1118 lines
46 KiB
Zig
1118 lines
46 KiB
Zig
const std = @import("index.zig");
|
|
const builtin = @import("builtin");
|
|
const assert = std.debug.assert;
|
|
const event = this;
|
|
const mem = std.mem;
|
|
const posix = std.os.posix;
|
|
const AtomicRmwOp = builtin.AtomicRmwOp;
|
|
const AtomicOrder = builtin.AtomicOrder;
|
|
|
|
pub const TcpServer = struct {
|
|
handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void,
|
|
|
|
loop: *Loop,
|
|
sockfd: ?i32,
|
|
accept_coro: ?promise,
|
|
listen_address: std.net.Address,
|
|
|
|
waiting_for_emfile_node: PromiseNode,
|
|
listen_resume_node: event.Loop.ResumeNode,
|
|
|
|
const PromiseNode = std.LinkedList(promise).Node;
|
|
|
|
pub fn init(loop: *Loop) TcpServer {
|
|
// TODO can't initialize handler coroutine here because we need well defined copy elision
|
|
return TcpServer{
|
|
.loop = loop,
|
|
.sockfd = null,
|
|
.accept_coro = null,
|
|
.handleRequestFn = undefined,
|
|
.waiting_for_emfile_node = undefined,
|
|
.listen_address = undefined,
|
|
.listen_resume_node = event.Loop.ResumeNode{
|
|
.id = event.Loop.ResumeNode.Id.Basic,
|
|
.handle = undefined,
|
|
},
|
|
};
|
|
}
|
|
|
|
pub fn listen(
|
|
self: *TcpServer,
|
|
address: *const std.net.Address,
|
|
handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void,
|
|
) !void {
|
|
self.handleRequestFn = handleRequestFn;
|
|
|
|
const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp);
|
|
errdefer std.os.close(sockfd);
|
|
self.sockfd = sockfd;
|
|
|
|
try std.os.posixBind(sockfd, &address.os_addr);
|
|
try std.os.posixListen(sockfd, posix.SOMAXCONN);
|
|
self.listen_address = std.net.Address.initPosix(try std.os.posixGetSockName(sockfd));
|
|
|
|
self.accept_coro = try async<self.loop.allocator> TcpServer.handler(self);
|
|
errdefer cancel self.accept_coro.?;
|
|
|
|
self.listen_resume_node.handle = self.accept_coro.?;
|
|
try self.loop.addFd(sockfd, &self.listen_resume_node);
|
|
errdefer self.loop.removeFd(sockfd);
|
|
}
|
|
|
|
/// Stop listening
|
|
pub fn close(self: *TcpServer) void {
|
|
self.loop.removeFd(self.sockfd.?);
|
|
std.os.close(self.sockfd.?);
|
|
}
|
|
|
|
pub fn deinit(self: *TcpServer) void {
|
|
if (self.accept_coro) |accept_coro| cancel accept_coro;
|
|
if (self.sockfd) |sockfd| std.os.close(sockfd);
|
|
}
|
|
|
|
pub async fn handler(self: *TcpServer) void {
|
|
while (true) {
|
|
var accepted_addr: std.net.Address = undefined;
|
|
if (std.os.posixAccept(self.sockfd.?, &accepted_addr.os_addr, posix.SOCK_NONBLOCK | posix.SOCK_CLOEXEC)) |accepted_fd| {
|
|
var socket = std.os.File.openHandle(accepted_fd);
|
|
_ = async<self.loop.allocator> self.handleRequestFn(self, accepted_addr, socket) catch |err| switch (err) {
|
|
error.OutOfMemory => {
|
|
socket.close();
|
|
continue;
|
|
},
|
|
};
|
|
} else |err| switch (err) {
|
|
error.WouldBlock => {
|
|
suspend; // we will get resumed by epoll_wait in the event loop
|
|
continue;
|
|
},
|
|
error.ProcessFdQuotaExceeded => {
|
|
errdefer std.os.emfile_promise_queue.remove(&self.waiting_for_emfile_node);
|
|
suspend |p| {
|
|
self.waiting_for_emfile_node = PromiseNode.init(p);
|
|
std.os.emfile_promise_queue.append(&self.waiting_for_emfile_node);
|
|
}
|
|
continue;
|
|
},
|
|
error.ConnectionAborted, error.FileDescriptorClosed => continue,
|
|
|
|
error.PageFault => unreachable,
|
|
error.InvalidSyscall => unreachable,
|
|
error.FileDescriptorNotASocket => unreachable,
|
|
error.OperationNotSupported => unreachable,
|
|
|
|
error.SystemFdQuotaExceeded, error.SystemResources, error.ProtocolFailure, error.BlockedByFirewall, error.Unexpected => {
|
|
@panic("TODO handle this error");
|
|
},
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
pub const Loop = struct {
|
|
allocator: *mem.Allocator,
|
|
next_tick_queue: std.atomic.QueueMpsc(promise),
|
|
os_data: OsData,
|
|
dispatch_lock: u8, // TODO make this a bool
|
|
pending_event_count: usize,
|
|
extra_threads: []*std.os.Thread,
|
|
final_resume_node: ResumeNode,
|
|
|
|
// pre-allocated eventfds. all permanently active.
|
|
// this is how we send promises to be resumed on other threads.
