zig/lib/std/math/big/int.zig
LemonBoy dbc11be038 std: Fix two bugs in bigint pow
* Correctly scan all the exponent bits, this caused the incorrect result
  to be computed for exponents being powers of two.
* Allocate enough limbs to make llmulacc stop whining.
2020-10-05 22:16:26 -04:00

2274 lines
77 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("../../std.zig");
const math = std.math;
const Limb = std.math.big.Limb;
const limb_bits = @typeInfo(Limb).Int.bits;
const DoubleLimb = std.math.big.DoubleLimb;
const SignedDoubleLimb = std.math.big.SignedDoubleLimb;
const Log2Limb = std.math.big.Log2Limb;
const Allocator = std.mem.Allocator;
const mem = std.mem;
const maxInt = std.math.maxInt;
const minInt = std.math.minInt;
const assert = std.debug.assert;
const debug_safety = false;
/// Returns the number of limbs needed to store `scalar`, which must be a
/// primitive integer value.
pub fn calcLimbLen(scalar: anytype) usize {
const T = @TypeOf(scalar);
switch (@typeInfo(T)) {
.Int => |info| {
const UT = if (info.is_signed) std.meta.Int(false, info.bits - 1) else T;
return @sizeOf(UT) / @sizeOf(Limb);
},
.ComptimeInt => {
const w_value = if (scalar < 0) -scalar else scalar;
return @divFloor(math.log2(w_value), limb_bits) + 1;
},
else => @compileError("parameter must be a primitive integer type"),
}
}
pub fn calcToStringLimbsBufferLen(a_len: usize, base: u8) usize {
if (math.isPowerOfTwo(base))
return 0;
return a_len + 2 + a_len + calcDivLimbsBufferLen(a_len, 1);
}
pub fn calcDivLimbsBufferLen(a_len: usize, b_len: usize) usize {
return calcMulLimbsBufferLen(a_len, b_len, 2) * 4;
}
pub fn calcMulLimbsBufferLen(a_len: usize, b_len: usize, aliases: usize) usize {
return aliases * math.max(a_len, b_len);
}
pub fn calcSetStringLimbsBufferLen(base: u8, string_len: usize) usize {
const limb_count = calcSetStringLimbCount(base, string_len);
return calcMulLimbsBufferLen(limb_count, limb_count, 2);
}
pub fn calcSetStringLimbCount(base: u8, string_len: usize) usize {
return (string_len + (limb_bits / base - 1)) / (limb_bits / base);
}
pub fn calcPowLimbsBufferLen(a_bit_count: usize, y: usize) usize {
// The 2 accounts for the minimum space requirement for llmulacc
return 2 + (a_bit_count * y + (limb_bits - 1)) / limb_bits;
}
/// a + b * c + *carry, sets carry to the overflow bits
pub fn addMulLimbWithCarry(a: Limb, b: Limb, c: Limb, carry: *Limb) Limb {
@setRuntimeSafety(debug_safety);
var r1: Limb = undefined;
// r1 = a + *carry
const c1: Limb = @boolToInt(@addWithOverflow(Limb, a, carry.*, &r1));
// r2 = b * c
const bc = @as(DoubleLimb, math.mulWide(Limb, b, c));
const r2 = @truncate(Limb, bc);
const c2 = @truncate(Limb, bc >> limb_bits);
// r1 = r1 + r2
const c3: Limb = @boolToInt(@addWithOverflow(Limb, r1, r2, &r1));
// This never overflows, c1, c3 are either 0 or 1 and if both are 1 then
// c2 is at least <= maxInt(Limb) - 2.
carry.* = c1 + c2 + c3;
return r1;
}
/// A arbitrary-precision big integer, with a fixed set of mutable limbs.
pub const Mutable = struct {
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represented as limbs.len == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
/// These are allocated limbs; the `len` field tells the valid range.
limbs: []Limb,
len: usize,
positive: bool,
pub fn toConst(self: Mutable) Const {
return .{
.limbs = self.limbs[0..self.len],
.positive = self.positive,
};
}
/// Asserts that the allocator owns the limbs memory. If this is not the case,
/// use `toConst().toManaged()`.
pub fn toManaged(self: Mutable, allocator: *Allocator) Managed {
return .{
.allocator = allocator,
.limbs = self.limbs,
.metadata = if (self.positive)
self.len & ~Managed.sign_bit
else
self.len | Managed.sign_bit,
};
}
/// `value` is a primitive integer type.
/// Asserts the value fits within the provided `limbs_buffer`.
/// Note: `calcLimbLen` can be used to figure out how big an array to allocate for `limbs_buffer`.
pub fn init(limbs_buffer: []Limb, value: anytype) Mutable {
limbs_buffer[0] = 0;
var self: Mutable = .{
.limbs = limbs_buffer,
.len = 1,
.positive = true,
};
self.set(value);
return self;
}
/// Copies the value of a Const to an existing Mutable so that they both have the same value.
/// Asserts the value fits in the limbs buffer.
pub fn copy(self: *Mutable, other: Const) void {
if (self.limbs.ptr != other.limbs.ptr) {
mem.copy(Limb, self.limbs[0..], other.limbs[0..other.limbs.len]);
}
self.positive = other.positive;
self.len = other.limbs.len;
}
/// Efficiently swap an Mutable with another. This swaps the limb pointers and a full copy is not
/// performed. The address of the limbs field will not be the same after this function.
pub fn swap(self: *Mutable, other: *Mutable) void {
mem.swap(Mutable, self, other);
}
pub fn dump(self: Mutable) void {
for (self.limbs[0..self.len]) |limb| {
std.debug.warn("{x} ", .{limb});
}
std.debug.warn("capacity={} positive={}\n", .{ self.limbs.len, self.positive });
}
/// Clones an Mutable and returns a new Mutable with the same value. The new Mutable is a deep copy and
/// can be modified separately from the original.
/// Asserts that limbs is big enough to store the value.
pub fn clone(other: Mutable, limbs: []Limb) Mutable {
mem.copy(Limb, limbs, other.limbs[0..other.len]);
return .{
.limbs = limbs,
.len = other.len,
.positive = other.positive,
};
}
pub fn negate(self: *Mutable) void {
self.positive = !self.positive;
}
/// Modify to become the absolute value
pub fn abs(self: *Mutable) void {
self.positive = true;
}
/// Sets the Mutable to value. Value must be an primitive integer type.
/// Asserts the value fits within the limbs buffer.
/// Note: `calcLimbLen` can be used to figure out how big the limbs buffer
/// needs to be to store a specific value.
pub fn set(self: *Mutable, value: anytype) void {
const T = @TypeOf(value);
switch (@typeInfo(T)) {
.Int => |info| {
const UT = if (info.is_signed) std.meta.Int(false, info.bits - 1) else T;
const needed_limbs = @sizeOf(UT) / @sizeOf(Limb);
assert(needed_limbs <= self.limbs.len); // value too big
self.len = 0;
self.positive = value >= 0;
var w_value: UT = if (value < 0) @intCast(UT, -value) else @intCast(UT, value);
if (info.bits <= limb_bits) {
self.limbs[0] = @as(Limb, w_value);
self.len += 1;
} else {
var i: usize = 0;
while (w_value != 0) : (i += 1) {
self.limbs[i] = @truncate(Limb, w_value);
self.len += 1;
// TODO: shift == 64 at compile-time fails. Fails on u128 limbs.
w_value >>= limb_bits / 2;
w_value >>= limb_bits / 2;
}
}
},
.ComptimeInt => {
comptime var w_value = if (value < 0) -value else value;
const req_limbs = @divFloor(math.log2(w_value), limb_bits) + 1;
assert(req_limbs <= self.limbs.len); // value too big
self.len = req_limbs;
self.positive = value >= 0;
if (w_value <= maxInt(Limb)) {
self.limbs[0] = w_value;
} else {
const mask = (1 << limb_bits) - 1;
comptime var i = 0;
inline while (w_value != 0) : (i += 1) {
self.limbs[i] = w_value & mask;
w_value >>= limb_bits / 2;
w_value >>= limb_bits / 2;
}
}
},
else => @compileError("cannot set Mutable using type " ++ @typeName(T)),
}
}
/// Set self from the string representation `value`.
///
/// `value` must contain only digits <= `base` and is case insensitive. Base prefixes are
/// not allowed (e.g. 0x43 should simply be 43). Underscores in the input string are
/// ignored and can be used as digit separators.
///
/// Asserts there is enough memory for the value in `self.limbs`. An upper bound on number of limbs can
/// be determined with `calcSetStringLimbCount`.
/// Asserts the base is in the range [2, 16].
///
/// Returns an error if the value has invalid digits for the requested base.
