1216 lines
54 KiB
Zig
1216 lines
54 KiB
Zig
const std = @import("index.zig");
|
||
const assert = std.debug.assert;
|
||
const mem = std.mem;
|
||
const math = std.math;
|
||
const builtin = @import("builtin");
|
||
|
||
/// Stable in-place sort. O(n) best case, O(pow(n, 2)) worst case. O(1) memory (no allocator required).
|
||
pub fn insertionSort(comptime T: type, items: []T, lessThan: fn (lhs: T, rhs: T) bool) void {
|
||
{
|
||
var i: usize = 1;
|
||
while (i < items.len) : (i += 1) {
|
||
const x = items[i];
|
||
var j: usize = i;
|
||
while (j > 0 and lessThan(x, items[j - 1])) : (j -= 1) {
|
||
items[j] = items[j - 1];
|
||
}
|
||
items[j] = x;
|
||
}
|
||
}
|
||
}
|
||
|
||
const Range = struct.{
|
||
start: usize,
|
||
end: usize,
|
||
|
||
fn init(start: usize, end: usize) Range {
|
||
return Range.{
|
||
.start = start,
|
||
.end = end,
|
||
};
|
||
}
|
||
|
||
fn length(self: Range) usize {
|
||
return self.end - self.start;
|
||
}
|
||
};
|
||
|
||
const Iterator = struct.{
|
||
size: usize,
|
||
power_of_two: usize,
|
||
numerator: usize,
|
||
decimal: usize,
|
||
denominator: usize,
|
||
decimal_step: usize,
|
||
numerator_step: usize,
|
||
|
||
fn init(size2: usize, min_level: usize) Iterator {
|
||
const power_of_two = math.floorPowerOfTwo(usize, size2);
|
||
const denominator = power_of_two / min_level;
|
||
return Iterator.{
|
||
.numerator = 0,
|
||
.decimal = 0,
|
||
.size = size2,
|
||
.power_of_two = power_of_two,
|
||
.denominator = denominator,
|
||
.decimal_step = size2 / denominator,
|
||
.numerator_step = size2 % denominator,
|
||
};
|
||
}
|
||
|
||
fn begin(self: *Iterator) void {
|
||
self.numerator = 0;
|
||
self.decimal = 0;
|
||
}
|
||
|
||
fn nextRange(self: *Iterator) Range {
|
||
const start = self.decimal;
|
||
|
||
self.decimal += self.decimal_step;
|
||
self.numerator += self.numerator_step;
|
||
if (self.numerator >= self.denominator) {
|
||
self.numerator -= self.denominator;
|
||
self.decimal += 1;
|
||
}
|
||
|
||
return Range.{
|
||
.start = start,
|
||
.end = self.decimal,
|
||
};
|
||
}
|
||
|
||
fn finished(self: *Iterator) bool {
|
||
return self.decimal >= self.size;
|
||
}
|
||
|
||
fn nextLevel(self: *Iterator) bool {
|
||
self.decimal_step += self.decimal_step;
|
||
self.numerator_step += self.numerator_step;
|
||
if (self.numerator_step >= self.denominator) {
|
||
self.numerator_step -= self.denominator;
|
||
self.decimal_step += 1;
|
||
}
|
||
|
||
return (self.decimal_step < self.size);
|
||
}
|
||
|
||
fn length(self: *Iterator) usize {
|
||
return self.decimal_step;
|
||
}
|
||
};
|
||
|
||
const Pull = struct.{
|
||
from: usize,
|
||
to: usize,
|
||
count: usize,
|
||
range: Range,
|
||
};
|
||
|
||
/// Stable in-place sort. O(n) best case, O(n*log(n)) worst case and average case. O(1) memory (no allocator required).
|
||
/// Currently implemented as block sort.