|
|
available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd),
|
|
eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node,
|
|
|
|
pub const NextTickNode = std.atomic.QueueMpsc(promise).Node;
|
|
|
|
pub const ResumeNode = struct {
|
|
id: Id,
|
|
handle: promise,
|
|
|
|
pub const Id = enum {
|
|
Basic,
|
|
Stop,
|
|
EventFd,
|
|
};
|
|
|
|
pub const EventFd = switch (builtin.os) {
|
|
builtin.Os.macosx => MacOsEventFd,
|
|
builtin.Os.linux => struct {
|
|
base: ResumeNode,
|
|
epoll_op: u32,
|
|
eventfd: i32,
|
|
},
|
|
builtin.Os.windows => struct {
|
|
base: ResumeNode,
|
|
},
|
|
else => @compileError("unsupported OS"),
|
|
};
|
|
|
|
const MacOsEventFd = struct {
|
|
base: ResumeNode,
|
|
kevent: posix.Kevent,
|
|
};
|
|
};
|
|
|
|
/// After initialization, call run().
|
|
/// TODO copy elision / named return values so that the threads referencing *Loop
|
|
/// have the correct pointer value.
|
|
fn initSingleThreaded(self: *Loop, allocator: *mem.Allocator) !void {
|
|
return self.initInternal(allocator, 1);
|
|
}
|
|
|
|
/// The allocator must be thread-safe because we use it for multiplexing
|
|
/// coroutines onto kernel threads.
|
|
/// After initialization, call run().
|
|
/// TODO copy elision / named return values so that the threads referencing *Loop
|
|
/// have the correct pointer value.
|
|
fn initMultiThreaded(self: *Loop, allocator: *mem.Allocator) !void {
|
|
const core_count = try std.os.cpuCount(allocator);
|
|
return self.initInternal(allocator, core_count);
|
|
}
|
|
|
|
/// Thread count is the total thread count. The thread pool size will be
|
|
/// max(thread_count - 1, 0)
|
|
fn initInternal(self: *Loop, allocator: *mem.Allocator, thread_count: usize) !void {
|
|
self.* = Loop{
|
|
.pending_event_count = 0,
|
|
.allocator = allocator,
|
|
.os_data = undefined,
|
|
.next_tick_queue = std.atomic.QueueMpsc(promise).init(),
|
|
.dispatch_lock = 1, // start locked so threads go directly into epoll wait
|
|
.extra_threads = undefined,
|
|
.final_resume_node = ResumeNode{
|
|
.id = ResumeNode.Id.Stop,
|
|
.handle = undefined,
|
|
},
|
|
.available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(),
|
|
.eventfd_resume_nodes = undefined,
|
|
};
|
|
const extra_thread_count = thread_count - 1;
|
|
self.eventfd_resume_nodes = try self.allocator.alloc(
|
|
std.atomic.Stack(ResumeNode.EventFd).Node,
|
|
extra_thread_count,
|
|
);
|
|
errdefer self.allocator.free(self.eventfd_resume_nodes);
|
|
|
|
self.extra_threads = try self.allocator.alloc(*std.os.Thread, extra_thread_count);
|
|
errdefer self.allocator.free(self.extra_threads);
|
|
|
|
try self.initOsData(extra_thread_count);
|
|
errdefer self.deinitOsData();
|
|
}
|
|
|
|
/// must call stop before deinit
|
|
pub fn deinit(self: *Loop) void {
|
|
self.deinitOsData();
|
|
self.allocator.free(self.extra_threads);
|
|
}
|
|
|
|
const InitOsDataError = std.os.LinuxEpollCreateError || mem.Allocator.Error || std.os.LinuxEventFdError ||
|
|
std.os.SpawnThreadError || std.os.LinuxEpollCtlError || std.os.BsdKEventError;
|
|
|
|
const wakeup_bytes = []u8{0x1} ** 8;
|
|
|
|
fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void {
|
|
switch (builtin.os) {
|
|
builtin.Os.linux => {
|
|
errdefer {
|
|
while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
|
|
}
|
|
for (self.eventfd_resume_nodes) |*eventfd_node| {
|
|
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
|
|
.data = ResumeNode.EventFd{
|
|
.base = ResumeNode{
|
|
.id = ResumeNode.Id.EventFd,
|
|
.handle = undefined,
|
|
},
|
|
.eventfd = try std.os.linuxEventFd(1, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK),
|
|
.epoll_op = posix.EPOLL_CTL_ADD,
|
|
},
|
|
.next = undefined,
|
|
};
|
|
self.available_eventfd_resume_nodes.push(eventfd_node);
|
|
}
|
|
|
|
self.os_data.epollfd = try std.os.linuxEpollCreate(posix.EPOLL_CLOEXEC);
|
|
errdefer std.os.close(self.os_data.epollfd);
|
|
|
|
self.os_data.final_eventfd = try std.os.linuxEventFd(0, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK);
|
|
errdefer std.os.close(self.os_data.final_eventfd);
|
|
|
|
self.os_data.final_eventfd_event = posix.epoll_event{
|
|
.events = posix.EPOLLIN,
|
|
.data = posix.epoll_data{ .ptr = @ptrToInt(&self.final_resume_node) },
|
|
};
|
|
try std.os.linuxEpollCtl(
|
|
self.os_data.epollfd,
|
|
posix.EPOLL_CTL_ADD,
|
|
self.os_data.final_eventfd,
|
|
&self.os_data.final_eventfd_event,
|
|
);
|
|
|
|
var extra_thread_index: usize = 0;
|
|
errdefer {
|
|
// writing 8 bytes to an eventfd cannot fail
|
|
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
|
|
while (extra_thread_index != 0) {
