llvm-cov gcov $(find CMakeFiles/ -name "*.gcda") and then inspect the produced .gcov files.

Troubleshooting

If you get one of these:

undefined reference to `_ZNK4llvm17SubtargetFeatures9getStringB5cxx11Ev'
undefined reference to `llvm::SubtargetFeatures::getString() const'

This is because of C++'s Dual ABI. Most likely LLVM was compiled with one compiler while Zig was compiled with a different one, for example GCC vs clang.

To fix this, you have 2 options:

  • Compile Zig with the same compiler that LLVM was compiled with.
  • Add -DZIG_LLVM_OLD_CXX_ABI=yes to the cmake configure line.