|
||
pub fn sort(comptime T: type, items: []T, lessThan: fn (lhs: T, rhs: T) bool) void {
|
||
// Implementation ported from https://github.com/BonzaiThePenguin/WikiSort/blob/master/WikiSort.c
|
||
var cache: [512]T = undefined;
|
||
|
||
if (items.len < 4) {
|
||
if (items.len == 3) {
|
||
// hard coded insertion sort
|
||
if (lessThan(items[1], items[0])) mem.swap(T, &items[0], &items[1]);
|
||
if (lessThan(items[2], items[1])) {
|
||
mem.swap(T, &items[1], &items[2]);
|
||
if (lessThan(items[1], items[0])) mem.swap(T, &items[0], &items[1]);
|
||
}
|
||
} else if (items.len == 2) {
|
||
if (lessThan(items[1], items[0])) mem.swap(T, &items[0], &items[1]);
|
||
}
|
||
return;
|
||
}
|
||
|
||
// sort groups of 4-8 items at a time using an unstable sorting network,
|
||
// but keep track of the original item orders to force it to be stable
|
||
// http://pages.ripco.net/~jgamble/nw.html
|
||
var iterator = Iterator.init(items.len, 4);
|
||
while (!iterator.finished()) {
|
||
var order = []u8.{ 0, 1, 2, 3, 4, 5, 6, 7 };
|
||
const range = iterator.nextRange();
|
||
|
||
const sliced_items = items[range.start..];
|
||
switch (range.length()) {
|
||
8 => {
|
||
swap(T, sliced_items, lessThan, &order, 0, 1);
|
||
swap(T, sliced_items, lessThan, &order, 2, 3);
|
||
swap(T, sliced_items, lessThan, &order, 4, 5);
|
||
swap(T, sliced_items, lessThan, &order, 6, 7);
|
||
swap(T, sliced_items, lessThan, &order, 0, 2);
|
||
swap(T, sliced_items, lessThan, &order, 1, 3);
|
||
swap(T, sliced_items, lessThan, &order, 4, 6);
|
||
swap(T, sliced_items, lessThan, &order, 5, 7);
|
||
swap(T, sliced_items, lessThan, &order, 1, 2);
|
||
swap(T, sliced_items, lessThan, &order, 5, 6);
|
||
swap(T, sliced_items, lessThan, &order, 0, 4);
|
||
swap(T, sliced_items, lessThan, &order, 3, 7);
|
||
swap(T, sliced_items, lessThan, &order, 1, 5);
|
||
swap(T, sliced_items, lessThan, &order, 2, 6);
|
||
swap(T, sliced_items, lessThan, &order, 1, 4);
|
||
swap(T, sliced_items, lessThan, &order, 3, 6);
|
||
swap(T, sliced_items, lessThan, &order, 2, 4);
|
||
swap(T, sliced_items, lessThan, &order, 3, 5);
|
||
swap(T, sliced_items, lessThan, &order, 3, 4);
|
||
},
|
||
7 => {
|
||
swap(T, sliced_items, lessThan, &order, 1, 2);
|
||
swap(T, sliced_items, lessThan, &order, 3, 4);
|
||
swap(T, sliced_items, lessThan, &order, 5, 6);
|
||
swap(T, sliced_items, lessThan, &order, 0, 2);
|
||
swap(T, sliced_items, lessThan, &order, 3, 5);
|
||
swap(T, sliced_items, lessThan, &order, 4, 6);
|
||
swap(T, sliced_items, lessThan, &order, 0, 1);
|
||
swap(T, sliced_items, lessThan, &order, 4, 5);
|
||
swap(T, sliced_items, lessThan, &order, 2, 6);
|
||
swap(T, sliced_items, lessThan, &order, 0, 4);
|
||
swap(T, sliced_items, lessThan, &order, 1, 5);
|
||
swap(T, sliced_items, lessThan, &order, 0, 3);
|
||
swap(T, sliced_items, lessThan, &order, 2, 5);
|
||
swap(T, sliced_items, lessThan, &order, 1, 3);
|
||
swap(T, sliced_items, lessThan, &order, 2, 4);
|
||
swap(T, sliced_items, lessThan, &order, 2, 3);
|
||
},
|
||
6 => {
|
||
swap(T, sliced_items, lessThan, &order, 1, 2);
|
||
swap(T, sliced_items, lessThan, &order, 4, 5);
|
||
swap(T, sliced_items, lessThan, &order, 0, 2);
|
||
swap(T, sliced_items, lessThan, &order, 3, 5);
|
||
swap(T, sliced_items, lessThan, &order, 0, 1);
|
||
swap(T, sliced_items, lessThan, &order, 3, 4);
|
||
swap(T, sliced_items, lessThan, &order, 2, 5);
|
||
swap(T, sliced_items, lessThan, &order, 0, 3);
|
||
swap(T, sliced_items, lessThan, &order, 1, 4);
|
||
swap(T, sliced_items, lessThan, &order, 2, 4);
|
||
swap(T, sliced_items, lessThan, &order, 1, 3);
|
||
swap(T, sliced_items, lessThan, &order, 2, 3);
|
||
},
|
||
5 => {
|
||
swap(T, sliced_items, lessThan, &order, 0, 1);
|
||
swap(T, sliced_items, lessThan, &order, 3, 4);
|
||
swap(T, sliced_items, lessThan, &order, 2, 4);
|
||
swap(T, sliced_items, lessThan, &order, 2, 3);
|
||
swap(T, sliced_items, lessThan, &order, 1, 4);
|
||
