`std.GeneralPurposeAllocator` is now available. It is a function that takes a configuration struct (with default field values) and returns an allocator. There is a detailed description of this allocator in the doc comments at the top of the new file. The main feature of this allocator is that it is *safe*. It prevents double-free, use-after-free, and detects leaks. Some deprecation compile errors are removed. The Allocator interface gains `old_align` as a new parameter to `resizeFn`. This is useful to quickly look up allocations. `std.heap.page_allocator` is improved to use mmap address hints to avoid obtaining the same virtual address pages when unmapping and mapping pages. The new general purpose allocator uses the page allocator as its backing allocator by default. `std.testing.allocator` is replaced with usage of this new allocator, which does leak checking, and so the LeakCheckAllocator is retired. stage1 is improved so that the `@typeInfo` of a pointer has a lazy value for the alignment of the child type, to avoid false dependency loops when dealing with pointers to async function frames. The `std.mem.Allocator` interface is refactored to be in its own file. `std.Mutex` now exposes the dummy mutex with `std.Mutex.Dummy`. This allocator is great for debug mode, however it needs some work to have better performance in release modes. The next step will be setting up a series of tests in ziglang/gotta-go-fast and then making improvements to the implementation.
877 lines
32 KiB
Zig
877 lines
32 KiB
Zig
const std = @import("std.zig");
|
|
const debug = std.debug;
|
|
const assert = debug.assert;
|
|
const testing = std.testing;
|
|
const mem = std.mem;
|
|
const Allocator = mem.Allocator;
|
|
|
|
/// A contiguous, growable list of items in memory.
|
|
/// This is a wrapper around an array of T values. Initialize with `init`.
|
|
pub fn ArrayList(comptime T: type) type {
|
|
return ArrayListAligned(T, null);
|
|
}
|
|
|
|
pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
|
|
if (alignment) |a| {
|
|
if (a == @alignOf(T)) {
|
|
return ArrayListAligned(T, null);
|
|
}
|
|
}
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
/// Content of the ArrayList
|
|
items: Slice,
|
|
capacity: usize,
|
|
allocator: *Allocator,
|
|
|
|
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
|
|
pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;
|
|
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn init(allocator: *Allocator) Self {
|
|
return Self{
|
|
.items = &[_]T{},
|
|
.capacity = 0,
|
|
.allocator = allocator,
|
|
};
|
|
}
|
|
|
|
/// Initialize with capacity to hold at least num elements.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
|
|
var self = Self.init(allocator);
|
|
try self.ensureCapacity(num);
|
|
return self;
|
|
}
|
|
|
|
/// Release all allocated memory.
|
|
pub fn deinit(self: Self) void {
|
|
self.allocator.free(self.allocatedSlice());
|
|
}
|
|
|
|
/// Deprecated: use `items` field directly.
|
|
/// Return contents as a slice. Only valid while the list
|
|
/// doesn't change size.
|
|
pub fn span(self: anytype) @TypeOf(self.items) {
|
|
return self.items;
|
|
}
|
|
|
|
pub const toSlice = @compileError("deprecated: use `items` field directly");
|
|
pub const toSliceConst = @compileError("deprecated: use `items` field directly");
|
|
pub const at = @compileError("deprecated: use `list.items[i]`");
|
|
pub const ptrAt = @compileError("deprecated: use `&list.items[i]`");
|
|
pub const setOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.items[i] = item`");
|
|
pub const set = @compileError("deprecated: use `list.items[i] = item`");
|
|
pub const swapRemoveOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.swapRemove(i)`");
|
|
|
|
/// ArrayList takes ownership of the passed in slice. The slice must have been
|
|
/// allocated with `allocator`.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn fromOwnedSlice(allocator: *Allocator, slice: Slice) Self {
|
|
return Self{
|
|
.items = slice,
|
|
.capacity = slice.len,
|
|
.allocator = allocator,
|
|
};
|
|
}
|
|
|
|
pub fn toUnmanaged(self: Self) ArrayListAlignedUnmanaged(T, alignment) {
|
|
return .{ .items = self.items, .capacity = self.capacity };
|
|
}
|
|
|
|
/// The caller owns the returned memory. ArrayList becomes empty.
