zig/std/atomic/queue_mpsc.zig

186 lines
6.5 KiB
Zig

const std = @import("../index.zig");
const assert = std.debug.assert;
const builtin = @import("builtin");
const AtomicOrder = builtin.AtomicOrder;
const AtomicRmwOp = builtin.AtomicRmwOp;
/// Many producer, single consumer, non-allocating, thread-safe, lock-free
pub fn QueueMpsc(comptime T: type) type {
return struct {
inboxes: [2]std.atomic.Stack(T),
outbox: std.atomic.Stack(T),
inbox_index: usize,
pub const Self = this;
pub const Node = std.atomic.Stack(T).Node;
/// Not thread-safe. The call to init() must complete before any other functions are called.
/// No deinitialization required.
pub fn init() Self {
return Self{
.inboxes = []std.atomic.Stack(T){
std.atomic.Stack(T).init(),
std.atomic.Stack(T).init(),
},
.outbox = std.atomic.Stack(T).init(),
.inbox_index = 0,
};
}
/// Fully thread-safe. put() may be called from any thread at any time.
pub fn put(self: *Self, node: *Node) void {
const inbox_index = @atomicLoad(usize, &self.inbox_index, AtomicOrder.SeqCst);
const inbox = &self.inboxes[inbox_index];
inbox.push(node);
}
/// Must be called by only 1 consumer at a time. Every call to get() and isEmpty() must complete before
/// the next call to get().
pub fn get(self: *Self) ?*Node {
if (self.outbox.pop()) |node| {
return node;
}
const prev_inbox_index = @atomicRmw(usize, &self.inbox_index, AtomicRmwOp.Xor, 0x1, AtomicOrder.SeqCst);
const prev_inbox = &self.inboxes[prev_inbox_index];
while (prev_inbox.pop()) |node| {
self.outbox.push(node);
}
return self.outbox.pop();
}
/// Must be called by only 1 consumer at a time. Every call to get() and isEmpty() must complete before
/// the next call to isEmpty().
pub fn isEmpty(self: *Self) bool {
if (!self.outbox.isEmpty()) return false;
const prev_inbox_index = @atomicRmw(usize, &self.inbox_index, AtomicRmwOp.Xor, 0x1, AtomicOrder.SeqCst);
const prev_inbox = &self.inboxes[prev_inbox_index];
while (prev_inbox.pop()) |node| {
self.outbox.push(node);
}
return self.outbox.isEmpty();
}
/// For debugging only. No API guarantees about what this does.
pub fn dump(self: *Self) void {
{
var it = self.outbox.root;
while (it) |node| {
std.debug.warn("0x{x} -> ", @ptrToInt(node));
it = node.next;
}
}
const inbox_index = self.inbox_index;
const inboxes = []*std.atomic.Stack(T){
&self.inboxes[self.inbox_index],
&self.inboxes[1 - self.inbox_index],
};
for (inboxes) |inbox| {
var it = inbox.root;
while (it) |node| {
std.debug.warn("0x{x} -> ", @ptrToInt(node));
it = node.next;
}
}
std.debug.warn("null\n");
}
};
}
const Context = struct {
allocator: *std.mem.Allocator,
queue: *QueueMpsc(i32),
put_sum: isize,
get_sum: isize,
get_count: usize,
puts_done: u8, // TODO make this a bool
};
// TODO add lazy evaluated build options and then put puts_per_thread behind
// some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor
// CI we would use a less aggressive setting since at 1 core, while we still
// want this test to pass, we need a smaller value since there is so much thrashing
// we would also use a less aggressive setting when running in valgrind
const puts_per_thread = 500;
const put_thread_count = 3;
test "std.atomic.queue_mpsc" {
var direct_allocator = std.heap.DirectAllocator.init();
defer direct_allocator.deinit();
var plenty_of_memory = try direct_allocator.allocator.alloc(u8, 300 * 1024);
defer direct_allocator.allocator.free(plenty_of_memory);
var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory);
var a = &fixed_buffer_allocator.allocator;
var queue = QueueMpsc(i32).init();
var context = Context{
.allocator = a,
.queue = &queue,
.put_sum = 0,
.get_sum = 0,
.puts_done = 0,
.get_count = 0,
};
var putters: [put_thread_count]*std.os.Thread = undefined;
for (putters) |*t| {
t.* = try std.os.spawnThread(&context, startPuts);
}
var getters: [1]*std.os.Thread = undefined;
for (getters) |*t| {
t.* = try std.os.spawnThread(&context, startGets);
}
for (putters) |t|
t.wait();
_ = @atomicRmw(u8, &context.puts_done, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
for (getters) |t|
t.wait();
if (context.put_sum != context.get_sum) {
std.debug.panic("failure\nput_sum:{} != get_sum:{}", context.put_sum, context.get_sum);
}
if (context.get_count != puts_per_thread * put_thread_count) {
std.debug.panic(
"failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}",
context.get_count,
u32(puts_per_thread),
u32(put_thread_count),
);
}
}
fn startPuts(ctx: *Context) u8 {
var put_count: usize = puts_per_thread;
var r = std.rand.DefaultPrng.init(0xdeadbeef);
while (put_count != 0) : (put_count -= 1) {
std.os.time.sleep(0, 1); // let the os scheduler be our fuzz
const x = @bitCast(i32, r.random.scalar(u32));
const node = ctx.allocator.create(QueueMpsc(i32).Node{
.next = undefined,
.data = x,
}) catch unreachable;
ctx.queue.put(node);
_ = @atomicRmw(isize, &ctx.put_sum, builtin.AtomicRmwOp.Add, x, AtomicOrder.SeqCst);
}
return 0;
}
fn startGets(ctx: *Context) u8 {
while (true) {
const last = @atomicLoad(u8, &ctx.puts_done, builtin.AtomicOrder.SeqCst) == 1;
while (ctx.queue.get()) |node| {
std.os.time.sleep(0, 1); // let the os scheduler be our fuzz
_ = @atomicRmw(isize, &ctx.get_sum, builtin.AtomicRmwOp.Add, node.data, builtin.AtomicOrder.SeqCst);
_ = @atomicRmw(usize, &ctx.get_count, builtin.AtomicRmwOp.Add, 1, builtin.AtomicOrder.SeqCst);
}
if (last) return 0;
}
}