///
/// `limbs_buffer` is used for temporary storage. The size required can be found with
/// `calcSetStringLimbsBufferLen`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn setString(
self: *Mutable,
base: u8,
value: []const u8,
limbs_buffer: []Limb,
allocator: ?*Allocator,
) error{InvalidCharacter}!void {
assert(base >= 2 and base <= 16);
var i: usize = 0;
var positive = true;
if (value.len > 0 and value[0] == '-') {
positive = false;
i += 1;
}
const ap_base: Const = .{ .limbs = &[_]Limb{base}, .positive = true };
self.set(0);
for (value[i..]) |ch| {
if (ch == '_') {
continue;
}
const d = try std.fmt.charToDigit(ch, base);
const ap_d: Const = .{ .limbs = &[_]Limb{d}, .positive = true };
self.mul(self.toConst(), ap_base, limbs_buffer, allocator);
self.add(self.toConst(), ap_d);
}
self.positive = positive;
}
/// r = a + scalar
///
/// r and a may be aliases.
/// scalar is a primitive integer type.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, calcLimbLen(scalar)) + 1`.
pub fn addScalar(r: *Mutable, a: Const, scalar: anytype) void {
var limbs: [calcLimbLen(scalar)]Limb = undefined;
const operand = init(&limbs, scalar).toConst();
return add(r, a, operand);
}
/// r = a + b
///
/// r, a and b may be aliases.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, b.limbs.len) + 1`.
pub fn add(r: *Mutable, a: Const, b: Const) void {
if (a.eqZero()) {
r.copy(b);
return;
} else if (b.eqZero()) {
r.copy(a);
return;
}
if (a.limbs.len == 1 and b.limbs.len == 1 and a.positive == b.positive) {
if (!@addWithOverflow(Limb, a.limbs[0], b.limbs[0], &r.limbs[0])) {
r.len = 1;
r.positive = a.positive;
return;
}
}
if (a.positive != b.positive) {
if (a.positive) {
// (a) + (-b) => a - b
r.sub(a, b.abs());
} else {
// (-a) + (b) => b - a
r.sub(b, a.abs());
}
} else {
if (a.limbs.len >= b.limbs.len) {
lladd(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len + 1);
} else {
lladd(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len + 1);
}
r.positive = a.positive;
}
}
/// r = a - b
///
/// r, a and b may be aliases.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, b.limbs.len) + 1`. The +1 is not needed if both operands are positive.
pub fn sub(r: *Mutable, a: Const, b: Const) void {
if (a.positive != b.positive) {
if (a.positive) {
// (a) - (-b) => a + b
r.add(a, b.abs());
} else {
// (-a) - (b) => -(a + b)
r.add(a.abs(), b);
r.positive = false;
}
} else {
if (a.positive) {
// (a) - (b) => a - b
if (a.order(b) != .lt) {
llsub(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len);
r.positive = true;
} else {
llsub(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len);
r.positive = false;
}
} else {
// (-a) - (-b) => -(a - b)
if (a.order(b) == .lt) {
llsub(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len);
r.positive = false;
} else {
llsub(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len);
r.positive = true;
}
}
}
}
/// rma = a * b
///
/// `rma` may alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len + 1`.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcMulLimbsBufferLen`.
pub fn mul(rma: *Mutable, a: Const, b: Const, limbs_buffer: []Limb, allocator: ?*Allocator) void {
var buf_index: usize = 0;
const a_copy = if (rma.limbs.ptr == a.limbs.ptr) blk: {
const start = buf_index;
mem.copy(Limb, limbs_buffer[buf_index..], a.limbs);
buf_index += a.limbs.len;
break :blk a.toMutable(limbs_buffer[start..buf_index]).toConst();
} else a;
const b_copy = if (rma.limbs.ptr == b.limbs.ptr) blk: {
const start = buf_index;
mem.copy(Limb, limbs_buffer[buf_index..], b.limbs);
buf_index += b.limbs.len;
break :blk b.toMutable(limbs_buffer[start..buf_index]).toConst();
} else b;
return rma.mulNoAlias(a_copy, b_copy, allocator);
}
/// rma = a * b
///
/// `rma` may not alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len + 1`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn mulNoAlias(rma: *Mutable, a: Const, b: Const, allocator: ?*Allocator) void {
assert(rma.limbs.ptr != a.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != b.limbs.ptr); // illegal aliasing
if (a.limbs.len == 1 and b.limbs.len == 1) {
if (!@mulWithOverflow(Limb, a.limbs[0], b.limbs[0], &rma.limbs[0])) {
rma.len = 1;
rma.positive = (a.positive == b.positive);
return;
}
}
mem.set(Limb, rma.limbs[0 .. a.limbs.len + b.limbs.len + 1], 0);
llmulacc(allocator, rma.limbs, a.limbs, b.limbs);
rma.normalize(a.limbs.len + b.limbs.len);
rma.positive = (a.positive == b.positive);
}
/// q = a / b (rem r)
///
/// a / b are floored (rounded towards 0).
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is a.limbs.len.
/// The upper bound for q limb count is given by `a.limbs.len + b.limbs.len + 1`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcDivLimbsBufferLen`.
pub fn divFloor(
q: *Mutable,
r: *Mutable,
a: Const,
b: Const,
limbs_buffer: []Limb,
allocator: ?*Allocator,
) void {
div(q, r, a, b, limbs_buffer, allocator);
// Trunc -> Floor.
if (!q.positive) {
const one: Const = .{ .limbs = &[_]Limb{1}, .positive = true };
q.sub(q.toConst(), one);
r.add(q.toConst(), one);
}
r.positive = b.positive;
}
/// q = a / b (rem r)
///
/// a / b are truncated (rounded towards -inf).
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is a.limbs.len.
/// The upper bound for q limb count is given by `calcQuotientLimbLen`. This accounts
/// for temporary space used by the division algorithm.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcDivLimbsBufferLen`.
pub fn divTrunc(
q: *Mutable,
r: *Mutable,
a: Const,
b: Const,
limbs_buffer: []Limb,
allocator: ?*Allocator,
) void {
div(q, r, a, b, limbs_buffer, allocator);
r.positive = a.positive;
}
/// r = a << shift, in other words, r = a * 2^shift
///
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// `a.limbs.len + (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftLeft(r: *Mutable, a: Const, shift: usize) void {
llshl(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.normalize(a.limbs.len + (shift / limb_bits) + 1);
r.positive = a.positive;
}
/// r = a >> shift
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// `a.limbs.len - (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftRight(r: *Mutable, a: Const, shift: usize) void {
if (a.limbs.len <= shift / limb_bits) {
r.len = 1;
r.positive = true;
r.limbs[0] = 0;
return;
}
const r_len = llshr(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.len = a.limbs.len - (shift / limb_bits);
r.positive = a.positive;
}
/// r = a | b
/// r may alias with a or b.
///
/// a and b are zero-extended to the longer of a or b.
///
/// Asserts that r has enough limbs to store the result. Upper bound is `math.max(a.limbs.len, b.limbs.len)`.
pub fn bitOr(r: *Mutable, a: Const, b: Const) void {
if (a.limbs.len > b.limbs.len) {
llor(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.len = a.limbs.len;
} else {
llor(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.len = b.limbs.len;
}
}
/// r = a & b
/// r may alias with a or b.
///
/// Asserts that r has enough limbs to store the result. Upper bound is `math.min(a.limbs.len, b.limbs.len)`.
pub fn bitAnd(r: *Mutable, a: Const, b: Const) void {
if (a.limbs.len > b.limbs.len) {
lland(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(b.limbs.len);
} else {
lland(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(a.limbs.len);
}
}
/// r = a ^ b
/// r may alias with a or b.
///
/// Asserts that r has enough limbs to store the result. Upper bound is `math.max(a.limbs.len, b.limbs.len)`.
pub fn bitXor(r: *Mutable, a: Const, b: Const) void {
if (a.limbs.len > b.limbs.len) {
llxor(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len);
} else {
llxor(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len);
}
}
/// rma may alias x or y.
/// x and y may alias each other.
/// Asserts that `rma` has enough limbs to store the result. Upper bound is
/// `math.min(x.limbs.len, y.limbs.len)`.
///
/// `limbs_buffer` is used for temporary storage during the operation. When this function returns,
/// it will have the same length as it had when the function was called.
pub fn gcd(rma: *Mutable, x: Const, y: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
const prev_len = limbs_buffer.items.len;
defer limbs_buffer.shrink(prev_len);
const x_copy = if (rma.limbs.ptr == x.limbs.ptr) blk: {
const start = limbs_buffer.items.len;
try limbs_buffer.appendSlice(x.limbs);
break :blk x.toMutable(limbs_buffer.items[start..]).toConst();
} else x;
const y_copy = if (rma.limbs.ptr == y.limbs.ptr) blk: {
const start = limbs_buffer.items.len;
try limbs_buffer.appendSlice(y.limbs);
break :blk y.toMutable(limbs_buffer.items[start..]).toConst();
} else y;
return gcdLehmer(rma, x_copy, y_copy, limbs_buffer);
}
/// q = a ^ b
///
/// r may not alias a.