|
|
pub fn toOwnedSlice(self: *Self) Slice {
|
|
const allocator = self.allocator;
|
|
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
|
|
self.* = init(allocator);
|
|
return result;
|
|
}
|
|
|
|
/// Insert `item` at index `n` by moving `list[n .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insert(self: *Self, n: usize, item: T) !void {
|
|
try self.ensureCapacity(self.items.len + 1);
|
|
self.items.len += 1;
|
|
|
|
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
|
|
self.items[n] = item;
|
|
}
|
|
|
|
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insertSlice(self: *Self, i: usize, items: SliceConst) !void {
|
|
try self.ensureCapacity(self.items.len + items.len);
|
|
self.items.len += items.len;
|
|
|
|
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
|
|
mem.copy(T, self.items[i .. i + items.len], items);
|
|
}
|
|
|
|
/// Replace range of elements `list[start..start+len]` with `new_items`
|
|
/// grows list if `len < new_items.len`. may allocate
|
|
/// shrinks list if `len > new_items.len`
|
|
pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: SliceConst) !void {
|
|
const after_range = start + len;
|
|
const range = self.items[start..after_range];
|
|
|
|
if (range.len == new_items.len)
|
|
mem.copy(T, range, new_items)
|
|
else if (range.len < new_items.len) {
|
|
const first = new_items[0..range.len];
|
|
const rest = new_items[range.len..];
|
|
|
|
mem.copy(T, range, first);
|
|
try self.insertSlice(after_range, rest);
|
|
} else {
|
|
mem.copy(T, range, new_items);
|
|
const after_subrange = start + new_items.len;
|
|
|
|
for (self.items[after_range..]) |item, i| {
|
|
self.items[after_subrange..][i] = item;
|
|
}
|
|
|
|
self.items.len -= len - new_items.len;
|
|
}
|
|
}
|
|
|
|
/// Extend the list by 1 element. Allocates more memory as necessary.
|
|
pub fn append(self: *Self, item: T) !void {
|
|
const new_item_ptr = try self.addOne();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Extend the list by 1 element, but asserting `self.capacity`
|
|
/// is sufficient to hold an additional item.
|
|
pub fn appendAssumeCapacity(self: *Self, item: T) void {
|
|
const new_item_ptr = self.addOneAssumeCapacity();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Remove the element at index `i` from the list and return its value.
|
|
/// Asserts the array has at least one item.
|
|
/// This operation is O(N).
|
|
pub fn orderedRemove(self: *Self, i: usize) T {
|
|
const newlen = self.items.len - 1;
|
|
if (newlen == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
|
|
self.items[newlen] = undefined;
|
|
self.items.len = newlen;
|
|
return old_item;
|
|
}
|
|
|
|
/// Removes the element at the specified index and returns it.
|
|
/// The empty slot is filled from the end of the list.
|
|
/// This operation is O(1).
|
|
pub fn swapRemove(self: *Self, i: usize) T {
|
|
if (self.items.len - 1 == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
self.items[i] = self.pop();
|
|
return old_item;
|
|
}
|
|
|
|
/// Append the slice of items to the list. Allocates more
|
|
/// memory as necessary.
|
|
pub fn appendSlice(self: *Self, items: SliceConst) !void {
|
|
try self.ensureCapacity(self.items.len + items.len);
|
|
self.appendSliceAssumeCapacity(items);
|
|
}
|
|
|
|
/// Append the slice of items to the list, asserting the capacity is already
|
|
/// enough to store the new items.
|
|
pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
|
|
const oldlen = self.items.len;
|
|
const newlen = self.items.len + items.len;
|
|
self.items.len = newlen;
|
|
mem.copy(T, self.items[oldlen..], items);
|
|
}
|
|
|
|
pub usingnamespace if (T != u8) struct {} else struct {
|
|
pub const Writer = std.io.Writer(*Self, error{OutOfMemory}, appendWrite);
|
|
|
|
/// Initializes a Writer which will append to the list.
|
|
pub fn writer(self: *Self) Writer {
|
|
return .{ .context = self };
|
|
}
|
|
|
|
/// Deprecated: use `writer`
|
|
pub const outStream = writer;
|
|
|
|
/// Same as `append` except it returns the number of bytes written, which is always the same
|
|
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
|
|
fn appendWrite(self: *Self, m: []const u8) !usize {
|
|
try self.appendSlice(m);
|
|
return m.len;
|
|
}
|
|
};
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Allocates more memory as necessary.