|
|
extra_thread_index -= 1;
|
|
self.extra_threads[extra_thread_index].wait();
|
|
}
|
|
}
|
|
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
|
|
self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun);
|
|
}
|
|
},
|
|
builtin.Os.macosx => {
|
|
self.os_data.kqfd = try std.os.bsdKQueue();
|
|
errdefer std.os.close(self.os_data.kqfd);
|
|
|
|
self.os_data.kevents = try self.allocator.alloc(posix.Kevent, extra_thread_count);
|
|
errdefer self.allocator.free(self.os_data.kevents);
|
|
|
|
const eventlist = ([*]posix.Kevent)(undefined)[0..0];
|
|
|
|
for (self.eventfd_resume_nodes) |*eventfd_node, i| {
|
|
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
|
|
.data = ResumeNode.EventFd{
|
|
.base = ResumeNode{
|
|
.id = ResumeNode.Id.EventFd,
|
|
.handle = undefined,
|
|
},
|
|
// this one is for sending events
|
|
.kevent = posix.Kevent{
|
|
.ident = i,
|
|
.filter = posix.EVFILT_USER,
|
|
.flags = posix.EV_CLEAR | posix.EV_ADD | posix.EV_DISABLE,
|
|
.fflags = 0,
|
|
.data = 0,
|
|
.udata = @ptrToInt(&eventfd_node.data.base),
|
|
},
|
|
},
|
|
.next = undefined,
|
|
};
|
|
self.available_eventfd_resume_nodes.push(eventfd_node);
|
|
const kevent_array = (*[1]posix.Kevent)(&eventfd_node.data.kevent);
|
|
_ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null);
|
|
eventfd_node.data.kevent.flags = posix.EV_CLEAR | posix.EV_ENABLE;
|
|
eventfd_node.data.kevent.fflags = posix.NOTE_TRIGGER;
|
|
// this one is for waiting for events
|
|
self.os_data.kevents[i] = posix.Kevent{
|
|
.ident = i,
|
|
.filter = posix.EVFILT_USER,
|
|
.flags = 0,
|
|
.fflags = 0,
|
|
.data = 0,
|
|
.udata = @ptrToInt(&eventfd_node.data.base),
|
|
};
|
|
}
|
|
|
|
// Pre-add so that we cannot get error.SystemResources
|
|
// later when we try to activate it.
|
|
self.os_data.final_kevent = posix.Kevent{
|
|
.ident = extra_thread_count,
|
|
.filter = posix.EVFILT_USER,
|
|
.flags = posix.EV_ADD | posix.EV_DISABLE,
|
|
.fflags = 0,
|
|
.data = 0,
|
|
.udata = @ptrToInt(&self.final_resume_node),
|
|
};
|
|
const kevent_array = (*[1]posix.Kevent)(&self.os_data.final_kevent);
|
|
_ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null);
|
|
self.os_data.final_kevent.flags = posix.EV_ENABLE;
|
|
self.os_data.final_kevent.fflags = posix.NOTE_TRIGGER;
|
|
|
|
var extra_thread_index: usize = 0;
|
|
errdefer {
|
|
_ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch unreachable;
|
|
while (extra_thread_index != 0) {
|
|
extra_thread_index -= 1;
|
|
self.extra_threads[extra_thread_index].wait();
|
|
}
|
|
}
|
|
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
|
|
self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun);
|
|
}
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
fn deinitOsData(self: *Loop) void {
|
|
switch (builtin.os) {
|
|
builtin.Os.linux => {
|
|
std.os.close(self.os_data.final_eventfd);
|
|
while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
|
|
std.os.close(self.os_data.epollfd);
|
|
self.allocator.free(self.eventfd_resume_nodes);
|
|
},
|
|
builtin.Os.macosx => {
|
|
self.allocator.free(self.os_data.kevents);
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
/// resume_node must live longer than the promise that it holds a reference to.
|
|
pub fn addFd(self: *Loop, fd: i32, resume_node: *ResumeNode) !void {
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
|
|
errdefer {
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
}
|
|
try self.modFd(
|
|
fd,
|
|
posix.EPOLL_CTL_ADD,
|
|
std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET,
|
|
resume_node,
|
|
);
|
|
}
|
|
|
|
pub fn modFd(self: *Loop, fd: i32, op: u32, events: u32, resume_node: *ResumeNode) !void {
|
|
var ev = std.os.linux.epoll_event{
|
|
.events = events,
|
|
.data = std.os.linux.epoll_data{ .ptr = @ptrToInt(resume_node) },
|
|
};
|
|
try std.os.linuxEpollCtl(self.os_data.epollfd, op, fd, &ev);
|
|
}
|
|
|
|
pub fn removeFd(self: *Loop, fd: i32) void {
|
|
self.removeFdNoCounter(fd);
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
}
|
|
|
|
fn removeFdNoCounter(self: *Loop, fd: i32) void {
|
|
std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_DEL, fd, undefined) catch {};
|
|
}
|
|
|
|
pub async fn waitFd(self: *Loop, fd: i32) !void {
|
|
defer self.removeFd(fd);
|
|
var resume_node = ResumeNode{
|
|
.id = ResumeNode.Id.Basic,
|
|
.handle = undefined,
|
|
};
|
|
suspend |p| {
|
|
resume_node.handle = p;
|
|
try self.addFd(fd, &resume_node);
|
|
}
|
|
var a = &resume_node; // TODO better way to explicitly put memory in coro frame
|
|
}
|
|
|
|
/// Bring your own linked list node. This means it can't fail.
