zig/lib/std/io.zig

868 lines
33 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const root = @import("root");
const c = std.c;
const math = std.math;
const debug = std.debug;
const assert = debug.assert;
const os = std.os;
const fs = std.fs;
const mem = std.mem;
const meta = std.meta;
const trait = meta.trait;
const Buffer = std.Buffer;
const fmt = std.fmt;
const File = std.fs.File;
const testing = std.testing;
pub const Mode = enum {
/// I/O operates normally, waiting for the operating system syscalls to complete.
blocking,
/// I/O functions are generated async and rely on a global event loop. Event-based I/O.
evented,
};
/// The application's chosen I/O mode. This defaults to `Mode.blocking` but can be overridden
/// by `root.event_loop`.
pub const mode: Mode = if (@hasDecl(root, "io_mode"))
root.io_mode
else if (@hasDecl(root, "event_loop"))
Mode.evented
else
Mode.blocking;
pub const is_async = mode != .blocking;
fn getStdOutHandle() os.fd_t {
if (builtin.os.tag == .windows) {
return os.windows.peb().ProcessParameters.hStdOutput;
}
if (@hasDecl(root, "os") and @hasDecl(root.os, "io") and @hasDecl(root.os.io, "getStdOutHandle")) {
return root.os.io.getStdOutHandle();
}
return os.STDOUT_FILENO;
}
pub fn getStdOut() File {
return File{
.handle = getStdOutHandle(),
.io_mode = .blocking,
};
}
fn getStdErrHandle() os.fd_t {
if (builtin.os.tag == .windows) {
return os.windows.peb().ProcessParameters.hStdError;
}
if (@hasDecl(root, "os") and @hasDecl(root.os, "io") and @hasDecl(root.os.io, "getStdErrHandle")) {
return root.os.io.getStdErrHandle();
}
return os.STDERR_FILENO;
}
pub fn getStdErr() File {
return File{
.handle = getStdErrHandle(),
.io_mode = .blocking,
.async_block_allowed = File.async_block_allowed_yes,
};
}
fn getStdInHandle() os.fd_t {
if (builtin.os.tag == .windows) {
return os.windows.peb().ProcessParameters.hStdInput;
}
if (@hasDecl(root, "os") and @hasDecl(root.os, "io") and @hasDecl(root.os.io, "getStdInHandle")) {
return root.os.io.getStdInHandle();
}
return os.STDIN_FILENO;
}
pub fn getStdIn() File {
return File{
.handle = getStdInHandle(),
.io_mode = .blocking,
};
}
pub const SeekableStream = @import("io/seekable_stream.zig").SeekableStream;
pub const InStream = @import("io/in_stream.zig").InStream;
pub const OutStream = @import("io/out_stream.zig").OutStream;
pub const BufferedAtomicFile = @import("io/buffered_atomic_file.zig").BufferedAtomicFile;
pub const BufferedOutStream = @import("io/buffered_out_stream.zig").BufferedOutStream;
pub const bufferedOutStream = @import("io/buffered_out_stream.zig").bufferedOutStream;
pub const BufferedInStream = @import("io/buffered_in_stream.zig").BufferedInStream;
pub const bufferedInStream = @import("io/buffered_in_stream.zig").bufferedInStream;
pub const FixedBufferStream = @import("io/fixed_buffer_stream.zig").FixedBufferStream;
pub const fixedBufferStream = @import("io/fixed_buffer_stream.zig").fixedBufferStream;
pub const CountingOutStream = @import("io/counting_out_stream.zig").CountingOutStream;
pub fn cOutStream(c_file: *std.c.FILE) COutStream {
return .{ .context = c_file };
}
pub const COutStream = OutStream(*std.c.FILE, std.fs.File.WriteError, cOutStreamWrite);
pub fn cOutStreamWrite(c_file: *std.c.FILE, bytes: []const u8) std.fs.File.WriteError!usize {
const amt_written = std.c.fwrite(bytes.ptr, 1, bytes.len, c_file);
if (amt_written >= 0) return amt_written;
switch (std.c._errno().*) {
0 => unreachable,
os.EINVAL => unreachable,
os.EFAULT => unreachable,
os.EAGAIN => unreachable, // this is a blocking API
os.EBADF => unreachable, // always a race condition
os.EDESTADDRREQ => unreachable, // connect was never called
os.EDQUOT => return error.DiskQuota,
os.EFBIG => return error.FileTooBig,
os.EIO => return error.InputOutput,
os.ENOSPC => return error.NoSpaceLeft,
os.EPERM => return error.AccessDenied,
os.EPIPE => return error.BrokenPipe,
else => |err| return os.unexpectedErrno(@intCast(usize, err)),
}
}
/// Deprecated; use `std.fs.Dir.writeFile`.