swap(T, sliced_items, lessThan, &order, 0, 3);
|
||
swap(T, sliced_items, lessThan, &order, 0, 2);
|
||
swap(T, sliced_items, lessThan, &order, 1, 3);
|
||
swap(T, sliced_items, lessThan, &order, 1, 2);
|
||
},
|
||
4 => {
|
||
swap(T, sliced_items, lessThan, &order, 0, 1);
|
||
swap(T, sliced_items, lessThan, &order, 2, 3);
|
||
swap(T, sliced_items, lessThan, &order, 0, 2);
|
||
swap(T, sliced_items, lessThan, &order, 1, 3);
|
||
swap(T, sliced_items, lessThan, &order, 1, 2);
|
||
},
|
||
else => {},
|
||
}
|
||
}
|
||
if (items.len < 8) return;
|
||
|
||
// then merge sort the higher levels, which can be 8-15, 16-31, 32-63, 64-127, etc.
|
||
while (true) {
|
||
// if every A and B block will fit into the cache, use a special branch specifically for merging with the cache
|
||
// (we use < rather than <= since the block size might be one more than iterator.length())
|
||
if (iterator.length() < cache.len) {
|
||
// if four subarrays fit into the cache, it's faster to merge both pairs of subarrays into the cache,
|
||
// then merge the two merged subarrays from the cache back into the original array
|
||
if ((iterator.length() + 1) * 4 <= cache.len and iterator.length() * 4 <= items.len) {
|
||
iterator.begin();
|
||
while (!iterator.finished()) {
|
||
// merge A1 and B1 into the cache
|
||
var A1 = iterator.nextRange();
|
||
var B1 = iterator.nextRange();
|
||
var A2 = iterator.nextRange();
|
||
var B2 = iterator.nextRange();
|
||
|
||
if (lessThan(items[B1.end - 1], items[A1.start])) {
|
||
// the two ranges are in reverse order, so copy them in reverse order into the cache
|
||
mem.copy(T, cache[B1.length()..], items[A1.start..A1.end]);
|
||
mem.copy(T, cache[0..], items[B1.start..B1.end]);
|
||
} else if (lessThan(items[B1.start], items[A1.end - 1])) {
|
||
// these two ranges weren't already in order, so merge them into the cache
|
||
mergeInto(T, items, A1, B1, lessThan, cache[0..]);
|
||
} else {
|
||
// if A1, B1, A2, and B2 are all in order, skip doing anything else
|
||
if (!lessThan(items[B2.start], items[A2.end - 1]) and !lessThan(items[A2.start], items[B1.end - 1])) continue;
|
||
|
||
// copy A1 and B1 into the cache in the same order
|
||
mem.copy(T, cache[0..], items[A1.start..A1.end]);
|
||
mem.copy(T, cache[A1.length()..], items[B1.start..B1.end]);
|
||
}
|
||
A1 = Range.init(A1.start, B1.end);
|
||
|
||
// merge A2 and B2 into the cache
|
||
if (lessThan(items[B2.end - 1], items[A2.start])) {
|
||
// the two ranges are in reverse order, so copy them in reverse order into the cache
|
||
mem.copy(T, cache[A1.length() + B2.length() ..], items[A2.start..A2.end]);
|
||
mem.copy(T, cache[A1.length()..], items[B2.start..B2.end]);
|
||
} else if (lessThan(items[B2.start], items[A2.end - 1])) {
|
||
// these two ranges weren't already in order, so merge them into the cache
|
||
mergeInto(T, items, A2, B2, lessThan, cache[A1.length()..]);
|
||
} else {
|
||
// copy A2 and B2 into the cache in the same order
|
||
mem.copy(T, cache[A1.length()..], items[A2.start..A2.end]);
|
||
mem.copy(T, cache[A1.length() + A2.length() ..], items[B2.start..B2.end]);
|
||
}
|
||
A2 = Range.init(A2.start, B2.end);
|
||
|
||
// merge A1 and A2 from the cache into the items
|
||
const A3 = Range.init(0, A1.length());
|
||
const B3 = Range.init(A1.length(), A1.length() + A2.length());
|
||
|
||
if (lessThan(cache[B3.end - 1], cache[A3.start])) {
|
||
// the two ranges are in reverse order, so copy them in reverse order into the items
|
||
mem.copy(T, items[A1.start + A2.length() ..], cache[A3.start..A3.end]);
|
||
mem.copy(T, items[A1.start..], cache[B3.start..B3.end]);
|
||
} else if (lessThan(cache[B3.start], cache[A3.end - 1])) {
|
||
// these two ranges weren't already in order, so merge them back into the items
|
||
mergeInto(T, cache[0..], A3, B3, lessThan, items[A1.start..]);
|
||
} else {
|
||
// copy A3 and B3 into the items in the same order
|
||
mem.copy(T, items[A1.start..], cache[A3.start..A3.end]);