|
|
pub fn onNextTick(self: *Loop, node: *NextTickNode) void {
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
|
|
self.next_tick_queue.put(node);
|
|
}
|
|
|
|
pub fn run(self: *Loop) void {
|
|
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
self.workerRun();
|
|
for (self.extra_threads) |extra_thread| {
|
|
extra_thread.wait();
|
|
}
|
|
}
|
|
|
|
fn workerRun(self: *Loop) void {
|
|
start_over: while (true) {
|
|
if (@atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst) == 0) {
|
|
while (self.next_tick_queue.get()) |next_tick_node| {
|
|
const handle = next_tick_node.data;
|
|
if (self.next_tick_queue.isEmpty()) {
|
|
// last node, just resume it
|
|
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
resume handle;
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
continue :start_over;
|
|
}
|
|
|
|
// non-last node, stick it in the epoll/kqueue set so that
|
|
// other threads can get to it
|
|
if (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| {
|
|
const eventfd_node = &resume_stack_node.data;
|
|
eventfd_node.base.handle = handle;
|
|
switch (builtin.os) {
|
|
builtin.Os.macosx => {
|
|
const kevent_array = (*[1]posix.Kevent)(&eventfd_node.kevent);
|
|
const eventlist = ([*]posix.Kevent)(undefined)[0..0];
|
|
_ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch |_| {
|
|
// fine, we didn't need it anyway
|
|
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
self.available_eventfd_resume_nodes.push(resume_stack_node);
|
|
resume handle;
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
continue :start_over;
|
|
};
|
|
},
|
|
builtin.Os.linux => {
|
|
// the pending count is already accounted for
|
|
const epoll_events = posix.EPOLLONESHOT | std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET;
|
|
self.modFd(eventfd_node.eventfd, eventfd_node.epoll_op, epoll_events, &eventfd_node.base) catch |_| {
|
|
// fine, we didn't need it anyway
|
|
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
self.available_eventfd_resume_nodes.push(resume_stack_node);
|
|
resume handle;
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
continue :start_over;
|
|
};
|
|
},
|
|
else => @compileError("unsupported OS"),
|
|
}
|
|
} else {
|
|
// threads are too busy, can't add another eventfd to wake one up
|
|
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
resume handle;
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
continue :start_over;
|
|
}
|
|
}
|
|
|
|
const pending_event_count = @atomicLoad(usize, &self.pending_event_count, AtomicOrder.SeqCst);
|
|
if (pending_event_count == 0) {
|
|
// cause all the threads to stop
|
|
switch (builtin.os) {
|
|
builtin.Os.linux => {
|
|
// writing 8 bytes to an eventfd cannot fail
|
|
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
|
|
return;
|
|
},
|
|
builtin.Os.macosx => {
|
|
const final_kevent = (*[1]posix.Kevent)(&self.os_data.final_kevent);
|
|
const eventlist = ([*]posix.Kevent)(undefined)[0..0];
|
|
// cannot fail because we already added it and this just enables it
|
|
_ = std.os.bsdKEvent(self.os_data.kqfd, final_kevent, eventlist, null) catch unreachable;
|
|
return;
|
|
},
|
|
else => @compileError("unsupported OS"),
|
|
}
|
|
}
|
|
|
|
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
}
|
|
|
|
switch (builtin.os) {
|
|
builtin.Os.linux => {
|
|
// only process 1 event so we don't steal from other threads
|
|
var events: [1]std.os.linux.epoll_event = undefined;
|
|
const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1);
|
|
for (events[0..count]) |ev| {
|
|
const resume_node = @intToPtr(*ResumeNode, ev.data.ptr);
|
|
const handle = resume_node.handle;
|
|
const resume_node_id = resume_node.id;
|
|
switch (resume_node_id) {
|
|
ResumeNode.Id.Basic => {},
|
|
ResumeNode.Id.Stop => return,
|
|
ResumeNode.Id.EventFd => {
|
|
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
|
|
event_fd_node.epoll_op = posix.EPOLL_CTL_MOD;
|
|
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
|
|
self.available_eventfd_resume_nodes.push(stack_node);
|
|
},
|
|
}
|
|
resume handle;
|
|
if (resume_node_id == ResumeNode.Id.EventFd) {
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
}
|
|
}
|
|
},
|
|
builtin.Os.macosx => {
|
|
var eventlist: [1]posix.Kevent = undefined;