pub fn writeFile(path: []const u8, data: []const u8) !void {
return fs.cwd().writeFile(path, data);
}
/// Deprecated; use `std.fs.Dir.readFileAlloc`.
pub fn readFileAlloc(allocator: *mem.Allocator, path: []const u8) ![]u8 {
return fs.cwd().readFileAlloc(allocator, path, math.maxInt(usize));
}
/// Creates a stream which supports 'un-reading' data, so that it can be read again.
/// This makes look-ahead style parsing much easier.
pub fn PeekStream(comptime buffer_type: std.fifo.LinearFifoBufferType, comptime InStreamError: type) type {
return struct {
const Self = @This();
pub const Error = InStreamError;
pub const Stream = InStream(Error);
stream: Stream,
base: *Stream,
const FifoType = std.fifo.LinearFifo(u8, buffer_type);
fifo: FifoType,
pub usingnamespace switch (buffer_type) {
.Static => struct {
pub fn init(base: *Stream) Self {
return .{
.base = base,
.fifo = FifoType.init(),
.stream = Stream{ .readFn = readFn },
};
}
},
.Slice => struct {
pub fn init(base: *Stream, buf: []u8) Self {
return .{
.base = base,
.fifo = FifoType.init(buf),
.stream = Stream{ .readFn = readFn },
};
}
},
.Dynamic => struct {
pub fn init(base: *Stream, allocator: *mem.Allocator) Self {
return .{
.base = base,
.fifo = FifoType.init(allocator),
.stream = Stream{ .readFn = readFn },
};
}
},
};
pub fn putBackByte(self: *Self, byte: u8) !void {
try self.putBack(&[_]u8{byte});
}
pub fn putBack(self: *Self, bytes: []const u8) !void {
try self.fifo.unget(bytes);
}
fn readFn(in_stream: *Stream, dest: []u8) Error!usize {
const self = @fieldParentPtr(Self, "stream", in_stream);
// copy over anything putBack()'d
var dest_index = self.fifo.read(dest);
if (dest_index == dest.len) return dest_index;
// ask the backing stream for more
dest_index += try self.base.read(dest[dest_index..]);
return dest_index;
}
};
}
pub const SliceInStream = struct {
const Self = @This();
pub const Error = error{};
pub const Stream = InStream(Error);
stream: Stream,
pos: usize,
slice: []const u8,
pub fn init(slice: []const u8) Self {
return Self{
.slice = slice,
.pos = 0,
.stream = Stream{ .readFn = readFn },
};
}
fn readFn(in_stream: *Stream, dest: []u8) Error!usize {
const self = @fieldParentPtr(Self, "stream", in_stream);
const size = math.min(dest.len, self.slice.len - self.pos);
const end = self.pos + size;
mem.copy(u8, dest[0..size], self.slice[self.pos..end]);
self.pos = end;
return size;
}
};
/// Creates a stream which allows for reading bit fields from another stream
pub fn BitInStream(endian: builtin.Endian, comptime Error: type) type {
return struct {
const Self = @This();
in_stream: *Stream,
bit_buffer: u7,
bit_count: u3,
stream: Stream,
pub const Stream = InStream(Error);
const u8_bit_count = comptime meta.bitCount(u8);
const u7_bit_count = comptime meta.bitCount(u7);
const u4_bit_count = comptime meta.bitCount(u4);
pub fn init(in_stream: *Stream) Self {
return Self{
.in_stream = in_stream,
.bit_buffer = 0,
.bit_count = 0,
.stream = Stream{ .readFn = read },
};
}
/// Reads `bits` bits from the stream and returns a specified unsigned int type
/// containing them in the least significant end, returning an error if the
/// specified number of bits could not be read.