|
|
pub fn appendNTimes(self: *Self, value: T, n: usize) !void {
|
|
const old_len = self.items.len;
|
|
try self.resize(self.items.len + n);
|
|
mem.set(T, self.items[old_len..self.items.len], value);
|
|
}
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Asserts the capacity is enough.
|
|
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
|
|
const new_len = self.items.len + n;
|
|
assert(new_len <= self.capacity);
|
|
mem.set(T, self.items.ptr[self.items.len..new_len], value);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Adjust the list's length to `new_len`.
|
|
/// Does not initialize added items if any.
|
|
pub fn resize(self: *Self, new_len: usize) !void {
|
|
try self.ensureCapacity(new_len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Reduce allocated capacity to `new_len`.
|
|
/// Invalidates element pointers.
|
|
pub fn shrink(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
|
|
self.items = self.allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
|
|
error.OutOfMemory => { // no problem, capacity is still correct then.
|
|
self.items.len = new_len;
|
|
return;
|
|
},
|
|
};
|
|
self.capacity = new_len;
|
|
}
|
|
|
|
/// Reduce length to `new_len`.
|
|
/// Invalidates element pointers.
|
|
/// Keeps capacity the same.
|
|
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
pub fn ensureCapacity(self: *Self, new_capacity: usize) !void {
|
|
var better_capacity = self.capacity;
|
|
if (better_capacity >= new_capacity) return;
|
|
|
|
while (true) {
|
|
better_capacity += better_capacity / 2 + 8;
|
|
if (better_capacity >= new_capacity) break;
|
|
}
|
|
|
|
// TODO This can be optimized to avoid needlessly copying undefined memory.
|
|
const new_memory = try self.allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
}
|
|
|
|
/// Increases the array's length to match the full capacity that is already allocated.
|
|
/// The new elements have `undefined` values. This operation does not invalidate any
|
|
/// element pointers.
|
|
pub fn expandToCapacity(self: *Self) void {
|
|
self.items.len = self.capacity;
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addOne(self: *Self) !*T {
|
|
const newlen = self.items.len + 1;
|
|
try self.ensureCapacity(newlen);
|
|
return self.addOneAssumeCapacity();
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addOneAssumeCapacity(self: *Self) *T {
|
|
assert(self.items.len < self.capacity);
|
|
|
|
self.items.len += 1;
|
|
return &self.items[self.items.len - 1];
|
|
}
|
|
|
|
/// Resize the array, adding `n` new elements, which have `undefined` values.
|
|
/// The return value is an array pointing to the newly allocated elements.
|
|
pub fn addManyAsArray(self: *Self, comptime n: usize) !*[n]T {
|
|
const prev_len = self.items.len;
|
|
try self.resize(self.items.len + n);
|
|
return self.items[prev_len..][0..n];
|
|
}
|
|
|
|
/// Resize the array, adding `n` new elements, which have `undefined` values.
|
|
/// The return value is an array pointing to the newly allocated elements.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
|
|
assert(self.items.len + n <= self.capacity);
|
|
const prev_len = self.items.len;
|
|
self.items.len += n;
|
|
return self.items[prev_len..][0..n];
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// Asserts the list has at least one item.
|
|
pub fn pop(self: *Self) T {
|
|
const val = self.items[self.items.len - 1];
|
|
self.items.len -= 1;
|
|
return val;
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// If the list is empty, returns `null`.
|
|
pub fn popOrNull(self: *Self) ?T {
|
|
if (self.items.len == 0) return null;
|
|
return self.pop();
|
|
}
|
|
|
|
// For a nicer API, `items.len` is the length, not the capacity.
|
|
// This requires "unsafe" slicing.
|
|
fn allocatedSlice(self: Self) Slice {
|
|
return self.items.ptr[0..self.capacity];
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Bring-your-own allocator with every function call.
|
|
/// Initialize directly and deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn ArrayListUnmanaged(comptime T: type) type {
|
|
return ArrayListAlignedUnmanaged(T, null);
|
|
}
|
|
|
|
pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
|
|
if (alignment) |a| {
|
|
if (a == @alignOf(T)) {
|
|
return ArrayListAlignedUnmanaged(T, null);
|
|
}
|
|
}
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
/// Content of the ArrayList.