|
|
const count = std.os.bsdKEvent(self.os_data.kqfd, self.os_data.kevents, eventlist[0..], null) catch unreachable;
|
|
for (eventlist[0..count]) |ev| {
|
|
const resume_node = @intToPtr(*ResumeNode, ev.udata);
|
|
const handle = resume_node.handle;
|
|
const resume_node_id = resume_node.id;
|
|
switch (resume_node_id) {
|
|
ResumeNode.Id.Basic => {},
|
|
ResumeNode.Id.Stop => return,
|
|
ResumeNode.Id.EventFd => {
|
|
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
|
|
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
|
|
self.available_eventfd_resume_nodes.push(stack_node);
|
|
},
|
|
}
|
|
resume handle;
|
|
if (resume_node_id == ResumeNode.Id.EventFd) {
|
|
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
}
|
|
}
|
|
},
|
|
else => @compileError("unsupported OS"),
|
|
}
|
|
}
|
|
}
|
|
|
|
const OsData = switch (builtin.os) {
|
|
builtin.Os.linux => struct {
|
|
epollfd: i32,
|
|
final_eventfd: i32,
|
|
final_eventfd_event: std.os.linux.epoll_event,
|
|
},
|
|
builtin.Os.macosx => MacOsData,
|
|
else => struct {},
|
|
};
|
|
|
|
const MacOsData = struct {
|
|
kqfd: i32,
|
|
final_kevent: posix.Kevent,
|
|
kevents: posix.Kevent,
|
|
};
|
|
};
|
|
|
|
/// many producer, many consumer, thread-safe, lock-free, runtime configurable buffer size
|
|
/// when buffer is empty, consumers suspend and are resumed by producers
|
|
/// when buffer is full, producers suspend and are resumed by consumers
|
|
pub fn Channel(comptime T: type) type {
|
|
return struct {
|
|
loop: *Loop,
|
|
|
|
getters: std.atomic.QueueMpsc(GetNode),
|
|
putters: std.atomic.QueueMpsc(PutNode),
|
|
get_count: usize,
|
|
put_count: usize,
|
|
dispatch_lock: u8, // TODO make this a bool
|
|
need_dispatch: u8, // TODO make this a bool
|
|
|
|
// simple fixed size ring buffer
|
|
buffer_nodes: []T,
|
|
buffer_index: usize,
|
|
buffer_len: usize,
|
|
|
|
const SelfChannel = this;
|
|
const GetNode = struct {
|
|
ptr: *T,
|
|
tick_node: *Loop.NextTickNode,
|
|
};
|
|
const PutNode = struct {
|
|
data: T,
|
|
tick_node: *Loop.NextTickNode,
|
|
};
|
|
|
|
/// call destroy when done
|
|
pub fn create(loop: *Loop, capacity: usize) !*SelfChannel {
|
|
const buffer_nodes = try loop.allocator.alloc(T, capacity);
|
|
errdefer loop.allocator.free(buffer_nodes);
|
|
|
|
const self = try loop.allocator.create(SelfChannel{
|
|
.loop = loop,
|
|
.buffer_len = 0,
|
|
.buffer_nodes = buffer_nodes,
|
|
.buffer_index = 0,
|
|
.dispatch_lock = 0,
|
|
.need_dispatch = 0,
|
|
.getters = std.atomic.QueueMpsc(GetNode).init(),
|
|
.putters = std.atomic.QueueMpsc(PutNode).init(),
|
|
.get_count = 0,
|
|
.put_count = 0,
|
|
});
|
|
errdefer loop.allocator.destroy(self);
|
|
|
|
return self;
|
|
}
|
|
|
|
/// must be called when all calls to put and get have suspended and no more calls occur
|
|
pub fn destroy(self: *SelfChannel) void {
|
|
while (self.getters.get()) |get_node| {
|
|
cancel get_node.data.tick_node.data;
|
|
}
|
|
while (self.putters.get()) |put_node| {
|
|
cancel put_node.data.tick_node.data;
|
|
}
|
|
self.loop.allocator.free(self.buffer_nodes);
|
|
self.loop.allocator.destroy(self);
|
|
}
|
|
|
|
/// puts a data item in the channel. The promise completes when the value has been added to the
|
|
/// buffer, or in the case of a zero size buffer, when the item has been retrieved by a getter.
|
|
pub async fn put(self: *SelfChannel, data: T) void {
|
|
// TODO should be able to group memory allocation failure before first suspend point
|
|
// so that the async invocation catches it
|
|
var dispatch_tick_node_ptr: *Loop.NextTickNode = undefined;
|
|
_ = async self.dispatch(&dispatch_tick_node_ptr) catch unreachable;
|
|
|
|
suspend |handle| {
|
|
var my_tick_node = Loop.NextTickNode{
|
|
.next = undefined,
|
|
.data = handle,
|
|
};
|
|
var queue_node = std.atomic.QueueMpsc(PutNode).Node{
|
|
.data = PutNode{
|
|
.tick_node = &my_tick_node,
|
|
.data = data,
|
|
},
|
|
.next = undefined,
|
|
};
|
|
self.putters.put(&queue_node);
|
|
_ = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
|
|
|
|
self.loop.onNextTick(dispatch_tick_node_ptr);
|
|
}
|
|
}
|
|
|
|
/// await this function to get an item from the channel. If the buffer is empty, the promise will
|
|
/// complete when the next item is put in the channel.