///
/// Asserts that `r` has enough limbs to store the result. Upper bound is
/// `calcPowLimbsBufferLen(a.bitCountAbs(), b)`.
///
/// `limbs_buffer` is used for temporary storage.
/// The amount required is given by `calcPowLimbsBufferLen`.
pub fn pow(r: *Mutable, a: Const, b: u32, limbs_buffer: []Limb) !void {
assert(r.limbs.ptr != a.limbs.ptr); // illegal aliasing
// Handle all the trivial cases first
switch (b) {
0 => {
// a^0 = 1
return r.set(1);
},
1 => {
// a^1 = a
return r.copy(a);
},
else => {},
}
if (a.eqZero()) {
// 0^b = 0
return r.set(0);
} else if (a.limbs.len == 1 and a.limbs[0] == 1) {
// 1^b = 1 and -1^b = ±1
r.set(1);
r.positive = a.positive or (b & 1) == 0;
return;
}
// Here a>1 and b>1
const needed_limbs = calcPowLimbsBufferLen(a.bitCountAbs(), b);
assert(r.limbs.len >= needed_limbs);
assert(limbs_buffer.len >= needed_limbs);
llpow(r.limbs, a.limbs, b, limbs_buffer);
r.normalize(needed_limbs);
r.positive = a.positive or (b & 1) == 0;
}
/// rma may not alias x or y.
/// x and y may alias each other.
/// Asserts that `rma` has enough limbs to store the result. Upper bound is given by `calcGcdNoAliasLimbLen`.
///
/// `limbs_buffer` is used for temporary storage during the operation.
pub fn gcdNoAlias(rma: *Mutable, x: Const, y: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
assert(rma.limbs.ptr != x.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != y.limbs.ptr); // illegal aliasing
return gcdLehmer(rma, x, y, allocator);
}
fn gcdLehmer(result: *Mutable, xa: Const, ya: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
var x = try xa.toManaged(limbs_buffer.allocator);
defer x.deinit();
x.abs();
var y = try ya.toManaged(limbs_buffer.allocator);
defer y.deinit();
y.abs();
if (x.toConst().order(y.toConst()) == .lt) {
x.swap(&y);
}
var t_big = try Managed.init(limbs_buffer.allocator);
defer t_big.deinit();
var r = try Managed.init(limbs_buffer.allocator);
defer r.deinit();
var tmp_x = try Managed.init(limbs_buffer.allocator);
defer tmp_x.deinit();
while (y.len() > 1) {
assert(x.isPositive() and y.isPositive());
assert(x.len() >= y.len());
var xh: SignedDoubleLimb = x.limbs[x.len() - 1];
var yh: SignedDoubleLimb = if (x.len() > y.len()) 0 else y.limbs[x.len() - 1];
var A: SignedDoubleLimb = 1;
var B: SignedDoubleLimb = 0;
var C: SignedDoubleLimb = 0;
var D: SignedDoubleLimb = 1;
while (yh + C != 0 and yh + D != 0) {
const q = @divFloor(xh + A, yh + C);
const qp = @divFloor(xh + B, yh + D);
if (q != qp) {
break;
}
var t = A - q * C;
A = C;
C = t;
t = B - q * D;
B = D;
D = t;
t = xh - q * yh;
xh = yh;
yh = t;
}
if (B == 0) {
// t_big = x % y, r is unused
try r.divTrunc(&t_big, x.toConst(), y.toConst());
assert(t_big.isPositive());
x.swap(&y);
y.swap(&t_big);
} else {
var storage: [8]Limb = undefined;
const Ap = fixedIntFromSignedDoubleLimb(A, storage[0..2]).toConst();
const Bp = fixedIntFromSignedDoubleLimb(B, storage[2..4]).toConst();
const Cp = fixedIntFromSignedDoubleLimb(C, storage[4..6]).toConst();
const Dp = fixedIntFromSignedDoubleLimb(D, storage[6..8]).toConst();
// t_big = Ax + By
try r.mul(x.toConst(), Ap);
try t_big.mul(y.toConst(), Bp);
try t_big.add(r.toConst(), t_big.toConst());
// u = Cx + Dy, r as u
try tmp_x.copy(x.toConst());
try x.mul(tmp_x.toConst(), Cp);
try r.mul(y.toConst(), Dp);
try r.add(x.toConst(), r.toConst());
x.swap(&t_big);
y.swap(&r);
}
}
// euclidean algorithm
assert(x.toConst().order(y.toConst()) != .lt);
while (!y.toConst().eqZero()) {
try t_big.divTrunc(&r, x.toConst(), y.toConst());
x.swap(&y);
y.swap(&r);
}
result.copy(x.toConst());
}
/// Truncates by default.
fn div(quo: *Mutable, rem: *Mutable, a: Const, b: Const, limbs_buffer: []Limb, allocator: ?*Allocator) void {
assert(!b.eqZero()); // division by zero
assert(quo != rem); // illegal aliasing
if (a.orderAbs(b) == .lt) {
// quo may alias a so handle rem first
rem.copy(a);
rem.positive = a.positive == b.positive;
quo.positive = true;
quo.len = 1;
quo.limbs[0] = 0;
return;
}
// Handle trailing zero-words of divisor/dividend. These are not handled in the following
// algorithms.
const a_zero_limb_count = blk: {
var i: usize = 0;
while (i < a.limbs.len) : (i += 1) {
if (a.limbs[i] != 0) break;
}
break :blk i;
};
const b_zero_limb_count = blk: {
var i: usize = 0;
while (i < b.limbs.len) : (i += 1) {
if (b.limbs[i] != 0) break;
}
break :blk i;
};
const ab_zero_limb_count = math.min(a_zero_limb_count, b_zero_limb_count);
if (b.limbs.len - ab_zero_limb_count == 1) {
lldiv1(quo.limbs[0..], &rem.limbs[0], a.limbs[ab_zero_limb_count..a.limbs.len], b.limbs[b.limbs.len - 1]);
quo.normalize(a.limbs.len - ab_zero_limb_count);
quo.positive = (a.positive == b.positive);
rem.len = 1;
rem.positive = true;
} else {
// x and y are modified during division
const sep_len = calcMulLimbsBufferLen(a.limbs.len, b.limbs.len, 2);
const x_limbs = limbs_buffer[0 * sep_len ..][0..sep_len];
const y_limbs = limbs_buffer[1 * sep_len ..][0..sep_len];
const t_limbs = limbs_buffer[2 * sep_len ..][0..sep_len];
const mul_limbs_buf = limbs_buffer[3 * sep_len ..][0..sep_len];
var x: Mutable = .{
.limbs = x_limbs,
.positive = a.positive,
.len = a.limbs.len - ab_zero_limb_count,
};
var y: Mutable = .{
.limbs = y_limbs,
.positive = b.positive,
.len = b.limbs.len - ab_zero_limb_count,
};
// Shrink x, y such that the trailing zero limbs shared between are removed.
mem.copy(Limb, x.limbs, a.limbs[ab_zero_limb_count..a.limbs.len]);
mem.copy(Limb, y.limbs, b.limbs[ab_zero_limb_count..b.limbs.len]);
divN(quo, rem, &x, &y, t_limbs, mul_limbs_buf, allocator);
quo.positive = (a.positive == b.positive);
}
if (ab_zero_limb_count != 0) {
rem.shiftLeft(rem.toConst(), ab_zero_limb_count * limb_bits);
}
}
/// Handbook of Applied Cryptography, 14.20
///
/// x = qy + r where 0 <= r < y
fn divN(
q: *Mutable,
r: *Mutable,
x: *Mutable,
y: *Mutable,
tmp_limbs: []Limb,
mul_limb_buf: []Limb,
allocator: ?*Allocator,
) void {
assert(y.len >= 2);
assert(x.len >= y.len);
assert(q.limbs.len >= x.len + y.len - 1);
// See 3.2
var backup_tmp_limbs: [3]Limb = undefined;
const t_limbs = if (tmp_limbs.len < 3) &backup_tmp_limbs else tmp_limbs;
var tmp: Mutable = .{
.limbs = t_limbs,
.len = 1,
.positive = true,
};
tmp.limbs[0] = 0;
// Normalize so y > limb_bits / 2 (i.e. leading bit is set) and even
var norm_shift = @clz(Limb, y.limbs[y.len - 1]);
if (norm_shift == 0 and y.toConst().isOdd()) {
norm_shift = limb_bits;
}
x.shiftLeft(x.toConst(), norm_shift);
y.shiftLeft(y.toConst(), norm_shift);
const n = x.len - 1;
const t = y.len - 1;
// 1.
q.len = n - t + 1;
q.positive = true;
mem.set(Limb, q.limbs[0..q.len], 0);
// 2.