|
||
mem.copy(T, items[A1.start + A1.length() ..], cache[B3.start..B3.end]);
|
||
}
|
||
}
|
||
|
||
// we merged two levels at the same time, so we're done with this level already
|
||
// (iterator.nextLevel() is called again at the bottom of this outer merge loop)
|
||
_ = iterator.nextLevel();
|
||
} else {
|
||
iterator.begin();
|
||
while (!iterator.finished()) {
|
||
var A = iterator.nextRange();
|
||
var B = iterator.nextRange();
|
||
|
||
if (lessThan(items[B.end - 1], items[A.start])) {
|
||
// the two ranges are in reverse order, so a simple rotation should fix it
|
||
mem.rotate(T, items[A.start..B.end], A.length());
|
||
} else if (lessThan(items[B.start], items[A.end - 1])) {
|
||
// these two ranges weren't already in order, so we'll need to merge them!
|
||
mem.copy(T, cache[0..], items[A.start..A.end]);
|
||
mergeExternal(T, items, A, B, lessThan, cache[0..]);
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
// this is where the in-place merge logic starts!
|
||
// 1. pull out two internal buffers each containing √A unique values
|
||
// 1a. adjust block_size and buffer_size if we couldn't find enough unique values
|
||
// 2. loop over the A and B subarrays within this level of the merge sort
|
||
// 3. break A and B into blocks of size 'block_size'
|
||
// 4. "tag" each of the A blocks with values from the first internal buffer
|
||
// 5. roll the A blocks through the B blocks and drop/rotate them where they belong
|
||
// 6. merge each A block with any B values that follow, using the cache or the second internal buffer
|
||
// 7. sort the second internal buffer if it exists
|
||
// 8. redistribute the two internal buffers back into the items
|
||
var block_size: usize = math.sqrt(iterator.length());
|
||
var buffer_size = iterator.length() / block_size + 1;
|
||
|
||
// as an optimization, we really only need to pull out the internal buffers once for each level of merges
|
||
// after that we can reuse the same buffers over and over, then redistribute it when we're finished with this level
|
||
var A: Range = undefined;
|
||
var B: Range = undefined;
|
||
var index: usize = 0;
|
||
var last: usize = 0;
|
||
var count: usize = 0;
|
||
var find: usize = 0;
|
||
var start: usize = 0;
|
||
var pull_index: usize = 0;
|
||
var pull = []Pull.{
|
||
Pull.{
|
||
.from = 0,
|
||
.to = 0,
|
||
.count = 0,
|
||
.range = Range.init(0, 0),
|
||
},
|
||
Pull.{
|
||
.from = 0,
|
||
.to = 0,
|
||
.count = 0,
|
||
.range = Range.init(0, 0),
|
||
},
|
||
};
|
||
|
||
var buffer1 = Range.init(0, 0);
|
||
var buffer2 = Range.init(0, 0);
|
||
|
||
// find two internal buffers of size 'buffer_size' each
|
||
find = buffer_size + buffer_size;
|
||
var find_separately = false;
|
||
|
||
if (block_size <= cache.len) {
|
||
// if every A block fits into the cache then we won't need the second internal buffer,
|
||
// so we really only need to find 'buffer_size' unique values
|
||
find = buffer_size;
|
||
} else if (find > iterator.length()) {
|
||
// we can't fit both buffers into the same A or B subarray, so find two buffers separately
|
||
find = buffer_size;
|
||
find_separately = true;
|
||
}
|
||
|
||
// we need to find either a single contiguous space containing 2√A unique values (which will be split up into two buffers of size √A each),
|
||
// or we need to find one buffer of < 2√A unique values, and a second buffer of √A unique values,
|
||
// OR if we couldn't find that many unique values, we need the largest possible buffer we can get
|
||
|
||
// in the case where it couldn't find a single buffer of at least √A unique values,
|
||
// all of the Merge steps must be replaced by a different merge algorithm (MergeInPlace)
|
||
iterator.begin();
|
||
while (!iterator.finished()) {
|
||
A = iterator.nextRange();
|
||
B = iterator.nextRange();
|
||
|
||
// just store information about where the values will be pulled from and to,
|
||