|
|
pub async fn get(self: *SelfChannel) T {
|
|
// TODO should be able to group memory allocation failure before first suspend point
|
|
// so that the async invocation catches it
|
|
var dispatch_tick_node_ptr: *Loop.NextTickNode = undefined;
|
|
_ = async self.dispatch(&dispatch_tick_node_ptr) catch unreachable;
|
|
|
|
// TODO integrate this function with named return values
|
|
// so we can get rid of this extra result copy
|
|
var result: T = undefined;
|
|
suspend |handle| {
|
|
var my_tick_node = Loop.NextTickNode{
|
|
.next = undefined,
|
|
.data = handle,
|
|
};
|
|
var queue_node = std.atomic.QueueMpsc(GetNode).Node{
|
|
.data = GetNode{
|
|
.ptr = &result,
|
|
.tick_node = &my_tick_node,
|
|
},
|
|
.next = undefined,
|
|
};
|
|
self.getters.put(&queue_node);
|
|
_ = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
|
|
|
|
self.loop.onNextTick(dispatch_tick_node_ptr);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
async fn dispatch(self: *SelfChannel, tick_node_ptr: **Loop.NextTickNode) void {
|
|
// resumed by onNextTick
|
|
suspend |handle| {
|
|
var tick_node = Loop.NextTickNode{
|
|
.data = handle,
|
|
.next = undefined,
|
|
};
|
|
tick_node_ptr.* = &tick_node;
|
|
}
|
|
|
|
// set the "need dispatch" flag
|
|
_ = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
|
|
lock: while (true) {
|
|
// set the lock flag
|
|
const prev_lock = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
if (prev_lock != 0) return;
|
|
|
|
// clear the need_dispatch flag since we're about to do it
|
|
_ = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
|
|
while (true) {
|
|
one_dispatch: {
|
|
// later we correct these extra subtractions
|
|
var get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
var put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
|
|
// transfer self.buffer to self.getters
|
|
while (self.buffer_len != 0) {
|
|
if (get_count == 0) break :one_dispatch;
|
|
|
|
const get_node = &self.getters.get().?.data;
|
|
get_node.ptr.* = self.buffer_nodes[self.buffer_index -% self.buffer_len];
|
|
self.loop.onNextTick(get_node.tick_node);
|
|
self.buffer_len -= 1;
|
|
|
|
get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
}
|
|
|
|
// direct transfer self.putters to self.getters
|
|
while (get_count != 0 and put_count != 0) {
|
|
const get_node = &self.getters.get().?.data;
|
|
const put_node = &self.putters.get().?.data;
|
|
|
|
get_node.ptr.* = put_node.data;
|
|
self.loop.onNextTick(get_node.tick_node);
|
|
self.loop.onNextTick(put_node.tick_node);
|
|
|
|
get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
}
|
|
|
|
// transfer self.putters to self.buffer
|
|
while (self.buffer_len != self.buffer_nodes.len and put_count != 0) {
|
|
const put_node = &self.putters.get().?.data;
|
|
|
|
self.buffer_nodes[self.buffer_index] = put_node.data;
|
|
self.loop.onNextTick(put_node.tick_node);
|
|
self.buffer_index +%= 1;
|
|
self.buffer_len += 1;
|
|
|
|
put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
|
|
}
|
|
}
|
|
|
|
// undo the extra subtractions
|
|
_ = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
|
|
_ = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
|
|
|
|
// clear need-dispatch flag
|
|
const need_dispatch = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
if (need_dispatch != 0) continue;
|
|
|
|
const my_lock = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
assert(my_lock != 0);
|
|
|
|
// we have to check again now that we unlocked
|
|
if (@atomicLoad(u8, &self.need_dispatch, AtomicOrder.SeqCst) != 0) continue :lock;
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
pub async fn connect(loop: *Loop, _address: *const std.net.Address) !std.os.File {
|
|
var address = _address.*; // TODO https://github.com/ziglang/zig/issues/733
|
|
|
|
const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp);
|
|
errdefer std.os.close(sockfd);
|
|
|
|
try std.os.posixConnectAsync(sockfd, &address.os_addr);
|
|
try await try async loop.waitFd(sockfd);
|
|
try std.os.posixGetSockOptConnectError(sockfd);
|
|
|
|
return std.os.File.openHandle(sockfd);
|
|
}
|
|
|
|
test "listen on a port, send bytes, receive bytes" {
|
|
if (builtin.os != builtin.Os.linux) {
|
|
// TODO build abstractions for other operating systems
|
|
return;
|
|
}
|
|
const MyServer = struct {
|
|
tcp_server: TcpServer,
|
|
|
|
const Self = this;
|
|
async<*mem.Allocator> fn handler(tcp_server: *TcpServer, _addr: *const std.net.Address, _socket: *const std.os.File) void {
|
|
const self = @fieldParentPtr(Self, "tcp_server", tcp_server);
|
|
var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733
|
|
defer socket.close();
|
|
// TODO guarantee elision of this allocation
|
|
const next_handler = async errorableHandler(self, _addr, socket) catch unreachable;
|
|
(await next_handler) catch |err| {
|
|
std.debug.panic("unable to handle connection: {}\n", err);
|
|
};
|
|
suspend |p| {
|
|
cancel p;
|
|
}
|
|
}
|
|
async fn errorableHandler(self: *Self, _addr: *const std.net.Address, _socket: *const std.os.File) !void {