pub fn readBitsNoEof(self: *Self, comptime U: type, bits: usize) !U {
var n: usize = undefined;
const result = try self.readBits(U, bits, &n);
if (n < bits) return error.EndOfStream;
return result;
}
/// Reads `bits` bits from the stream and returns a specified unsigned int type
/// containing them in the least significant end. The number of bits successfully
/// read is placed in `out_bits`, as reaching the end of the stream is not an error.
pub fn readBits(self: *Self, comptime U: type, bits: usize, out_bits: *usize) Error!U {
comptime assert(trait.isUnsignedInt(U));
//by extending the buffer to a minimum of u8 we can cover a number of edge cases
// related to shifting and casting.
const u_bit_count = comptime meta.bitCount(U);
const buf_bit_count = bc: {
assert(u_bit_count >= bits);
break :bc if (u_bit_count <= u8_bit_count) u8_bit_count else u_bit_count;
};
const Buf = std.meta.IntType(false, buf_bit_count);
const BufShift = math.Log2Int(Buf);
out_bits.* = @as(usize, 0);
if (U == u0 or bits == 0) return 0;
var out_buffer = @as(Buf, 0);
if (self.bit_count > 0) {
const n = if (self.bit_count >= bits) @intCast(u3, bits) else self.bit_count;
const shift = u7_bit_count - n;
switch (endian) {
.Big => {
out_buffer = @as(Buf, self.bit_buffer >> shift);
self.bit_buffer <<= n;
},
.Little => {
const value = (self.bit_buffer << shift) >> shift;
out_buffer = @as(Buf, value);
self.bit_buffer >>= n;
},
}
self.bit_count -= n;
out_bits.* = n;
}
//at this point we know bit_buffer is empty
//copy bytes until we have enough bits, then leave the rest in bit_buffer
while (out_bits.* < bits) {
const n = bits - out_bits.*;
const next_byte = self.in_stream.readByte() catch |err| {
if (err == error.EndOfStream) {
return @intCast(U, out_buffer);
}
//@BUG: See #1810. Not sure if the bug is that I have to do this for some
// streams, or that I don't for streams with emtpy errorsets.
return @errSetCast(Error, err);
};
switch (endian) {
.Big => {
if (n >= u8_bit_count) {
out_buffer <<= @intCast(u3, u8_bit_count - 1);
out_buffer <<= 1;
out_buffer |= @as(Buf, next_byte);
out_bits.* += u8_bit_count;
continue;
}
const shift = @intCast(u3, u8_bit_count - n);
out_buffer <<= @intCast(BufShift, n);
out_buffer |= @as(Buf, next_byte >> shift);
out_bits.* += n;
self.bit_buffer = @truncate(u7, next_byte << @intCast(u3, n - 1));
self.bit_count = shift;
},
.Little => {
if (n >= u8_bit_count) {
out_buffer |= @as(Buf, next_byte) << @intCast(BufShift, out_bits.*);
out_bits.* += u8_bit_count;
continue;
}
const shift = @intCast(u3, u8_bit_count - n);
const value = (next_byte << shift) >> shift;
out_buffer |= @as(Buf, value) << @intCast(BufShift, out_bits.*);
out_bits.* += n;
self.bit_buffer = @truncate(u7, next_byte >> @intCast(u3, n));
self.bit_count = shift;
},
}
}
return @intCast(U, out_buffer);
}
pub fn alignToByte(self: *Self) void {
self.bit_buffer = 0;
self.bit_count = 0;
}
pub fn read(self_stream: *Stream, buffer: []u8) Error!usize {
var self = @fieldParentPtr(Self, "stream", self_stream);
var out_bits: usize = undefined;
var out_bits_total = @as(usize, 0);
//@NOTE: I'm not sure this is a good idea, maybe alignToByte should be forced
if (self.bit_count > 0) {
for (buffer) |*b, i| {
b.* = try self.readBits(u8, u8_bit_count, &out_bits);
out_bits_total += out_bits;
}
const incomplete_byte = @boolToInt(out_bits_total % u8_bit_count > 0);
return (out_bits_total / u8_bit_count) + incomplete_byte;
}
return self.in_stream.read(buffer);
}
};
}
/// An OutStream that doesn't write to anything.