// as well as how many values there are, to create the two internal buffers
|
||
|
||
// check A for the number of unique values we need to fill an internal buffer
|
||
// these values will be pulled out to the start of A
|
||
last = A.start;
|
||
count = 1;
|
||
while (count < find) : ({
|
||
last = index;
|
||
count += 1;
|
||
}) {
|
||
index = findLastForward(T, items, items[last], Range.init(last + 1, A.end), lessThan, find - count);
|
||
if (index == A.end) break;
|
||
}
|
||
index = last;
|
||
|
||
if (count >= buffer_size) {
|
||
// keep track of the range within the items where we'll need to "pull out" these values to create the internal buffer
|
||
pull[pull_index] = Pull.{
|
||
.range = Range.init(A.start, B.end),
|
||
.count = count,
|
||
.from = index,
|
||
.to = A.start,
|
||
};
|
||
pull_index = 1;
|
||
|
||
if (count == buffer_size + buffer_size) {
|
||
// we were able to find a single contiguous section containing 2√A unique values,
|
||
// so this section can be used to contain both of the internal buffers we'll need
|
||
buffer1 = Range.init(A.start, A.start + buffer_size);
|
||
buffer2 = Range.init(A.start + buffer_size, A.start + count);
|
||
break;
|
||
} else if (find == buffer_size + buffer_size) {
|
||
// we found a buffer that contains at least √A unique values, but did not contain the full 2√A unique values,
|
||
// so we still need to find a second separate buffer of at least √A unique values
|
||
buffer1 = Range.init(A.start, A.start + count);
|
||
find = buffer_size;
|
||
} else if (block_size <= cache.len) {
|
||
// we found the first and only internal buffer that we need, so we're done!
|
||
buffer1 = Range.init(A.start, A.start + count);
|
||
break;
|
||
} else if (find_separately) {
|
||
// found one buffer, but now find the other one
|
||
buffer1 = Range.init(A.start, A.start + count);
|
||
find_separately = false;
|
||
} else {
|
||
// we found a second buffer in an 'A' subarray containing √A unique values, so we're done!
|
||
buffer2 = Range.init(A.start, A.start + count);
|
||
break;
|
||
}
|
||
} else if (pull_index == 0 and count > buffer1.length()) {
|
||
// keep track of the largest buffer we were able to find
|
||
buffer1 = Range.init(A.start, A.start + count);
|
||
pull[pull_index] = Pull.{
|
||
.range = Range.init(A.start, B.end),
|
||
.count = count,
|
||
.from = index,
|
||
.to = A.start,
|
||
};
|
||
}
|
||
|
||
// check B for the number of unique values we need to fill an internal buffer
|
||
// these values will be pulled out to the end of B
|
||
last = B.end - 1;
|
||
count = 1;
|
||
while (count < find) : ({
|
||
last = index - 1;
|
||
count += 1;
|
||
}) {
|
||
index = findFirstBackward(T, items, items[last], Range.init(B.start, last), lessThan, find - count);
|
||
if (index == B.start) break;
|
||
}
|
||
index = last;
|
||
|
||
if (count >= buffer_size) {
|
||
// keep track of the range within the items where we'll need to "pull out" these values to create the internal buffe
|
||
pull[pull_index] = Pull.{
|
||
.range = Range.init(A.start, B.end),
|
||
.count = count,
|
||
.from = index,
|
||
.to = B.end,
|
||
};
|
||
pull_index = 1;
|
||
|
||
if (count == buffer_size + buffer_size) {
|
||
// we were able to find a single contiguous section containing 2√A unique values,
|
||
// so this section can be used to contain both of the internal buffers we'll need
|
||
buffer1 = Range.init(B.end - count, B.end - buffer_size);
|
||
buffer2 = Range.init(B.end - buffer_size, B.end);
|
||
break;
|
||
} else if (find == buffer_size + buffer_size) {
|
||
// we found a buffer that contains at least √A unique values, but did not contain the full 2√A unique values,
|
||
// so we still need to find a second separate buffer of at least √A unique values
|
||
buffer1 = Range.init(B.end - count, B.end);
|
||
find = buffer_size;
|
||
} else if (block_size <= cache.len) {
|
||
// we found the first and only internal buffer that we need, so we're done!