|
|
const addr = _addr.*; // TODO https://github.com/ziglang/zig/issues/733
|
|
var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733
|
|
|
|
var adapter = std.io.FileOutStream.init(&socket);
|
|
var stream = &adapter.stream;
|
|
try stream.print("hello from server\n");
|
|
}
|
|
};
|
|
|
|
const ip4addr = std.net.parseIp4("127.0.0.1") catch unreachable;
|
|
const addr = std.net.Address.initIp4(ip4addr, 0);
|
|
|
|
var loop: Loop = undefined;
|
|
try loop.initSingleThreaded(std.debug.global_allocator);
|
|
var server = MyServer{ .tcp_server = TcpServer.init(&loop) };
|
|
defer server.tcp_server.deinit();
|
|
try server.tcp_server.listen(addr, MyServer.handler);
|
|
|
|
const p = try async<std.debug.global_allocator> doAsyncTest(&loop, server.tcp_server.listen_address, &server.tcp_server);
|
|
defer cancel p;
|
|
loop.run();
|
|
}
|
|
|
|
async fn doAsyncTest(loop: *Loop, address: *const std.net.Address, server: *TcpServer) void {
|
|
errdefer @panic("test failure");
|
|
|
|
var socket_file = try await try async event.connect(loop, address);
|
|
defer socket_file.close();
|
|
|
|
var buf: [512]u8 = undefined;
|
|
const amt_read = try socket_file.read(buf[0..]);
|
|
const msg = buf[0..amt_read];
|
|
assert(mem.eql(u8, msg, "hello from server\n"));
|
|
server.close();
|
|
}
|
|
|
|
test "std.event.Channel" {
|
|
var da = std.heap.DirectAllocator.init();
|
|
defer da.deinit();
|
|
|
|
const allocator = &da.allocator;
|
|
|
|
var loop: Loop = undefined;
|
|
// TODO make a multi threaded test
|
|
try loop.initSingleThreaded(allocator);
|
|
defer loop.deinit();
|
|
|
|
const channel = try Channel(i32).create(&loop, 0);
|
|
defer channel.destroy();
|
|
|
|
const handle = try async<allocator> testChannelGetter(&loop, channel);
|
|
defer cancel handle;
|
|
|
|
const putter = try async<allocator> testChannelPutter(channel);
|
|
defer cancel putter;
|
|
|
|
loop.run();
|
|
}
|
|
|
|
async fn testChannelGetter(loop: *Loop, channel: *Channel(i32)) void {
|
|
errdefer @panic("test failed");
|
|
|
|
const value1_promise = try async channel.get();
|
|
const value1 = await value1_promise;
|
|
assert(value1 == 1234);
|
|
|
|
const value2_promise = try async channel.get();
|
|
const value2 = await value2_promise;
|
|
assert(value2 == 4567);
|
|
}
|
|
|
|
async fn testChannelPutter(channel: *Channel(i32)) void {
|
|
await (async channel.put(1234) catch @panic("out of memory"));
|
|
await (async channel.put(4567) catch @panic("out of memory"));
|
|
}
|
|
|
|
/// Thread-safe async/await lock.
|
|
/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
|
|
/// are resumed when the lock is released, in order.
|
|
pub const Lock = struct {
|
|
loop: *Loop,
|
|
shared_bit: u8, // TODO make this a bool
|
|
queue: Queue,
|
|
queue_empty_bit: u8, // TODO make this a bool
|
|
|
|
const Queue = std.atomic.QueueMpsc(promise);
|
|
|
|
pub const Held = struct {
|
|
lock: *Lock,
|
|
|
|
pub fn release(self: Held) void {
|
|
// Resume the next item from the queue.
|
|
if (self.lock.queue.get()) |node| {
|
|
self.lock.loop.onNextTick(node);
|
|
return;
|
|
}
|
|
|
|
// We need to release the lock.
|
|
_ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
_ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
|
|
// There might be a queue item. If we know the queue is empty, we can be done,
|
|
// because the other actor will try to obtain the lock.
|
|
// But if there's a queue item, we are the actor which must loop and attempt
|
|
// to grab the lock again.
|
|
if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
|
|
return;
|
|
}
|
|
|
|
while (true) {
|
|
const old_bit = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
if (old_bit != 0) {
|
|
// We did not obtain the lock. Great, the queue is someone else's problem.
|
|
return;
|
|
}
|
|
|
|
// Resume the next item from the queue.
|
|
if (self.lock.queue.get()) |node| {
|
|
self.lock.loop.onNextTick(node);
|
|
return;
|
|
}
|
|
|
|
// Release the lock again.
|
|
_ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
_ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
|
|
// Find out if we can be done.
|
|
if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
pub fn init(loop: *Loop) Lock {
|
|
return Lock{
|
|
.loop = loop,
|
|
.shared_bit = 0,
|
|
.queue = Queue.init(),
|
|
.queue_empty_bit = 1,
|
|
};
|
|
}
|
|
|
|
/// Must be called when not locked. Not thread safe.
|
|
/// All calls to acquire() and release() must complete before calling deinit().
|
|
pub fn deinit(self: *Lock) void {
|
|
assert(self.shared_bit == 0);
|
|
while (self.queue.get()) |node| cancel node.data;
|
|
}
|
|
|
|
pub async fn acquire(self: *Lock) Held {
|
|
var my_tick_node: Loop.NextTickNode = undefined;
|
|
|
|
s: suspend |handle| {
|
|
my_tick_node.data = handle;
|
|
self.queue.put(&my_tick_node);
|
|
|
|
// At this point, we are in the queue, so we might have already been resumed and this coroutine
|
|
// frame might be destroyed. For the rest of the suspend block we cannot access the coroutine frame.
