zig/lib/std/crypto/modes.zig
Frank Denis bd89bd6fdb Revamp crypto/aes
* Reorganize crypto/aes in order to separate parameters, implementations and
modes.
* Add a zero-cost abstraction over the internal representation of a block,
so that blocks can be kept in vector registers in optimized implementations.
* Add architecture-independent aesenc/aesdec/aesenclast/aesdeclast operations,
so that any AES-based primitive can be implemented, including these that don't
use the original key schedule (AES-PRF, AEGIS, MeowHash...)
* Add support for parallelization/wide blocks to take advantage of hardware
implementations.
* Align T-tables to cache lines in the software implementations to slightly
reduce side channels.
* Add an optimized implementation for modern Intel CPUs with AES-NI.
* Add new tests (AES256 key expansion).
* Reimplement the counter mode to work with any block cipher, any endianness
and to take advantage of wide blocks.
* Add benchmarks for AES.
2020-09-24 13:16:00 -04:00

52 lines
2.4 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// Based on Go stdlib implementation
const std = @import("../std.zig");
const builtin = std.builtin;
const mem = std.mem;
const debug = std.debug;
/// Counter mode.
///
/// This mode creates a key stream by encrypting an incrementing counter using a block cipher, and adding it to the source material.
///
/// Important: the counter mode doesn't provide authenticated encryption: the ciphertext can be trivially modified without this being detected.
/// As a result, applications should generally never use it directly, but only in a construction that includes a MAC.
pub fn ctr(comptime BlockCipher: anytype, block_cipher: BlockCipher, dst: []u8, src: []const u8, iv: [BlockCipher.block_size]u8, endian: comptime builtin.Endian) void {
debug.assert(dst.len >= src.len);
const block_size = BlockCipher.block_size;
var counter: [BlockCipher.block_size]u8 = undefined;
var counterInt = mem.readInt(u128, &iv, endian);
var i: usize = 0;
const parallel_count = BlockCipher.block.parallel.optimal_parallel_blocks;
const wide_block_size = parallel_count * 16;
if (src.len >= wide_block_size) {
var counters: [parallel_count * 16]u8 = undefined;
while (i + wide_block_size <= src.len) : (i += wide_block_size) {
comptime var j = 0;
inline while (j < parallel_count) : (j += 1) {
mem.writeInt(u128, counters[j * 16 .. j * 16 + 16], counterInt, endian);
counterInt +%= 1;
}
block_cipher.xorWide(parallel_count, dst[i .. i + wide_block_size][0..wide_block_size], src[i .. i + wide_block_size][0..wide_block_size], counters);
}
}
while (i + block_size <= src.len) : (i += block_size) {
mem.writeInt(u128, &counter, counterInt, endian);
counterInt +%= 1;
block_cipher.xor(dst[i .. i + block_size][0..block_size], src[i .. i + block_size][0..block_size], counter);
}
if (i < src.len) {
mem.writeInt(u128, &counter, counterInt, endian);
var pad = [_]u8{0} ** block_size;
mem.copy(u8, &pad, src[i..]);
block_cipher.xor(&pad, &pad, counter);
mem.copy(u8, dst[i..], pad[0 .. src.len - i]);
}
}