|
||
buffer1 = Range.init(B.end - count, B.end);
|
||
break;
|
||
} else if (find_separately) {
|
||
// found one buffer, but now find the other one
|
||
buffer1 = Range.init(B.end - count, B.end);
|
||
find_separately = false;
|
||
} else {
|
||
// buffer2 will be pulled out from a 'B' subarray, so if the first buffer was pulled out from the corresponding 'A' subarray,
|
||
// we need to adjust the end point for that A subarray so it knows to stop redistributing its values before reaching buffer2
|
||
if (pull[0].range.start == A.start) pull[0].range.end -= pull[1].count;
|
||
|
||
// we found a second buffer in an 'B' subarray containing √A unique values, so we're done!
|
||
buffer2 = Range.init(B.end - count, B.end);
|
||
break;
|
||
}
|
||
} else if (pull_index == 0 and count > buffer1.length()) {
|
||
// keep track of the largest buffer we were able to find
|
||
buffer1 = Range.init(B.end - count, B.end);
|
||
pull[pull_index] = Pull.{
|
||
.range = Range.init(A.start, B.end),
|
||
.count = count,
|
||
.from = index,
|
||
.to = B.end,
|
||
};
|
||
}
|
||
}
|
||
|
||
// pull out the two ranges so we can use them as internal buffers
|
||
pull_index = 0;
|
||
while (pull_index < 2) : (pull_index += 1) {
|
||
const length = pull[pull_index].count;
|
||
|
||
if (pull[pull_index].to < pull[pull_index].from) {
|
||
// we're pulling the values out to the left, which means the start of an A subarray
|
||
index = pull[pull_index].from;
|
||
count = 1;
|
||
while (count < length) : (count += 1) {
|
||
index = findFirstBackward(T, items, items[index - 1], Range.init(pull[pull_index].to, pull[pull_index].from - (count - 1)), lessThan, length - count);
|
||
const range = Range.init(index + 1, pull[pull_index].from + 1);
|
||
mem.rotate(T, items[range.start..range.end], range.length() - count);
|
||
pull[pull_index].from = index + count;
|
||
}
|
||
} else if (pull[pull_index].to > pull[pull_index].from) {
|
||
// we're pulling values out to the right, which means the end of a B subarray
|
||
index = pull[pull_index].from + 1;
|
||
count = 1;
|
||
while (count < length) : (count += 1) {
|
||
index = findLastForward(T, items, items[index], Range.init(index, pull[pull_index].to), lessThan, length - count);
|
||
const range = Range.init(pull[pull_index].from, index - 1);
|
||
mem.rotate(T, items[range.start..range.end], count);
|
||
pull[pull_index].from = index - 1 - count;
|
||
}
|
||
}
|
||
}
|
||
|
||
// adjust block_size and buffer_size based on the values we were able to pull out
|
||
buffer_size = buffer1.length();
|
||
block_size = iterator.length() / buffer_size + 1;
|
||
|
||
// the first buffer NEEDS to be large enough to tag each of the evenly sized A blocks,
|
||
// so this was originally here to test the math for adjusting block_size above
|
||
// assert((iterator.length() + 1)/block_size <= buffer_size);
|
||
|
||
// now that the two internal buffers have been created, it's time to merge each A+B combination at this level of the merge sort!