pub const null_out_stream = @as(NullOutStream, .{ .context = {} });
const NullOutStream = OutStream(void, error{}, dummyWrite);
fn dummyWrite(context: void, data: []const u8) error{}!usize {
return data.len;
}
test "null_out_stream" {
null_out_stream.writeAll("yay" ** 1000) catch |err| switch (err) {};
}
/// Creates a stream which allows for writing bit fields to another stream
pub fn BitOutStream(endian: builtin.Endian, comptime Error: type) type {
return struct {
const Self = @This();
out_stream: *Stream,
bit_buffer: u8,
bit_count: u4,
stream: Stream,
pub const Stream = OutStream(Error);
const u8_bit_count = comptime meta.bitCount(u8);
const u4_bit_count = comptime meta.bitCount(u4);
pub fn init(out_stream: *Stream) Self {
return Self{
.out_stream = out_stream,
.bit_buffer = 0,
.bit_count = 0,
.stream = Stream{ .writeFn = write },
};
}
/// Write the specified number of bits to the stream from the least significant bits of
/// the specified unsigned int value. Bits will only be written to the stream when there
/// are enough to fill a byte.
pub fn writeBits(self: *Self, value: var, bits: usize) Error!void {
if (bits == 0) return;
const U = @TypeOf(value);
comptime assert(trait.isUnsignedInt(U));
//by extending the buffer to a minimum of u8 we can cover a number of edge cases
// related to shifting and casting.
const u_bit_count = comptime meta.bitCount(U);
const buf_bit_count = bc: {
assert(u_bit_count >= bits);
break :bc if (u_bit_count <= u8_bit_count) u8_bit_count else u_bit_count;
};
const Buf = std.meta.IntType(false, buf_bit_count);
const BufShift = math.Log2Int(Buf);
const buf_value = @intCast(Buf, value);
const high_byte_shift = @intCast(BufShift, buf_bit_count - u8_bit_count);
var in_buffer = switch (endian) {
.Big => buf_value << @intCast(BufShift, buf_bit_count - bits),
.Little => buf_value,
};
var in_bits = bits;
if (self.bit_count > 0) {
const bits_remaining = u8_bit_count - self.bit_count;
const n = @intCast(u3, if (bits_remaining > bits) bits else bits_remaining);
switch (endian) {
.Big => {
const shift = @intCast(BufShift, high_byte_shift + self.bit_count);
const v = @intCast(u8, in_buffer >> shift);
self.bit_buffer |= v;
in_buffer <<= n;
},
.Little => {
const v = @truncate(u8, in_buffer) << @intCast(u3, self.bit_count);
self.bit_buffer |= v;
in_buffer >>= n;
},
}
self.bit_count += n;
in_bits -= n;
//if we didn't fill the buffer, it's because bits < bits_remaining;
if (self.bit_count != u8_bit_count) return;
try self.out_stream.writeByte(self.bit_buffer);
self.bit_buffer = 0;
self.bit_count = 0;
}
//at this point we know bit_buffer is empty
//copy bytes until we can't fill one anymore, then leave the rest in bit_buffer
while (in_bits >= u8_bit_count) {
switch (endian) {
.Big => {
const v = @intCast(u8, in_buffer >> high_byte_shift);
try self.out_stream.writeByte(v);
in_buffer <<= @intCast(u3, u8_bit_count - 1);
in_buffer <<= 1;
},
.Little => {
const v = @truncate(u8, in_buffer);
try self.out_stream.writeByte(v);
in_buffer >>= @intCast(u3, u8_bit_count - 1);
in_buffer >>= 1;
},
}
in_bits -= u8_bit_count;
}
if (in_bits > 0) {
self.bit_count = @intCast(u4, in_bits);
self.bit_buffer = switch (endian) {
.Big => @truncate(u8, in_buffer >> high_byte_shift),
.Little => @truncate(u8, in_buffer),
};
}
}
/// Flush any remaining bits to the stream.