tmp.shiftLeft(y.toConst(), limb_bits * (n - t));
while (x.toConst().order(tmp.toConst()) != .lt) {
q.limbs[n - t] += 1;
x.sub(x.toConst(), tmp.toConst());
}
// 3.
var i = n;
while (i > t) : (i -= 1) {
// 3.1
if (x.limbs[i] == y.limbs[t]) {
q.limbs[i - t - 1] = maxInt(Limb);
} else {
const num = (@as(DoubleLimb, x.limbs[i]) << limb_bits) | @as(DoubleLimb, x.limbs[i - 1]);
const z = @intCast(Limb, num / @as(DoubleLimb, y.limbs[t]));
q.limbs[i - t - 1] = if (z > maxInt(Limb)) maxInt(Limb) else @as(Limb, z);
}
// 3.2
tmp.limbs[0] = if (i >= 2) x.limbs[i - 2] else 0;
tmp.limbs[1] = if (i >= 1) x.limbs[i - 1] else 0;
tmp.limbs[2] = x.limbs[i];
tmp.normalize(3);
while (true) {
// 2x1 limb multiplication unrolled against single-limb q[i-t-1]
var carry: Limb = 0;
r.limbs[0] = addMulLimbWithCarry(0, if (t >= 1) y.limbs[t - 1] else 0, q.limbs[i - t - 1], &carry);
r.limbs[1] = addMulLimbWithCarry(0, y.limbs[t], q.limbs[i - t - 1], &carry);
r.limbs[2] = carry;
r.normalize(3);
if (r.toConst().orderAbs(tmp.toConst()) != .gt) {
break;
}
q.limbs[i - t - 1] -= 1;
}
// 3.3
tmp.set(q.limbs[i - t - 1]);
tmp.mul(tmp.toConst(), y.toConst(), mul_limb_buf, allocator);
tmp.shiftLeft(tmp.toConst(), limb_bits * (i - t - 1));
x.sub(x.toConst(), tmp.toConst());
if (!x.positive) {
tmp.shiftLeft(y.toConst(), limb_bits * (i - t - 1));
x.add(x.toConst(), tmp.toConst());
q.limbs[i - t - 1] -= 1;
}
}
// Denormalize
q.normalize(q.len);
r.shiftRight(x.toConst(), norm_shift);
r.normalize(r.len);
}
/// Normalize a possible sequence of leading zeros.
///
/// [1, 2, 3, 4, 0] -> [1, 2, 3, 4]
/// [1, 2, 0, 0, 0] -> [1, 2]
/// [0, 0, 0, 0, 0] -> [0]
fn normalize(r: *Mutable, length: usize) void {
r.len = llnormalize(r.limbs[0..length]);
}
};
/// A arbitrary-precision big integer, with a fixed set of immutable limbs.
pub const Const = struct {
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represented as limbs.len == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
limbs: []const Limb,
positive: bool,
/// The result is an independent resource which is managed by the caller.
pub fn toManaged(self: Const, allocator: *Allocator) Allocator.Error!Managed {
const limbs = try allocator.alloc(Limb, math.max(Managed.default_capacity, self.limbs.len));
mem.copy(Limb, limbs, self.limbs);
return Managed{
.allocator = allocator,
.limbs = limbs,
.metadata = if (self.positive)
self.limbs.len & ~Managed.sign_bit
else
self.limbs.len | Managed.sign_bit,
};
}
/// Asserts `limbs` is big enough to store the value.
pub fn toMutable(self: Const, limbs: []Limb) Mutable {
mem.copy(Limb, limbs, self.limbs[0..self.limbs.len]);
return .{
.limbs = limbs,
.positive = self.positive,
.len = self.limbs.len,
};
}
pub fn dump(self: Const) void {
for (self.limbs[0..self.limbs.len]) |limb| {
std.debug.warn("{x} ", .{limb});
}
std.debug.warn("positive={}\n", .{self.positive});
}
pub fn abs(self: Const) Const {
return .{
.limbs = self.limbs,
.positive = true,
};
}
pub fn isOdd(self: Const) bool {
return self.limbs[0] & 1 != 0;
}
pub fn isEven(self: Const) bool {
return !self.isOdd();
}
/// Returns the number of bits required to represent the absolute value of an integer.
pub fn bitCountAbs(self: Const) usize {
return (self.limbs.len - 1) * limb_bits + (limb_bits - @clz(Limb, self.limbs[self.limbs.len - 1]));
}
/// Returns the number of bits required to represent the integer in twos-complement form.
///
/// If the integer is negative the value returned is the number of bits needed by a signed
/// integer to represent the value. If positive the value is the number of bits for an
/// unsigned integer. Any unsigned integer will fit in the signed integer with bitcount
/// one greater than the returned value.
///
/// e.g. -127 returns 8 as it will fit in an i8. 127 returns 7 since it fits in a u7.
pub fn bitCountTwosComp(self: Const) usize {
var bits = self.bitCountAbs();
// If the entire value has only one bit set (e.g. 0b100000000) then the negation in twos
// complement requires one less bit.
if (!self.positive) block: {
bits += 1;
if (@popCount(Limb, self.limbs[self.limbs.len - 1]) == 1) {
for (self.limbs[0 .. self.limbs.len - 1]) |limb| {
if (@popCount(Limb, limb) != 0) {
break :block;
}
}
bits -= 1;
}
}
return bits;
}
pub fn fitsInTwosComp(self: Const, is_signed: bool, bit_count: usize) bool {
if (self.eqZero()) {
return true;
}
if (!is_signed and !self.positive) {
return false;
}
const req_bits = self.bitCountTwosComp() + @boolToInt(self.positive and is_signed);
return bit_count >= req_bits;
}
/// Returns whether self can fit into an integer of the requested type.
pub fn fits(self: Const, comptime T: type) bool {
const info = @typeInfo(T).Int;
return self.fitsInTwosComp(info.is_signed, info.bits);
}
/// Returns the approximate size of the integer in the given base. Negative values accommodate for
/// the minus sign. This is used for determining the number of characters needed to print the
/// value. It is inexact and may exceed the given value by ~1-2 bytes.
/// TODO See if we can make this exact.
pub fn sizeInBaseUpperBound(self: Const, base: usize) usize {
const bit_count = @as(usize, @boolToInt(!self.positive)) + self.bitCountAbs();
return (bit_count / math.log2(base)) + 2;
}
pub const ConvertError = error{
NegativeIntoUnsigned,
TargetTooSmall,
};
/// Convert self to type T.
///
/// Returns an error if self cannot be narrowed into the requested type without truncation.
pub fn to(self: Const, comptime T: type) ConvertError!T {
switch (@typeInfo(T)) {
.Int => |info| {
const UT = std.meta.Int(false, info.bits);
if (self.bitCountTwosComp() > info.bits) {
return error.TargetTooSmall;
}
var r: UT = 0;
if (@sizeOf(UT) <= @sizeOf(Limb)) {
r = @intCast(UT, self.limbs[0]);
} else {
for (self.limbs[0..self.limbs.len]) |_, ri| {
const limb = self.limbs[self.limbs.len - ri - 1];
r <<= limb_bits;
r |= limb;
}
}
if (!info.is_signed) {
return if (self.positive) @intCast(T, r) else error.NegativeIntoUnsigned;
} else {
if (self.positive) {
return @intCast(T, r);
} else {
if (math.cast(T, r)) |ok| {
return -ok;
} else |_| {
return minInt(T);
}
}
}
},
else => @compileError("cannot convert Const to type " ++ @typeName(T)),
}
}
/// To allow `std.fmt.format` to work with this type.
/// If the integer is larger than `pow(2, 64 * @sizeOf(usize) * 8), this function will fail
/// to print the string, printing "(BigInt)" instead of a number.
/// This is because the rendering algorithm requires reversing a string, which requires O(N) memory.
/// See `toString` and `toStringAlloc` for a way to print big integers without failure.
pub fn format(
self: Const,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
comptime var radix = 10;
comptime var uppercase = false;
if (fmt.len == 0 or comptime mem.eql(u8, fmt, "d")) {
radix = 10;
uppercase = false;
} else if (comptime mem.eql(u8, fmt, "b")) {
radix = 2;
uppercase = false;
} else if (comptime mem.eql(u8, fmt, "x")) {
radix = 16;
uppercase = false;
} else if (comptime mem.eql(u8, fmt, "X")) {
radix = 16;
uppercase = true;
} else {
@compileError("Unknown format string: '" ++ fmt ++ "'");
}
var limbs: [128]Limb = undefined;
const needed_limbs = calcDivLimbsBufferLen(self.limbs.len, 1);
if (needed_limbs > limbs.len)
return out_stream.writeAll("(BigInt)");
// This is the inverse of calcDivLimbsBufferLen
const available_len = (limbs.len / 3) - 2;
const biggest: Const = .{
.limbs = &([1]Limb{math.maxInt(Limb)} ** available_len),
.positive = false,
};
var buf: [biggest.sizeInBaseUpperBound(radix)]u8 = undefined;
const len = self.toString(&buf, radix, uppercase, &limbs);
return out_stream.writeAll(buf[0..len]);
}
/// Converts self to a string in the requested base.