|
|
items: Slice = &[_]T{},
|
|
capacity: usize = 0,
|
|
|
|
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
|
|
pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;
|
|
|
|
/// Initialize with capacity to hold at least num elements.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
|
|
var self = Self{};
|
|
try self.ensureCapacity(allocator, num);
|
|
return self;
|
|
}
|
|
|
|
/// Release all allocated memory.
|
|
pub fn deinit(self: *Self, allocator: *Allocator) void {
|
|
allocator.free(self.allocatedSlice());
|
|
self.* = undefined;
|
|
}
|
|
|
|
pub fn toManaged(self: *Self, allocator: *Allocator) ArrayListAligned(T, alignment) {
|
|
return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
|
|
}
|
|
|
|
/// The caller owns the returned memory. ArrayList becomes empty.
|
|
pub fn toOwnedSlice(self: *Self, allocator: *Allocator) Slice {
|
|
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
|
|
self.* = Self{};
|
|
return result;
|
|
}
|
|
|
|
/// Insert `item` at index `n`. Moves `list[n .. list.len]`
|
|
/// to make room.
|
|
pub fn insert(self: *Self, allocator: *Allocator, n: usize, item: T) !void {
|
|
try self.ensureCapacity(allocator, self.items.len + 1);
|
|
self.items.len += 1;
|
|
|
|
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
|
|
self.items[n] = item;
|
|
}
|
|
|
|
/// Insert slice `items` at index `i`. Moves
|
|
/// `list[i .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insertSlice(self: *Self, allocator: *Allocator, i: usize, items: SliceConst) !void {
|
|
try self.ensureCapacity(allocator, self.items.len + items.len);
|
|
self.items.len += items.len;
|
|
|
|
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
|
|
mem.copy(T, self.items[i .. i + items.len], items);
|
|
}
|
|
|
|
/// Replace range of elements `list[start..start+len]` with `new_items`
|
|
/// grows list if `len < new_items.len`. may allocate
|
|
/// shrinks list if `len > new_items.len`
|
|
pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: SliceConst) !void {
|
|
var managed = self.toManaged(allocator);
|
|
try managed.replaceRange(start, len, new_items);
|
|
self.* = managed.toUnmanaged();
|
|
}
|
|
|
|
/// Extend the list by 1 element. Allocates more memory as necessary.
|
|
pub fn append(self: *Self, allocator: *Allocator, item: T) !void {
|
|
const new_item_ptr = try self.addOne(allocator);
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Extend the list by 1 element, but asserting `self.capacity`
|
|
/// is sufficient to hold an additional item.
|
|
pub fn appendAssumeCapacity(self: *Self, item: T) void {
|
|
const new_item_ptr = self.addOneAssumeCapacity();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Remove the element at index `i` from the list and return its value.
|
|
/// Asserts the array has at least one item.
|
|
/// This operation is O(N).
|
|
pub fn orderedRemove(self: *Self, i: usize) T {
|
|
const newlen = self.items.len - 1;
|
|
if (newlen == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
|
|
self.items[newlen] = undefined;
|
|
self.items.len = newlen;
|
|
return old_item;
|
|
}
|
|
|
|
/// Removes the element at the specified index and returns it.
|
|
/// The empty slot is filled from the end of the list.
|
|
/// This operation is O(1).
|
|
pub fn swapRemove(self: *Self, i: usize) T {
|
|
if (self.items.len - 1 == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
self.items[i] = self.pop();
|
|
return old_item;
|
|
}
|
|
|
|
/// Append the slice of items to the list. Allocates more
|
|
/// memory as necessary.
|
|
pub fn appendSlice(self: *Self, allocator: *Allocator, items: SliceConst) !void {
|
|
try self.ensureCapacity(allocator, self.items.len + items.len);
|
|
self.appendSliceAssumeCapacity(items);
|
|
}
|
|
|
|
/// Append the slice of items to the list, asserting the capacity is enough
|
|
/// to store the new items.
|
|
pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
|
|
const oldlen = self.items.len;
|
|
const newlen = self.items.len + items.len;
|
|
|
|
self.items.len = newlen;
|
|
mem.copy(T, self.items[oldlen..], items);
|
|
}
|
|
|
|
/// Same as `append` except it returns the number of bytes written, which is always the same
|
|
/// as `m.len`. The purpose of this function existing is to match `std.io.OutStream` API.