pub fn flushBits(self: *Self) Error!void {
if (self.bit_count == 0) return;
try self.out_stream.writeByte(self.bit_buffer);
self.bit_buffer = 0;
self.bit_count = 0;
}
pub fn write(self_stream: *Stream, buffer: []const u8) Error!usize {
var self = @fieldParentPtr(Self, "stream", self_stream);
// TODO: I'm not sure this is a good idea, maybe flushBits should be forced
if (self.bit_count > 0) {
for (buffer) |b, i|
try self.writeBits(b, u8_bit_count);
return buffer.len;
}
return self.out_stream.write(buffer);
}
};
}
pub const Packing = enum {
/// Pack data to byte alignment
Byte,
/// Pack data to bit alignment
Bit,
};
/// Creates a deserializer that deserializes types from any stream.
/// If `is_packed` is true, the data stream is treated as bit-packed,
/// otherwise data is expected to be packed to the smallest byte.
/// Types may implement a custom deserialization routine with a
/// function named `deserialize` in the form of:
/// pub fn deserialize(self: *Self, deserializer: var) !void
/// which will be called when the deserializer is used to deserialize
/// that type. It will pass a pointer to the type instance to deserialize
/// into and a pointer to the deserializer struct.
pub fn Deserializer(comptime endian: builtin.Endian, comptime packing: Packing, comptime Error: type) type {
return struct {
const Self = @This();
in_stream: if (packing == .Bit) BitInStream(endian, Stream.Error) else *Stream,
pub const Stream = InStream(Error);
pub fn init(in_stream: *Stream) Self {
return Self{
.in_stream = switch (packing) {
.Bit => BitInStream(endian, Stream.Error).init(in_stream),
.Byte => in_stream,
},
};
}
pub fn alignToByte(self: *Self) void {
if (packing == .Byte) return;
self.in_stream.alignToByte();
}
//@BUG: inferred error issue. See: #1386
fn deserializeInt(self: *Self, comptime T: type) (Error || error{EndOfStream})!T {
comptime assert(trait.is(.Int)(T) or trait.is(.Float)(T));
const u8_bit_count = 8;
const t_bit_count = comptime meta.bitCount(T);
const U = std.meta.IntType(false, t_bit_count);
const Log2U = math.Log2Int(U);
const int_size = (U.bit_count + 7) / 8;
if (packing == .Bit) {
const result = try self.in_stream.readBitsNoEof(U, t_bit_count);
return @bitCast(T, result);
}
var buffer: [int_size]u8 = undefined;
const read_size = try self.in_stream.read(buffer[0..]);
if (read_size < int_size) return error.EndOfStream;
if (int_size == 1) {
if (t_bit_count == 8) return @bitCast(T, buffer[0]);
const PossiblySignedByte = std.meta.IntType(T.is_signed, 8);
return @truncate(T, @bitCast(PossiblySignedByte, buffer[0]));
}
var result = @as(U, 0);
for (buffer) |byte, i| {
switch (endian) {
.Big => {
result = (result << u8_bit_count) | byte;
},
.Little => {
result |= @as(U, byte) << @intCast(Log2U, u8_bit_count * i);
},
}
}
return @bitCast(T, result);
}
/// Deserializes and returns data of the specified type from the stream
pub fn deserialize(self: *Self, comptime T: type) !T {
var value: T = undefined;
try self.deserializeInto(&value);
return value;
}
/// Deserializes data into the type pointed to by `ptr`
pub fn deserializeInto(self: *Self, ptr: var) !void {
const T = @TypeOf(ptr);
comptime assert(trait.is(.Pointer)(T));
if (comptime trait.isSlice(T) or comptime trait.isPtrTo(.Array)(T)) {
for (ptr) |*v|
try self.deserializeInto(v);