|
||
iterator.begin();
|
||
while (!iterator.finished()) {
|
||
A = iterator.nextRange();
|
||
B = iterator.nextRange();
|
||
|
||
// remove any parts of A or B that are being used by the internal buffers
|
||
start = A.start;
|
||
if (start == pull[0].range.start) {
|
||
if (pull[0].from > pull[0].to) {
|
||
A.start += pull[0].count;
|
||
|
||
// if the internal buffer takes up the entire A or B subarray, then there's nothing to merge
|
||
// this only happens for very small subarrays, like √4 = 2, 2 * (2 internal buffers) = 4,
|
||
// which also only happens when cache.len is small or 0 since it'd otherwise use MergeExternal
|
||
if (A.length() == 0) continue;
|
||
} else if (pull[0].from < pull[0].to) {
|
||
B.end -= pull[0].count;
|
||
if (B.length() == 0) continue;
|
||
}
|
||
}
|
||
if (start == pull[1].range.start) {
|
||
if (pull[1].from > pull[1].to) {
|
||
A.start += pull[1].count;
|
||
if (A.length() == 0) continue;
|
||
} else if (pull[1].from < pull[1].to) {
|
||
B.end -= pull[1].count;
|
||
if (B.length() == 0) continue;
|
||
}
|
||
}
|
||
|
||
if (lessThan(items[B.end - 1], items[A.start])) {
|
||
// the two ranges are in reverse order, so a simple rotation should fix it
|
||
mem.rotate(T, items[A.start..B.end], A.length());
|
||
} else if (lessThan(items[A.end], items[A.end - 1])) {
|
||
// these two ranges weren't already in order, so we'll need to merge them!
|
||
var findA: usize = undefined;
|
||
|
||
// break the remainder of A into blocks. firstA is the uneven-sized first A block
|
||
var blockA = Range.init(A.start, A.end);
|
||
var firstA = Range.init(A.start, A.start + blockA.length() % block_size);
|
||
|
||
// swap the first value of each A block with the value in buffer1
|
||
var indexA = buffer1.start;
|
||
index = firstA.end;
|
||
while (index < blockA.end) : ({
|
||
indexA += 1;
|
||
index += block_size;
|
||
}) {
|
||
mem.swap(T, &items[indexA], &items[index]);
|
||
}
|
||
|
||
// start rolling the A blocks through the B blocks!
|
||
// whenever we leave an A block behind, we'll need to merge the previous A block with any B blocks that follow it, so track that information as well
|
||
var lastA = firstA;
|
||
var lastB = Range.init(0, 0);
|
||
var blockB = Range.init(B.start, B.start + math.min(block_size, B.length()));
|
||
blockA.start += firstA.length();
|
||
indexA = buffer1.start;
|
||
|
||
// if the first unevenly sized A block fits into the cache, copy it there for when we go to Merge it
|
||
// otherwise, if the second buffer is available, block swap the contents into that
|
||
if (lastA.length() <= cache.len) {
|
||
mem.copy(T, cache[0..], items[lastA.start..lastA.end]);
|
||
} else if (buffer2.length() > 0) {
|
||
blockSwap(T, items, lastA.start, buffer2.start, lastA.length());
|
||
}
|
||
|
||
if (blockA.length() > 0) {
|
||
while (true) {
|
||
// if there's a previous B block and the first value of the minimum A block is <= the last value of the previous B block,
|
||
// then drop that minimum A block behind. or if there are no B blocks left then keep dropping the remaining A blocks.
|
||
if ((lastB.length() > 0 and !lessThan(items[lastB.end - 1], items[indexA])) or blockB.length() == 0) {
|
||
// figure out where to split the previous B block, and rotate it at the split
|
||
const B_split = binaryFirst(T, items, items[indexA], lastB, lessThan);
|
||
const B_remaining = lastB.end - B_split;
|
||
|
||
// swap the minimum A block to the beginning of the rolling A blocks
|
||
var minA = blockA.start;
|
||
findA = minA + block_size;
|
||
while (findA < blockA.end) : (findA += block_size) {
|
||
if (lessThan(items[findA], items[minA])) {
|
||
minA = findA;
|
||
}
|
||
}
|
||
blockSwap(T, items, blockA.start, minA, block_size);
|
||
|
||
// swap the first item of the previous A block back with its original value, which is stored in buffer1
|
||
mem.swap(T, &items[blockA.start], &items[indexA]);
|
||
indexA += 1;
|
||
|
||
// locally merge the previous A block with the B values that follow it
|
||
// if lastA fits into the external cache we'll use that (with MergeExternal),
|
||
// or if the second internal buffer exists we'll use that (with MergeInternal),
|
||
// or failing that we'll use a strictly in-place merge algorithm (MergeInPlace)