|
|
/// This function may be called only when `T` is `u8`.
|
|
fn appendWrite(self: *Self, allocator: *Allocator, m: []const u8) !usize {
|
|
try self.appendSlice(allocator, m);
|
|
return m.len;
|
|
}
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Allocates more memory as necessary.
|
|
pub fn appendNTimes(self: *Self, allocator: *Allocator, value: T, n: usize) !void {
|
|
const old_len = self.items.len;
|
|
try self.resize(allocator, self.items.len + n);
|
|
mem.set(T, self.items[old_len..self.items.len], value);
|
|
}
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Asserts the capacity is enough.
|
|
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
|
|
const new_len = self.items.len + n;
|
|
assert(new_len <= self.capacity);
|
|
mem.set(T, self.items.ptr[self.items.len..new_len], value);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Adjust the list's length to `new_len`.
|
|
/// Does not initialize added items if any.
|
|
pub fn resize(self: *Self, allocator: *Allocator, new_len: usize) !void {
|
|
try self.ensureCapacity(allocator, new_len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Reduce allocated capacity to `new_len`.
|
|
/// Invalidates element pointers.
|
|
pub fn shrink(self: *Self, allocator: *Allocator, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
|
|
self.items = allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
|
|
error.OutOfMemory => { // no problem, capacity is still correct then.
|
|
self.items.len = new_len;
|
|
return;
|
|
},
|
|
};
|
|
self.capacity = new_len;
|
|
}
|
|
|
|
/// Reduce length to `new_len`.
|
|
/// Invalidates element pointers.
|
|
/// Keeps capacity the same.
|
|
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
pub fn ensureCapacity(self: *Self, allocator: *Allocator, new_capacity: usize) !void {
|
|
var better_capacity = self.capacity;
|
|
if (better_capacity >= new_capacity) return;
|
|
|
|
while (true) {
|
|
better_capacity += better_capacity / 2 + 8;
|
|
if (better_capacity >= new_capacity) break;
|
|
}
|
|
|
|
const new_memory = try allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
}
|
|
|
|
/// Increases the array's length to match the full capacity that is already allocated.
|
|
/// The new elements have `undefined` values.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn expandToCapacity(self: *Self) void {
|
|
self.items.len = self.capacity;
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addOne(self: *Self, allocator: *Allocator) !*T {
|
|
const newlen = self.items.len + 1;
|
|
try self.ensureCapacity(allocator, newlen);
|
|
return self.addOneAssumeCapacity();
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn addOneAssumeCapacity(self: *Self) *T {
|
|
assert(self.items.len < self.capacity);
|
|
|
|
self.items.len += 1;
|
|
return &self.items[self.items.len - 1];
|
|
}
|
|
|
|
/// Resize the array, adding `n` new elements, which have `undefined` values.
|
|
/// The return value is an array pointing to the newly allocated elements.
|
|
pub fn addManyAsArray(self: *Self, allocator: *Allocator, comptime n: usize) !*[n]T {
|
|
const prev_len = self.items.len;
|
|
try self.resize(allocator, self.items.len + n);
|
|
return self.items[prev_len..][0..n];
|
|
}
|
|
|
|
/// Resize the array, adding `n` new elements, which have `undefined` values.
|
|
/// The return value is an array pointing to the newly allocated elements.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
|
|
assert(self.items.len + n <= self.capacity);
|
|
const prev_len = self.items.len;
|
|
self.items.len += n;
|
|
return self.items[prev_len..][0..n];
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// Asserts the list has at least one item.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn pop(self: *Self) T {
|
|
const val = self.items[self.items.len - 1];
|
|
self.items.len -= 1;
|
|
return val;
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// If the list is empty, returns `null`.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn popOrNull(self: *Self) ?T {
|
|
if (self.items.len == 0) return null;
|
|
return self.pop();
|
|
}
|
|
|
|
/// For a nicer API, `items.len` is the length, not the capacity.
|
|
/// This requires "unsafe" slicing.