return;
}
comptime assert(trait.isSingleItemPtr(T));
const C = comptime meta.Child(T);
const child_type_id = @typeInfo(C);
//custom deserializer: fn(self: *Self, deserializer: var) !void
if (comptime trait.hasFn("deserialize")(C)) return C.deserialize(ptr, self);
if (comptime trait.isPacked(C) and packing != .Bit) {
var packed_deserializer = Deserializer(endian, .Bit, Error).init(self.in_stream);
return packed_deserializer.deserializeInto(ptr);
}
switch (child_type_id) {
.Void => return,
.Bool => ptr.* = (try self.deserializeInt(u1)) > 0,
.Float, .Int => ptr.* = try self.deserializeInt(C),
.Struct => {
const info = @typeInfo(C).Struct;
inline for (info.fields) |*field_info| {
const name = field_info.name;
const FieldType = field_info.field_type;
if (FieldType == void or FieldType == u0) continue;
//it doesn't make any sense to read pointers
if (comptime trait.is(.Pointer)(FieldType)) {
@compileError("Will not " ++ "read field " ++ name ++ " of struct " ++
@typeName(C) ++ " because it " ++ "is of pointer-type " ++
@typeName(FieldType) ++ ".");
}
try self.deserializeInto(&@field(ptr, name));
}
},
.Union => {
const info = @typeInfo(C).Union;
if (info.tag_type) |TagType| {
//we avoid duplicate iteration over the enum tags
// by getting the int directly and casting it without
// safety. If it is bad, it will be caught anyway.
const TagInt = @TagType(TagType);
const tag = try self.deserializeInt(TagInt);
inline for (info.fields) |field_info| {
if (field_info.enum_field.?.value == tag) {
const name = field_info.name;
const FieldType = field_info.field_type;
ptr.* = @unionInit(C, name, undefined);
try self.deserializeInto(&@field(ptr, name));
return;
}
}
//This is reachable if the enum data is bad
return error.InvalidEnumTag;
}
@compileError("Cannot meaningfully deserialize " ++ @typeName(C) ++
" because it is an untagged union. Use a custom deserialize().");
},
.Optional => {
const OC = comptime meta.Child(C);
const exists = (try self.deserializeInt(u1)) > 0;
if (!exists) {
ptr.* = null;
return;
}
ptr.* = @as(OC, undefined); //make it non-null so the following .? is guaranteed safe
const val_ptr = &ptr.*.?;
try self.deserializeInto(val_ptr);
},
.Enum => {
var value = try self.deserializeInt(@TagType(C));
ptr.* = try meta.intToEnum(C, value);
},
else => {
@compileError("Cannot deserialize " ++ @tagName(child_type_id) ++ " types (unimplemented).");
},
}
}
};
}
/// Creates a serializer that serializes types to any stream.
/// If `is_packed` is true, the data will be bit-packed into the stream.
/// Note that the you must call `serializer.flush()` when you are done
/// writing bit-packed data in order ensure any unwritten bits are committed.
/// If `is_packed` is false, data is packed to the smallest byte. In the case
/// of packed structs, the struct will written bit-packed and with the specified
/// endianess, after which data will resume being written at the next byte boundary.
/// Types may implement a custom serialization routine with a
/// function named `serialize` in the form of:
/// pub fn serialize(self: Self, serializer: var) !void
/// which will be called when the serializer is used to serialize that type. It will
/// pass a const pointer to the type instance to be serialized and a pointer
/// to the serializer struct.