/// Caller owns returned memory.
/// Asserts that `base` is in the range [2, 16].
/// See also `toString`, a lower level function than this.
pub fn toStringAlloc(self: Const, allocator: *Allocator, base: u8, uppercase: bool) Allocator.Error![]u8 {
assert(base >= 2);
assert(base <= 16);
if (self.eqZero()) {
return allocator.dupe(u8, "0");
}
const string = try allocator.alloc(u8, self.sizeInBaseUpperBound(base));
errdefer allocator.free(string);
const limbs = try allocator.alloc(Limb, calcToStringLimbsBufferLen(self.limbs.len, base));
defer allocator.free(limbs);
return allocator.shrink(string, self.toString(string, base, uppercase, limbs));
}
/// Converts self to a string in the requested base.
/// Asserts that `base` is in the range [2, 16].
/// `string` is a caller-provided slice of at least `sizeInBaseUpperBound` bytes,
/// where the result is written to.
/// Returns the length of the string.
/// `limbs_buffer` is caller-provided memory for `toString` to use as a working area. It must have
/// length of at least `calcToStringLimbsBufferLen`.
/// In the case of power-of-two base, `limbs_buffer` is ignored.
/// See also `toStringAlloc`, a higher level function than this.
pub fn toString(self: Const, string: []u8, base: u8, uppercase: bool, limbs_buffer: []Limb) usize {
assert(base >= 2);
assert(base <= 16);
if (self.eqZero()) {
string[0] = '0';
return 1;
}
var digits_len: usize = 0;
// Power of two: can do a single pass and use masks to extract digits.
if (math.isPowerOfTwo(base)) {
const base_shift = math.log2_int(Limb, base);
outer: for (self.limbs[0..self.limbs.len]) |limb| {
var shift: usize = 0;
while (shift < limb_bits) : (shift += base_shift) {
const r = @intCast(u8, (limb >> @intCast(Log2Limb, shift)) & @as(Limb, base - 1));
const ch = std.fmt.digitToChar(r, uppercase);
string[digits_len] = ch;
digits_len += 1;
// If we hit the end, it must be all zeroes from here.
if (digits_len == string.len) break :outer;
}
}
// Always will have a non-zero digit somewhere.
while (string[digits_len - 1] == '0') {
digits_len -= 1;
}
} else {
// Non power-of-two: batch divisions per word size.
const digits_per_limb = math.log(Limb, base, maxInt(Limb));
var limb_base: Limb = 1;
var j: usize = 0;
while (j < digits_per_limb) : (j += 1) {
limb_base *= base;
}
const b: Const = .{ .limbs = &[_]Limb{limb_base}, .positive = true };
var q: Mutable = .{
.limbs = limbs_buffer[0 .. self.limbs.len + 2],
.positive = true, // Make absolute by ignoring self.positive.
.len = self.limbs.len,
};
mem.copy(Limb, q.limbs, self.limbs);
var r: Mutable = .{
.limbs = limbs_buffer[q.limbs.len..][0..self.limbs.len],
.positive = true,
.len = 1,
};
r.limbs[0] = 0;
const rest_of_the_limbs_buf = limbs_buffer[q.limbs.len + r.limbs.len ..];
while (q.len >= 2) {
// Passing an allocator here would not be helpful since this division is destroying
// information, not creating it. [TODO citation needed]
q.divTrunc(&r, q.toConst(), b, rest_of_the_limbs_buf, null);
var r_word = r.limbs[0];
var i: usize = 0;
while (i < digits_per_limb) : (i += 1) {
const ch = std.fmt.digitToChar(@intCast(u8, r_word % base), uppercase);
r_word /= base;
string[digits_len] = ch;
digits_len += 1;
}
}
{
assert(q.len == 1);
var r_word = q.limbs[0];
while (r_word != 0) {
const ch = std.fmt.digitToChar(@intCast(u8, r_word % base), uppercase);
r_word /= base;
string[digits_len] = ch;
digits_len += 1;
}
}
}
if (!self.positive) {
string[digits_len] = '-';
digits_len += 1;
}
const s = string[0..digits_len];
mem.reverse(u8, s);
return s.len;
}
/// Returns `math.Order.lt`, `math.Order.eq`, `math.Order.gt` if
/// `|a| < |b|`, `|a| == |b|`, or `|a| > |b|` respectively.
pub fn orderAbs(a: Const, b: Const) math.Order {
if (a.limbs.len < b.limbs.len) {
return .lt;
}
if (a.limbs.len > b.limbs.len) {
return .gt;
}
var i: usize = a.limbs.len - 1;
while (i != 0) : (i -= 1) {
if (a.limbs[i] != b.limbs[i]) {
break;
}
}
if (a.limbs[i] < b.limbs[i]) {
return .lt;
} else if (a.limbs[i] > b.limbs[i]) {
return .gt;
} else {
return .eq;
}
}
/// Returns `math.Order.lt`, `math.Order.eq`, `math.Order.gt` if `a < b`, `a == b` or `a > b` respectively.
pub fn order(a: Const, b: Const) math.Order {
if (a.positive != b.positive) {
return if (a.positive) .gt else .lt;
} else {
const r = orderAbs(a, b);
return if (a.positive) r else switch (r) {
.lt => math.Order.gt,
.eq => math.Order.eq,
.gt => math.Order.lt,
};
}
}
/// Same as `order` but the right-hand operand is a primitive integer.
pub fn orderAgainstScalar(lhs: Const, scalar: anytype) math.Order {
var limbs: [calcLimbLen(scalar)]Limb = undefined;
const rhs = Mutable.init(&limbs, scalar);
return order(lhs, rhs.toConst());
}
/// Returns true if `a == 0`.
pub fn eqZero(a: Const) bool {
return a.limbs.len == 1 and a.limbs[0] == 0;
}
/// Returns true if `|a| == |b|`.
pub fn eqAbs(a: Const, b: Const) bool {
return orderAbs(a, b) == .eq;
}
/// Returns true if `a == b`.
pub fn eq(a: Const, b: Const) bool {
return order(a, b) == .eq;
}
};
/// An arbitrary-precision big integer along with an allocator which manages the memory.
///
/// Memory is allocated as needed to ensure operations never overflow. The range
/// is bounded only by available memory.
pub const Managed = struct {
pub const sign_bit: usize = 1 << (@typeInfo(usize).Int.bits - 1);
/// Default number of limbs to allocate on creation of a `Managed`.
pub const default_capacity = 4;
/// Allocator used by the Managed when requesting memory.
allocator: *Allocator,
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represent as Managed.len() == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
limbs: []Limb,
/// High bit is the sign bit. If set, Managed is negative, else Managed is positive.
/// The remaining bits represent the number of limbs used by Managed.
metadata: usize,
/// Creates a new `Managed`. `default_capacity` limbs will be allocated immediately.
/// The integer value after initializing is `0`.
pub fn init(allocator: *Allocator) !Managed {
return initCapacity(allocator, default_capacity);
}
pub fn toMutable(self: Managed) Mutable {
return .{
.limbs = self.limbs,
.positive = self.isPositive(),
.len = self.len(),
};
}
pub fn toConst(self: Managed) Const {
return .{
.limbs = self.limbs[0..self.len()],
.positive = self.isPositive(),
};
}
/// Creates a new `Managed` with value `value`.
///
/// This is identical to an `init`, followed by a `set`.
pub fn initSet(allocator: *Allocator, value: anytype) !Managed {
var s = try Managed.init(allocator);
try s.set(value);
return s;
}
/// Creates a new Managed with a specific capacity. If capacity < default_capacity then the
/// default capacity will be used instead.
/// The integer value after initializing is `0`.
pub fn initCapacity(allocator: *Allocator, capacity: usize) !Managed {
return Managed{
.allocator = allocator,
.metadata = 1,
.limbs = block: {
const limbs = try allocator.alloc(Limb, math.max(default_capacity, capacity));
limbs[0] = 0;
break :block limbs;
},
};
}
/// Returns the number of limbs currently in use.
pub fn len(self: Managed) usize {
return self.metadata & ~sign_bit;
}
/// Returns whether an Managed is positive.
pub fn isPositive(self: Managed) bool {
return self.metadata & sign_bit == 0;
}
/// Sets the sign of an Managed.
pub fn setSign(self: *Managed, positive: bool) void {
if (positive) {
self.metadata &= ~sign_bit;
} else {
self.metadata |= sign_bit;
}
}
/// Sets the length of an Managed.