|
|
fn allocatedSlice(self: Self) Slice {
|
|
return self.items.ptr[0..self.capacity];
|
|
}
|
|
};
|
|
}
|
|
|
|
test "std.ArrayList.init" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity == 0);
|
|
}
|
|
|
|
test "std.ArrayList.initCapacity" {
|
|
var list = try ArrayList(i8).initCapacity(testing.allocator, 200);
|
|
defer list.deinit();
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity >= 200);
|
|
}
|
|
|
|
test "std.ArrayList.basic" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
list.append(@intCast(i32, i + 1)) catch unreachable;
|
|
}
|
|
}
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
testing.expect(list.items[i] == @intCast(i32, i + 1));
|
|
}
|
|
}
|
|
|
|
for (list.items) |v, i| {
|
|
testing.expect(v == @intCast(i32, i + 1));
|
|
}
|
|
|
|
testing.expect(list.pop() == 10);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
|
|
testing.expect(list.items.len == 12);
|
|
testing.expect(list.pop() == 3);
|
|
testing.expect(list.pop() == 2);
|
|
testing.expect(list.pop() == 1);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(&[_]i32{}) catch unreachable;
|
|
testing.expect(list.items.len == 9);
|
|
|
|
// can only set on indices < self.items.len
|
|
list.items[7] = 33;
|
|
list.items[8] = 42;
|
|
|
|
testing.expect(list.pop() == 42);
|
|
testing.expect(list.pop() == 33);
|
|
}
|
|
|
|
test "std.ArrayList.appendNTimes" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.appendNTimes(2, 10);
|
|
testing.expectEqual(@as(usize, 10), list.items.len);
|
|
for (list.items) |element| {
|
|
testing.expectEqual(@as(i32, 2), element);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList.appendNTimes with failing allocator" {
|
|
var list = ArrayList(i32).init(testing.failing_allocator);
|
|
defer list.deinit();
|
|
testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
|
|
}
|
|
|
|
test "std.ArrayList.orderedRemove" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.append(5);
|
|
try list.append(6);
|
|
try list.append(7);
|
|
|
|
//remove from middle
|
|
testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
|
|
testing.expectEqual(@as(i32, 5), list.items[3]);
|
|
testing.expectEqual(@as(usize, 6), list.items.len);
|
|
|
|
//remove from end
|
|
testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
|
|
testing.expectEqual(@as(usize, 5), list.items.len);
|
|
|
|
//remove from front
|
|
testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
|
|
testing.expectEqual(@as(i32, 2), list.items[0]);
|
|
testing.expectEqual(@as(usize, 4), list.items.len);
|
|
}
|
|
|
|
test "std.ArrayList.swapRemove" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.append(5);
|
|
try list.append(6);
|
|
try list.append(7);
|
|
|
|
//remove from middle
|
|
testing.expect(list.swapRemove(3) == 4);
|
|
testing.expect(list.items[3] == 7);
|
|
testing.expect(list.items.len == 6);
|
|
|
|
//remove from end
|
|
testing.expect(list.swapRemove(5) == 6);
|
|
testing.expect(list.items.len == 5);
|
|
|
|
//remove from front
|
|
testing.expect(list.swapRemove(0) == 1);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items.len == 4);
|
|
}
|
|
|
|
test "std.ArrayList.insert" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.insert(0, 5);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items[1] == 1);
|
|
testing.expect(list.items[2] == 2);
|
|
testing.expect(list.items[3] == 3);
|
|
}
|
|
|
|
test "std.ArrayList.insertSlice" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.insertSlice(1, &[_]i32{ 9, 8 });
|
|
testing.expect(list.items[0] == 1);
|
|
testing.expect(list.items[1] == 9);
|
|
testing.expect(list.items[2] == 8);
|
|
testing.expect(list.items[3] == 2);