pub fn Serializer(comptime endian: builtin.Endian, comptime packing: Packing, comptime Error: type) type {
return struct {
const Self = @This();
out_stream: if (packing == .Bit) BitOutStream(endian, Stream.Error) else *Stream,
pub const Stream = OutStream(Error);
pub fn init(out_stream: *Stream) Self {
return Self{
.out_stream = switch (packing) {
.Bit => BitOutStream(endian, Stream.Error).init(out_stream),
.Byte => out_stream,
},
};
}
/// Flushes any unwritten bits to the stream
pub fn flush(self: *Self) Error!void {
if (packing == .Bit) return self.out_stream.flushBits();
}
fn serializeInt(self: *Self, value: var) Error!void {
const T = @TypeOf(value);
comptime assert(trait.is(.Int)(T) or trait.is(.Float)(T));
const t_bit_count = comptime meta.bitCount(T);
const u8_bit_count = comptime meta.bitCount(u8);
const U = std.meta.IntType(false, t_bit_count);
const Log2U = math.Log2Int(U);
const int_size = (U.bit_count + 7) / 8;
const u_value = @bitCast(U, value);
if (packing == .Bit) return self.out_stream.writeBits(u_value, t_bit_count);
var buffer: [int_size]u8 = undefined;
if (int_size == 1) buffer[0] = u_value;
for (buffer) |*byte, i| {
const idx = switch (endian) {
.Big => int_size - i - 1,
.Little => i,
};
const shift = @intCast(Log2U, idx * u8_bit_count);
const v = u_value >> shift;
byte.* = if (t_bit_count < u8_bit_count) v else @truncate(u8, v);
}
try self.out_stream.write(&buffer);
}
/// Serializes the passed value into the stream
pub fn serialize(self: *Self, value: var) Error!void {
const T = comptime @TypeOf(value);
if (comptime trait.isIndexable(T)) {
for (value) |v|
try self.serialize(v);
return;
}
//custom serializer: fn(self: Self, serializer: var) !void
if (comptime trait.hasFn("serialize")(T)) return T.serialize(value, self);
if (comptime trait.isPacked(T) and packing != .Bit) {
var packed_serializer = Serializer(endian, .Bit, Error).init(self.out_stream);
try packed_serializer.serialize(value);
try packed_serializer.flush();
return;
}
switch (@typeInfo(T)) {
.Void => return,
.Bool => try self.serializeInt(@as(u1, @boolToInt(value))),
.Float, .Int => try self.serializeInt(value),
.Struct => {
const info = @typeInfo(T);
inline for (info.Struct.fields) |*field_info| {
const name = field_info.name;
const FieldType = field_info.field_type;
if (FieldType == void or FieldType == u0) continue;
//It doesn't make sense to write pointers
if (comptime trait.is(.Pointer)(FieldType)) {
@compileError("Will not " ++ "serialize field " ++ name ++
" of struct " ++ @typeName(T) ++ " because it " ++
"is of pointer-type " ++ @typeName(FieldType) ++ ".");
}
try self.serialize(@field(value, name));
}
},
.Union => {
const info = @typeInfo(T).Union;
if (info.tag_type) |TagType| {
const active_tag = meta.activeTag(value);
try self.serialize(active_tag);
//This inline loop is necessary because active_tag is a runtime
// value, but @field requires a comptime value. Our alternative
// is to check each field for a match
inline for (info.fields) |field_info| {
if (field_info.enum_field.?.value == @enumToInt(active_tag)) {
const name = field_info.name;
const FieldType = field_info.field_type;
try self.serialize(@field(value, name));
return;
}
}
unreachable;
}
@compileError("Cannot meaningfully serialize " ++ @typeName(T) ++
" because it is an untagged union. Use a custom serialize().");
},
.Optional => {
if (value == null) {
try self.serializeInt(@as(u1, @boolToInt(false)));
return;
}
try self.serializeInt(@as(u1, @boolToInt(true)));
const OC = comptime meta.Child(T);
const val_ptr = &value.?;
try self.serialize(val_ptr.*);
},
.Enum => {
try self.serializeInt(@enumToInt(value));
},
else => @compileError("Cannot serialize " ++ @tagName(@typeInfo(T)) ++ " types (unimplemented)."),
}
}
};
}
test "" {
comptime {
_ = @import("io/test.zig");
}
std.meta.refAllDecls(@This());
}