///
/// If setLen is used, then the Managed must be normalized to suit.
pub fn setLen(self: *Managed, new_len: usize) void {
self.metadata &= sign_bit;
self.metadata |= new_len;
}
pub fn setMetadata(self: *Managed, positive: bool, length: usize) void {
self.metadata = if (positive) length & ~sign_bit else length | sign_bit;
}
/// Ensures an Managed has enough space allocated for capacity limbs. If the Managed does not have
/// sufficient capacity, the exact amount will be allocated. This occurs even if the requested
/// capacity is only greater than the current capacity by one limb.
pub fn ensureCapacity(self: *Managed, capacity: usize) !void {
if (capacity <= self.limbs.len) {
return;
}
self.limbs = try self.allocator.realloc(self.limbs, capacity);
}
/// Frees all associated memory.
pub fn deinit(self: *Managed) void {
self.allocator.free(self.limbs);
self.* = undefined;
}
/// Returns a `Managed` with the same value. The returned `Managed` is a deep copy and
/// can be modified separately from the original, and its resources are managed
/// separately from the original.
pub fn clone(other: Managed) !Managed {
return other.cloneWithDifferentAllocator(other.allocator);
}
pub fn cloneWithDifferentAllocator(other: Managed, allocator: *Allocator) !Managed {
return Managed{
.allocator = allocator,
.metadata = other.metadata,
.limbs = block: {
var limbs = try allocator.alloc(Limb, other.len());
mem.copy(Limb, limbs[0..], other.limbs[0..other.len()]);
break :block limbs;
},
};
}
/// Copies the value of the integer to an existing `Managed` so that they both have the same value.
/// Extra memory will be allocated if the receiver does not have enough capacity.
pub fn copy(self: *Managed, other: Const) !void {
if (self.limbs.ptr == other.limbs.ptr) return;
try self.ensureCapacity(other.limbs.len);
mem.copy(Limb, self.limbs[0..], other.limbs[0..other.limbs.len]);
self.setMetadata(other.positive, other.limbs.len);
}
/// Efficiently swap a `Managed` with another. This swaps the limb pointers and a full copy is not
/// performed. The address of the limbs field will not be the same after this function.
pub fn swap(self: *Managed, other: *Managed) void {
mem.swap(Managed, self, other);
}
/// Debugging tool: prints the state to stderr.
pub fn dump(self: Managed) void {
for (self.limbs[0..self.len()]) |limb| {
std.debug.warn("{x} ", .{limb});
}
std.debug.warn("capacity={} positive={}\n", .{ self.limbs.len, self.isPositive() });
}
/// Negate the sign.
pub fn negate(self: *Managed) void {
self.metadata ^= sign_bit;
}
/// Make positive.
pub fn abs(self: *Managed) void {
self.metadata &= ~sign_bit;
}
pub fn isOdd(self: Managed) bool {
return self.limbs[0] & 1 != 0;
}
pub fn isEven(self: Managed) bool {
return !self.isOdd();
}
/// Returns the number of bits required to represent the absolute value of an integer.
pub fn bitCountAbs(self: Managed) usize {
return self.toConst().bitCountAbs();
}
/// Returns the number of bits required to represent the integer in twos-complement form.
///
/// If the integer is negative the value returned is the number of bits needed by a signed
/// integer to represent the value. If positive the value is the number of bits for an
/// unsigned integer. Any unsigned integer will fit in the signed integer with bitcount
/// one greater than the returned value.
///
/// e.g. -127 returns 8 as it will fit in an i8. 127 returns 7 since it fits in a u7.
pub fn bitCountTwosComp(self: Managed) usize {
return self.toConst().bitCountTwosComp();
}
pub fn fitsInTwosComp(self: Managed, is_signed: bool, bit_count: usize) bool {
return self.toConst().fitsInTwosComp(is_signed, bit_count);
}
/// Returns whether self can fit into an integer of the requested type.
pub fn fits(self: Managed, comptime T: type) bool {
return self.toConst().fits(T);
}
/// Returns the approximate size of the integer in the given base. Negative values accommodate for
/// the minus sign. This is used for determining the number of characters needed to print the
/// value. It is inexact and may exceed the given value by ~1-2 bytes.
pub fn sizeInBaseUpperBound(self: Managed, base: usize) usize {
return self.toConst().sizeInBaseUpperBound(base);
}
/// Sets an Managed to value. Value must be an primitive integer type.
pub fn set(self: *Managed, value: anytype) Allocator.Error!void {
try self.ensureCapacity(calcLimbLen(value));
var m = self.toMutable();
m.set(value);
self.setMetadata(m.positive, m.len);
}
pub const ConvertError = Const.ConvertError;
/// Convert self to type T.
///
/// Returns an error if self cannot be narrowed into the requested type without truncation.
pub fn to(self: Managed, comptime T: type) ConvertError!T {
return self.toConst().to(T);
}
/// Set self from the string representation `value`.
///
/// `value` must contain only digits <= `base` and is case insensitive. Base prefixes are
/// not allowed (e.g. 0x43 should simply be 43). Underscores in the input string are
/// ignored and can be used as digit separators.
///
/// Returns an error if memory could not be allocated or `value` has invalid digits for the
/// requested base.
///
/// self's allocator is used for temporary storage to boost multiplication performance.
pub fn setString(self: *Managed, base: u8, value: []const u8) !void {
if (base < 2 or base > 16) return error.InvalidBase;
try self.ensureCapacity(calcSetStringLimbCount(base, value.len));
const limbs_buffer = try self.allocator.alloc(Limb, calcSetStringLimbsBufferLen(base, value.len));
defer self.allocator.free(limbs_buffer);
var m = self.toMutable();
try m.setString(base, value, limbs_buffer, self.allocator);
self.setMetadata(m.positive, m.len);
}
/// Converts self to a string in the requested base. Memory is allocated from the provided
/// allocator and not the one present in self.
pub fn toString(self: Managed, allocator: *Allocator, base: u8, uppercase: bool) ![]u8 {
if (base < 2 or base > 16) return error.InvalidBase;
return self.toConst().toStringAlloc(self.allocator, base, uppercase);
}
/// To allow `std.fmt.format` to work with `Managed`.
/// If the integer is larger than `pow(2, 64 * @sizeOf(usize) * 8), this function will fail
/// to print the string, printing "(BigInt)" instead of a number.
/// This is because the rendering algorithm requires reversing a string, which requires O(N) memory.
/// See `toString` and `toStringAlloc` for a way to print big integers without failure.
pub fn format(
self: Managed,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
return self.toConst().format(fmt, options, out_stream);
}
/// Returns math.Order.lt, math.Order.eq, math.Order.gt if |a| < |b|, |a| ==
/// |b| or |a| > |b| respectively.
pub fn orderAbs(a: Managed, b: Managed) math.Order {
return a.toConst().orderAbs(b.toConst());
}
/// Returns math.Order.lt, math.Order.eq, math.Order.gt if a < b, a == b or a
/// > b respectively.
pub fn order(a: Managed, b: Managed) math.Order {
return a.toConst().order(b.toConst());
}
/// Returns true if a == 0.
pub fn eqZero(a: Managed) bool {
return a.toConst().eqZero();
}
/// Returns true if |a| == |b|.
pub fn eqAbs(a: Managed, b: Managed) bool {
return a.toConst().eqAbs(b.toConst());
}
/// Returns true if a == b.
pub fn eq(a: Managed, b: Managed) bool {
return a.toConst().eq(b.toConst());
}
/// Normalize a possible sequence of leading zeros.
///
/// [1, 2, 3, 4, 0] -> [1, 2, 3, 4]
/// [1, 2, 0, 0, 0] -> [1, 2]
/// [0, 0, 0, 0, 0] -> [0]
pub fn normalize(r: *Managed, length: usize) void {
assert(length > 0);
assert(length <= r.limbs.len);
var j = length;
while (j > 0) : (j -= 1) {
if (r.limbs[j - 1] != 0) {
break;
}
}
// Handle zero
r.setLen(if (j != 0) j else 1);
}
/// r = a + scalar
///
/// r and a may be aliases.
/// scalar is a primitive integer type.
///
/// Returns an error if memory could not be allocated.
pub fn addScalar(r: *Managed, a: Const, scalar: anytype) Allocator.Error!void {
try r.ensureCapacity(math.max(a.limbs.len, calcLimbLen(scalar)) + 1);
var m = r.toMutable();
m.addScalar(a, scalar);
r.setMetadata(m.positive, m.len);
}
/// r = a + b
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn add(r: *Managed, a: Const, b: Const) Allocator.Error!void {
try r.ensureCapacity(math.max(a.limbs.len, b.limbs.len) + 1);
var m = r.toMutable();
m.add(a, b);
r.setMetadata(m.positive, m.len);
}
/// r = a - b
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn sub(r: *Managed, a: Const, b: Const) !void {
try r.ensureCapacity(math.max(a.limbs.len, b.limbs.len) + 1);
var m = r.toMutable();
m.sub(a, b);
r.setMetadata(m.positive, m.len);
}
/// rma = a * b
///
/// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b.