|
|
|
|
// We set this bit so that later we can rely on the fact, that if queue_empty_bit is 1, some actor
|
|
// will attempt to grab the lock.
|
|
_ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
|
|
while (true) {
|
|
const old_bit = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
if (old_bit != 0) {
|
|
// We did not obtain the lock. Trust that our queue entry will resume us, and allow
|
|
// suspend to complete.
|
|
break;
|
|
}
|
|
// We got the lock. However we might have already been resumed from the queue.
|
|
if (self.queue.get()) |node| {
|
|
// Whether this node is us or someone else, we tail resume it.
|
|
resume node.data;
|
|
break;
|
|
} else {
|
|
// We already got resumed, and there are none left in the queue, which means that
|
|
// we aren't even supposed to hold the lock right now.
|
|
_ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
_ = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
|
|
// There might be a queue item. If we know the queue is empty, we can be done,
|
|
// because the other actor will try to obtain the lock.
|
|
// But if there's a queue item, we are the actor which must loop and attempt
|
|
// to grab the lock again.
|
|
if (@atomicLoad(u8, &self.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
|
|
break;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
unreachable;
|
|
}
|
|
}
|
|
|
|
// TODO this workaround to force my_tick_node to be in the coroutine frame should
|
|
// not be necessary
|
|
var trash1 = &my_tick_node;
|
|
|
|
return Held{ .lock = self };
|
|
}
|
|
};
|
|
|
|
/// Thread-safe async/await lock that protects one piece of data.
|
|
/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
|
|
/// are resumed when the lock is released, in order.
|
|
pub fn Locked(comptime T: type) type {
|
|
return struct {
|
|
lock: Lock,
|
|
private_data: T,
|
|
|
|
const Self = this;
|
|
|
|
pub const HeldLock = struct {
|
|
value: *T,
|
|
held: Lock.Held,
|
|
|
|
pub fn release(self: HeldLock) void {
|
|
self.held.release();
|
|
}
|
|
};
|
|
|
|
pub fn init(loop: *Loop, data: T) Self {
|
|
return Self{
|
|
.lock = Lock.init(loop),
|
|
.private_data = data,
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *Self) void {
|
|
self.lock.deinit();
|
|
}
|
|
|
|
pub async fn acquire(self: *Self) HeldLock {
|
|
return HeldLock{
|
|
// TODO guaranteed allocation elision
|
|
.held = await (async self.lock.acquire() catch unreachable),
|
|
.value = &self.private_data,
|
|
};
|
|
}
|
|
};
|
|
}
|
|
|
|
test "std.event.Lock" {
|
|
var da = std.heap.DirectAllocator.init();
|
|
defer da.deinit();
|
|
|
|
const allocator = &da.allocator;
|
|
|
|
var loop: Loop = undefined;
|
|
try loop.initMultiThreaded(allocator);
|
|
defer loop.deinit();
|
|
|
|
var lock = Lock.init(&loop);
|
|
defer lock.deinit();
|
|
|
|
const handle = try async<allocator> testLock(&loop, &lock);
|
|
defer cancel handle;
|
|
loop.run();
|
|
|
|
assert(mem.eql(i32, shared_test_data, [1]i32{3 * @intCast(i32, shared_test_data.len)} ** shared_test_data.len));
|
|
}
|
|
|
|
async fn testLock(loop: *Loop, lock: *Lock) void {
|
|
const handle1 = async lockRunner(lock) catch @panic("out of memory");
|
|
var tick_node1 = Loop.NextTickNode{
|
|
.next = undefined,
|
|
.data = handle1,
|
|
};
|
|
loop.onNextTick(&tick_node1);
|
|
|
|
const handle2 = async lockRunner(lock) catch @panic("out of memory");
|
|
var tick_node2 = Loop.NextTickNode{
|
|
.next = undefined,
|
|
.data = handle2,
|
|
};
|
|
loop.onNextTick(&tick_node2);
|
|
|
|
const handle3 = async lockRunner(lock) catch @panic("out of memory");
|
|
var tick_node3 = Loop.NextTickNode{
|
|
.next = undefined,
|
|
.data = handle3,
|
|
};
|
|
loop.onNextTick(&tick_node3);
|
|
|
|
await handle1;
|
|
await handle2;
|
|
await handle3;
|
|
|
|
// TODO this is to force tick node memory to be in the coro frame
|
|
// there should be a way to make it explicit where the memory is
|
|
var a = &tick_node1;
|
|
var b = &tick_node2;
|
|
var c = &tick_node3;
|
|
}
|
|
|
|
var shared_test_data = [1]i32{0} ** 10;
|
|
var shared_test_index: usize = 0;
|
|
|
|
async fn lockRunner(lock: *Lock) void {
|
|
suspend; // resumed by onNextTick
|
|
|
|
var i: usize = 0;
|
|
while (i < shared_test_data.len) : (i += 1) {
|
|
const handle = await (async lock.acquire() catch @panic("out of memory"));
|
|
defer handle.release();
|
|
|
|
shared_test_index = 0;
|
|
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
|
|
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
|
|
}
|
|
}
|
|
}
|