|
|
testing.expect(list.items[4] == 3);
|
|
testing.expect(list.items[5] == 4);
|
|
|
|
const items = [_]i32{1};
|
|
try list.insertSlice(0, items[0..0]);
|
|
testing.expect(list.items.len == 6);
|
|
testing.expect(list.items[0] == 1);
|
|
}
|
|
|
|
test "std.ArrayList.replaceRange" {
|
|
var arena = std.heap.ArenaAllocator.init(testing.allocator);
|
|
defer arena.deinit();
|
|
|
|
const alloc = &arena.allocator;
|
|
const init = [_]i32{ 1, 2, 3, 4, 5 };
|
|
const new = [_]i32{ 0, 0, 0 };
|
|
|
|
var list_zero = ArrayList(i32).init(alloc);
|
|
var list_eq = ArrayList(i32).init(alloc);
|
|
var list_lt = ArrayList(i32).init(alloc);
|
|
var list_gt = ArrayList(i32).init(alloc);
|
|
|
|
try list_zero.appendSlice(&init);
|
|
try list_eq.appendSlice(&init);
|
|
try list_lt.appendSlice(&init);
|
|
try list_gt.appendSlice(&init);
|
|
|
|
try list_zero.replaceRange(1, 0, &new);
|
|
try list_eq.replaceRange(1, 3, &new);
|
|
try list_lt.replaceRange(1, 2, &new);
|
|
|
|
// after_range > new_items.len in function body
|
|
testing.expect(1 + 4 > new.len);
|
|
try list_gt.replaceRange(1, 4, &new);
|
|
|
|
testing.expectEqualSlices(i32, list_zero.items, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 });
|
|
testing.expectEqualSlices(i32, list_eq.items, &[_]i32{ 1, 0, 0, 0, 5 });
|
|
testing.expectEqualSlices(i32, list_lt.items, &[_]i32{ 1, 0, 0, 0, 4, 5 });
|
|
testing.expectEqualSlices(i32, list_gt.items, &[_]i32{ 1, 0, 0, 0 });
|
|
}
|
|
|
|
const Item = struct {
|
|
integer: i32,
|
|
sub_items: ArrayList(Item),
|
|
};
|
|
|
|
test "std.ArrayList: ArrayList(T) of struct T" {
|
|
var root = Item{ .integer = 1, .sub_items = ArrayList(Item).init(testing.allocator) };
|
|
defer root.sub_items.deinit();
|
|
try root.sub_items.append(Item{ .integer = 42, .sub_items = ArrayList(Item).init(testing.allocator) });
|
|
testing.expect(root.sub_items.items[0].integer == 42);
|
|
}
|
|
|
|
test "std.ArrayList(u8) implements outStream" {
|
|
var buffer = ArrayList(u8).init(std.testing.allocator);
|
|
defer buffer.deinit();
|
|
|
|
const x: i32 = 42;
|
|
const y: i32 = 1234;
|
|
try buffer.outStream().print("x: {}\ny: {}\n", .{ x, y });
|
|
|
|
testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.span());
|
|
}
|
|
|
|
test "std.ArrayList.shrink still sets length on error.OutOfMemory" {
|
|
// use an arena allocator to make sure realloc returns error.OutOfMemory
|
|
var arena = std.heap.ArenaAllocator.init(testing.allocator);
|
|
defer arena.deinit();
|
|
|
|
var list = ArrayList(i32).init(&arena.allocator);
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
|
|
list.shrink(1);
|
|
testing.expect(list.items.len == 1);
|
|
}
|
|
|
|
test "std.ArrayList.writer" {
|
|
var list = ArrayList(u8).init(std.testing.allocator);
|
|
defer list.deinit();
|
|
|
|
const writer = list.writer();
|
|
try writer.writeAll("a");
|
|
try writer.writeAll("bc");
|
|
try writer.writeAll("d");
|
|
try writer.writeAll("efg");
|
|
testing.expectEqualSlices(u8, list.items, "abcdefg");
|
|
}
|
|
|
|
test "addManyAsArray" {
|
|
const a = std.testing.allocator;
|
|
{
|
|
var list = ArrayList(u8).init(a);
|
|
defer list.deinit();
|
|
|
|
(try list.addManyAsArray(4)).* = "aoeu".*;
|
|
try list.ensureCapacity(8);
|
|
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
|
|
|
|
testing.expectEqualSlices(u8, list.items, "aoeuasdf");
|
|
}
|
|
{
|
|
var list = ArrayListUnmanaged(u8){};
|
|
defer list.deinit(a);
|
|
|
|
(try list.addManyAsArray(a, 4)).* = "aoeu".*;
|
|
try list.ensureCapacity(a, 8);
|
|
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
|
|
|
|
testing.expectEqualSlices(u8, list.items, "aoeuasdf");
|
|
}
|
|
}
|