/// If rma aliases a or b, then caller must call `rma.ensureMulCapacity` prior to calling `mul`.
///
/// Returns an error if memory could not be allocated.
///
/// rma's allocator is used for temporary storage to speed up the multiplication.
pub fn mul(rma: *Managed, a: Const, b: Const) !void {
var alias_count: usize = 0;
if (rma.limbs.ptr == a.limbs.ptr)
alias_count += 1;
if (rma.limbs.ptr == b.limbs.ptr)
alias_count += 1;
assert(alias_count == 0 or rma.limbs.len >= a.limbs.len + b.limbs.len + 1);
try rma.ensureMulCapacity(a, b);
var m = rma.toMutable();
if (alias_count == 0) {
m.mulNoAlias(a, b, rma.allocator);
} else {
const limb_count = calcMulLimbsBufferLen(a.limbs.len, b.limbs.len, alias_count);
const limbs_buffer = try rma.allocator.alloc(Limb, limb_count);
defer rma.allocator.free(limbs_buffer);
m.mul(a, b, limbs_buffer, rma.allocator);
}
rma.setMetadata(m.positive, m.len);
}
pub fn ensureMulCapacity(rma: *Managed, a: Const, b: Const) !void {
try rma.ensureCapacity(a.limbs.len + b.limbs.len + 1);
}
/// q = a / b (rem r)
///
/// a / b are floored (rounded towards 0).
///
/// Returns an error if memory could not be allocated.
///
/// q's allocator is used for temporary storage to speed up the multiplication.
pub fn divFloor(q: *Managed, r: *Managed, a: Const, b: Const) !void {
try q.ensureCapacity(a.limbs.len + b.limbs.len + 1);
try r.ensureCapacity(a.limbs.len);
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.limbs.len, b.limbs.len));
defer q.allocator.free(limbs_buffer);
mq.divFloor(&mr, a, b, limbs_buffer, q.allocator);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
/// q = a / b (rem r)
///
/// a / b are truncated (rounded towards -inf).
///
/// Returns an error if memory could not be allocated.
///
/// q's allocator is used for temporary storage to speed up the multiplication.
pub fn divTrunc(q: *Managed, r: *Managed, a: Const, b: Const) !void {
try q.ensureCapacity(a.limbs.len + b.limbs.len + 1);
try r.ensureCapacity(a.limbs.len);
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.limbs.len, b.limbs.len));
defer q.allocator.free(limbs_buffer);
mq.divTrunc(&mr, a, b, limbs_buffer, q.allocator);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
/// r = a << shift, in other words, r = a * 2^shift
pub fn shiftLeft(r: *Managed, a: Managed, shift: usize) !void {
try r.ensureCapacity(a.len() + (shift / limb_bits) + 1);
var m = r.toMutable();
m.shiftLeft(a.toConst(), shift);
r.setMetadata(m.positive, m.len);
}
/// r = a >> shift
pub fn shiftRight(r: *Managed, a: Managed, shift: usize) !void {
if (a.len() <= shift / limb_bits) {
r.metadata = 1;
r.limbs[0] = 0;
return;
}
try r.ensureCapacity(a.len() - (shift / limb_bits));
var m = r.toMutable();
m.shiftRight(a.toConst(), shift);
r.setMetadata(m.positive, m.len);
}
/// r = a | b
///
/// a and b are zero-extended to the longer of a or b.
pub fn bitOr(r: *Managed, a: Managed, b: Managed) !void {
try r.ensureCapacity(math.max(a.len(), b.len()));
var m = r.toMutable();
m.bitOr(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a & b
pub fn bitAnd(r: *Managed, a: Managed, b: Managed) !void {
try r.ensureCapacity(math.min(a.len(), b.len()));
var m = r.toMutable();
m.bitAnd(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a ^ b
pub fn bitXor(r: *Managed, a: Managed, b: Managed) !void {
try r.ensureCapacity(math.max(a.len(), b.len()));
var m = r.toMutable();
m.bitXor(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// rma may alias x or y.
/// x and y may alias each other.
///
/// rma's allocator is used for temporary storage to boost multiplication performance.
pub fn gcd(rma: *Managed, x: Managed, y: Managed) !void {
try rma.ensureCapacity(math.min(x.len(), y.len()));
var m = rma.toMutable();
var limbs_buffer = std.ArrayList(Limb).init(rma.allocator);
defer limbs_buffer.deinit();
try m.gcd(x.toConst(), y.toConst(), &limbs_buffer);
rma.setMetadata(m.positive, m.len);
}
pub fn pow(rma: *Managed, a: Managed, b: u32) !void {
const needed_limbs = calcPowLimbsBufferLen(a.bitCountAbs(), b);
const limbs_buffer = try rma.allocator.alloc(Limb, needed_limbs);
defer rma.allocator.free(limbs_buffer);
if (rma.limbs.ptr == a.limbs.ptr) {
var m = try Managed.initCapacity(rma.allocator, needed_limbs);
errdefer m.deinit();
var m_mut = m.toMutable();
try m_mut.pow(a.toConst(), b, limbs_buffer);
m.setMetadata(m_mut.positive, m_mut.len);
rma.deinit();
rma.swap(&m);
} else {
try rma.ensureCapacity(needed_limbs);
var rma_mut = rma.toMutable();
try rma_mut.pow(a.toConst(), b, limbs_buffer);
rma.setMetadata(rma_mut.positive, rma_mut.len);
}
}
};
/// Knuth 4.3.1, Algorithm M.
///
/// r MUST NOT alias any of a or b.
fn llmulacc(opt_allocator: ?*Allocator, r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
const a_norm = a[0..llnormalize(a)];
const b_norm = b[0..llnormalize(b)];
var x = a_norm;
var y = b_norm;
if (a_norm.len > b_norm.len) {
x = b_norm;
y = a_norm;
}
assert(r.len >= x.len + y.len + 1);
// 48 is a pretty abitrary size chosen based on performance of a factorial program.
if (x.len > 48) {
if (opt_allocator) |allocator| {
llmulacc_karatsuba(allocator, r, x, y) catch |err| switch (err) {
error.OutOfMemory => {}, // handled below
};
}
}
// Basecase multiplication
var i: usize = 0;
while (i < x.len) : (i += 1) {
llmulDigit(r[i..], y, x[i]);
}
}
/// Knuth 4.3.1, Algorithm M.
///
/// r MUST NOT alias any of a or b.
fn llmulacc_karatsuba(allocator: *Allocator, r: []Limb, x: []const Limb, y: []const Limb) error{OutOfMemory}!void {
@setRuntimeSafety(debug_safety);
assert(r.len >= x.len + y.len + 1);
const split = @divFloor(x.len, 2);
var x0 = x[0..split];
var x1 = x[split..x.len];
var y0 = y[0..split];
var y1 = y[split..y.len];
var tmp = try allocator.alloc(Limb, x1.len + y1.len + 1);
defer allocator.free(tmp);
mem.set(Limb, tmp, 0);
llmulacc(allocator, tmp, x1, y1);
var length = llnormalize(tmp);
_ = llaccum(r[split..], tmp[0..length]);
_ = llaccum(r[split * 2 ..], tmp[0..length]);
mem.set(Limb, tmp[0..length], 0);
llmulacc(allocator, tmp, x0, y0);
length = llnormalize(tmp);
_ = llaccum(r[0..], tmp[0..length]);
_ = llaccum(r[split..], tmp[0..length]);
const x_cmp = llcmp(x1, x0);
const y_cmp = llcmp(y1, y0);
if (x_cmp * y_cmp == 0) {
return;
}
const x0_len = llnormalize(x0);
const x1_len = llnormalize(x1);
var j0 = try allocator.alloc(Limb, math.max(x0_len, x1_len));
defer allocator.free(j0);
if (x_cmp == 1) {
llsub(j0, x1[0..x1_len], x0[0..x0_len]);
} else {
llsub(j0, x0[0..x0_len], x1[0..x1_len]);
}
const y0_len = llnormalize(y0);
const y1_len = llnormalize(y1);
var j1 = try allocator.alloc(Limb, math.max(y0_len, y1_len));
defer allocator.free(j1);
if (y_cmp == 1) {
llsub(j1, y1[0..y1_len], y0[0..y0_len]);
} else {
llsub(j1, y0[0..y0_len], y1[0..y1_len]);
}
const j0_len = llnormalize(j0);
const j1_len = llnormalize(j1);
if (x_cmp == y_cmp) {
mem.set(Limb, tmp[0..length], 0);
llmulacc(allocator, tmp, j0, j1);
length = llnormalize(tmp);
llsub(r[split..], r[split..], tmp[0..length]);
} else {
llmulacc(allocator, r[split..], j0, j1);
}
}
// r = r + a
fn llaccum(r: []Limb, a: []const Limb) Limb {
@setRuntimeSafety(debug_safety);
assert(r.len != 0 and a.len != 0);
assert(r.len >= a.len);
var i: usize = 0;
var carry: Limb = 0;
while (i < a.len) : (i += 1) {
var c: Limb = 0;
c += @boolToInt(@addWithOverflow(Limb, r[i], a[i], &r[i]));
c += @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i]));
carry = c;
}
while ((carry != 0) and i < r.len) : (i += 1) {
carry = @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i]));
}
return carry;
}
/// Returns -1, 0, 1 if |a| < |b|, |a| == |b| or |a| > |b| respectively for limbs.
pub fn llcmp(a: []const Limb, b: []const Limb) i8 {
@setRuntimeSafety(debug_safety);
const a_len = llnormalize(a);
const b_len = llnormalize(b);
if (a_len < b_len) {
return -1;
}
if (a_len > b_len) {
return 1;
}
var i: usize = a_len - 1;
while (i != 0) : (i -= 1) {
if (a[i] != b[i]) {
break;
}
}
if (a[i] < b[i]) {
return -1;
} else if (a[i] > b[i]) {
return 1;
} else {
return 0;
}
}
fn llmulDigit(acc: []Limb, y: []const Limb, xi: Limb) void {
@setRuntimeSafety(debug_safety);
if (xi == 0) {
return;
}
var carry: Limb = 0;
var a_lo = acc[0..y.len];
var a_hi = acc[y.len..];
var j: usize = 0;
while (j < a_lo.len) : (j += 1) {
a_lo[j] = @call(.{ .modifier = .always_inline }, addMulLimbWithCarry, .{ a_lo[j], y[j], xi, &carry });
}
j = 0;
while ((carry != 0) and (j < a_hi.len)) : (j += 1) {
carry = @boolToInt(@addWithOverflow(Limb, a_hi[j], carry, &a_hi[j]));
}
}
/// returns the min length the limb could be.
fn llnormalize(a: []const Limb) usize {
@setRuntimeSafety(debug_safety);
var j = a.len;
while (j > 0) : (j -= 1) {
if (a[j - 1] != 0) {
break;
}
}
// Handle zero
return if (j != 0) j else 1;
}
/// Knuth 4.3.1, Algorithm S.
fn llsub(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(a.len > b.len or (a.len == b.len and a[a.len - 1] >= b[b.len - 1]));
assert(r.len >= a.len);
var i: usize = 0;
var borrow: Limb = 0;
while (i < b.len) : (i += 1) {
var c: Limb = 0;
c += @boolToInt(@subWithOverflow(Limb, a[i], b[i], &r[i]));
c += @boolToInt(@subWithOverflow(Limb, r[i], borrow, &r[i]));
borrow = c;
}
while (i < a.len) : (i += 1) {
borrow = @boolToInt(@subWithOverflow(Limb, a[i], borrow, &r[i]));
}
assert(borrow == 0);
}
/// Knuth 4.3.1, Algorithm A.
fn lladd(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(a.len >= b.len);
assert(r.len >= a.len + 1);
var i: usize = 0;
var carry: Limb = 0;
while (i < b.len) : (i += 1) {
var c: Limb = 0;
c += @boolToInt(@addWithOverflow(Limb, a[i], b[i], &r[i]));
c += @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i]));
carry = c;
}
while (i < a.len) : (i += 1) {
carry = @boolToInt(@addWithOverflow(Limb, a[i], carry, &r[i]));
}
r[i] = carry;
}
/// Knuth 4.3.1, Exercise 16.
fn lldiv1(quo: []Limb, rem: *Limb, a: []const Limb, b: Limb) void {
@setRuntimeSafety(debug_safety);
assert(a.len > 1 or a[0] >= b);
assert(quo.len >= a.len);
rem.* = 0;
for (a) |_, ri| {
const i = a.len - ri - 1;
const pdiv = ((@as(DoubleLimb, rem.*) << limb_bits) | a[i]);
if (pdiv == 0) {
quo[i] = 0;
rem.* = 0;
} else if (pdiv < b) {
quo[i] = 0;
rem.* = @truncate(Limb, pdiv);
} else if (pdiv == b) {
quo[i] = 1;
rem.* = 0;
} else {
quo[i] = @truncate(Limb, @divTrunc(pdiv, b));
rem.* = @truncate(Limb, pdiv - (quo[i] *% b));
}
}
}
fn llshl(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(debug_safety);
assert(a.len >= 1);
assert(r.len >= a.len + (shift / limb_bits) + 1);
const limb_shift = shift / limb_bits + 1;
const interior_limb_shift = @intCast(Log2Limb, shift % limb_bits);
var carry: Limb = 0;
var i: usize = 0;
while (i < a.len) : (i += 1) {
const src_i = a.len - i - 1;
const dst_i = src_i + limb_shift;
const src_digit = a[src_i];
r[dst_i] = carry | @call(.{ .modifier = .always_inline }, math.shr, .{
Limb,
src_digit,
limb_bits - @intCast(Limb, interior_limb_shift),
});
carry = (src_digit << interior_limb_shift);
}
r[limb_shift - 1] = carry;
mem.set(Limb, r[0 .. limb_shift - 1], 0);
}
fn llshr(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(debug_safety);
assert(a.len >= 1);
assert(r.len >= a.len - (shift / limb_bits));
const limb_shift = shift / limb_bits;
const interior_limb_shift = @intCast(Log2Limb, shift % limb_bits);
var carry: Limb = 0;
var i: usize = 0;
while (i < a.len - limb_shift) : (i += 1) {
const src_i = a.len - i - 1;
const dst_i = src_i - limb_shift;
const src_digit = a[src_i];
r[dst_i] = carry | (src_digit >> interior_limb_shift);
carry = @call(.{ .modifier = .always_inline }, math.shl, .{
Limb,
src_digit,
limb_bits - @intCast(Limb, interior_limb_shift),
});
}
}
fn llor(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len);
assert(a.len >= b.len);
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] | b[i];
}
while (i < a.len) : (i += 1) {
r[i] = a[i];
}
}
fn lland(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(r.len >= b.len);
assert(a.len >= b.len);
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] & b[i];
}
}
fn llxor(r: []Limb, a: []const Limb, b: []const Limb) void {
assert(r.len >= a.len);
assert(a.len >= b.len);
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] ^ b[i];
}
while (i < a.len) : (i += 1) {
r[i] = a[i];
}
}
/// Knuth 4.6.3
fn llpow(r: []Limb, a: []const Limb, b: u32, tmp_limbs: []Limb) void {
var tmp1: []Limb = undefined;
var tmp2: []Limb = undefined;
// Multiplication requires no aliasing between the operand and the result
// variable, use the output limbs and another temporary set to overcome this
// limitation.
// The initial assignment makes the result end in `r` so an extra memory
// copy is saved, each 1 flips the index twice so it's a no-op so count the
// 0.
const b_leading_zeros = @intCast(u5, @clz(u32, b));
const exp_zeros = @popCount(u32, ~b) - b_leading_zeros;
if (exp_zeros & 1 != 0) {
tmp1 = tmp_limbs;
tmp2 = r;
} else {
tmp1 = r;
tmp2 = tmp_limbs;
}
const a_norm = a[0..llnormalize(a)];
mem.copy(Limb, tmp1, a_norm);
mem.set(Limb, tmp1[a_norm.len..], 0);
// Scan the exponent as a binary number, from left to right, dropping the
// most significant bit set.
const exp_bits = @intCast(u5, 31 - b_leading_zeros);
var exp = @bitReverse(u32, b) >> 1 + b_leading_zeros;
var i: u5 = 0;
while (i < exp_bits) : (i += 1) {
// Square
{
mem.set(Limb, tmp2, 0);
const op = tmp1[0..llnormalize(tmp1)];
llmulacc(null, tmp2, op, op);
mem.swap([]Limb, &tmp1, &tmp2);
}
// Multiply by a
if (exp & 1 != 0) {
mem.set(Limb, tmp2, 0);
llmulacc(null, tmp2, tmp1[0..llnormalize(tmp1)], a_norm);
mem.swap([]Limb, &tmp1, &tmp2);
}
exp >>= 1;
}
}
// Storage must live for the lifetime of the returned value
fn fixedIntFromSignedDoubleLimb(A: SignedDoubleLimb, storage: []Limb) Mutable {
assert(storage.len >= 2);
const A_is_positive = A >= 0;
const Au = @intCast(DoubleLimb, if (A < 0) -A else A);
storage[0] = @truncate(Limb, Au);
storage[1] = @truncate(Limb, Au >> limb_bits);
return .{
.limbs = storage[0..2],
.positive = A_is_positive,
.len = 2,
};
}
test "" {
_ = @import("int_test.zig");
}