|
||
|
||
if (lastA.length() <= cache.len) {
|
||
mergeExternal(T, items, lastA, Range.init(lastA.end, B_split), lessThan, cache[0..]);
|
||
} else if (buffer2.length() > 0) {
|
||
mergeInternal(T, items, lastA, Range.init(lastA.end, B_split), lessThan, buffer2);
|
||
} else {
|
||
mergeInPlace(T, items, lastA, Range.init(lastA.end, B_split), lessThan);
|
||
}
|
||
|
||
if (buffer2.length() > 0 or block_size <= cache.len) {
|
||
// copy the previous A block into the cache or buffer2, since that's where we need it to be when we go to merge it anyway
|
||
if (block_size <= cache.len) {
|
||
mem.copy(T, cache[0..], items[blockA.start .. blockA.start + block_size]);
|
||
} else {
|
||
blockSwap(T, items, blockA.start, buffer2.start, block_size);
|
||
}
|
||
|
||
// this is equivalent to rotating, but faster
|
||
// the area normally taken up by the A block is either the contents of buffer2, or data we don't need anymore since we memcopied it
|
||
// either way, we don't need to retain the order of those items, so instead of rotating we can just block swap B to where it belongs
|
||
blockSwap(T, items, B_split, blockA.start + block_size - B_remaining, B_remaining);
|
||
} else {
|
||
// we are unable to use the 'buffer2' trick to speed up the rotation operation since buffer2 doesn't exist, so perform a normal rotation
|
||
mem.rotate(T, items[B_split .. blockA.start + block_size], blockA.start - B_split);
|
||
}
|
||
|
||
// update the range for the remaining A blocks, and the range remaining from the B block after it was split
|
||
lastA = Range.init(blockA.start - B_remaining, blockA.start - B_remaining + block_size);
|
||
lastB = Range.init(lastA.end, lastA.end + B_remaining);
|
||
|
||
// if there are no more A blocks remaining, this step is finished!
|
||
blockA.start += block_size;
|
||
if (blockA.length() == 0) break;
|
||
} else if (blockB.length() < block_size) {
|
||
// move the last B block, which is unevenly sized, to before the remaining A blocks, by using a rotation
|
||
// the cache is disabled here since it might contain the contents of the previous A block
|
||
mem.rotate(T, items[blockA.start..blockB.end], blockB.start - blockA.start);
|
||
|
||
lastB = Range.init(blockA.start, blockA.start + blockB.length());
|
||
blockA.start += blockB.length();
|
||
blockA.end += blockB.length();
|
||
blockB.end = blockB.start;
|
||
} else {
|
||
// roll the leftmost A block to the end by swapping it with the next B block
|
||
blockSwap(T, items, blockA.start, blockB.start, block_size);
|
||
lastB = Range.init(blockA.start, blockA.start + block_size);
|
||
|
||
blockA.start += block_size;
|
||
blockA.end += block_size;
|
||
blockB.start += block_size;
|
||
|
||
if (blockB.end > B.end - block_size) {
|
||
blockB.end = B.end;
|
||
} else {
|
||
blockB.end += block_size;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// merge the last A block with the remaining B values
|
||
if (lastA.length() <= cache.len) {
|
||
mergeExternal(T, items, lastA, Range.init(lastA.end, B.end), lessThan, cache[0..]);
|
||
} else if (buffer2.length() > 0) {
|
||
mergeInternal(T, items, lastA, Range.init(lastA.end, B.end), lessThan, buffer2);
|
||
} else {
|
||
mergeInPlace(T, items, lastA, Range.init(lastA.end, B.end), lessThan);
|
||
}
|
||
}
|
||
}
|
||
|
||
// when we're finished with this merge step we should have the one or two internal buffers left over, where the second buffer is all jumbled up
|
||
// insertion sort the second buffer, then redistribute the buffers back into the items using the opposite process used for creating the buffer
|
||
|
||
// while an unstable sort like quicksort could be applied here, in benchmarks it was consistently slightly slower than a simple insertion sort,
|
||
// even for tens of millions of items. this may be because insertion sort is quite fast when the data is already somewhat sorted, like it is here
|
||
insertionSort(T, items[buffer2.start..buffer2.end], lessThan);
|
||
|
||
pull_index = 0;
|
||
while (pull_index < 2) : (pull_index += 1) {
|
||
var unique = pull[pull_index].count * 2;
|
||
if (pull[pull_index].from > pull[pull_index].to) {
|
||
// the values were pulled out to the left, so redistribute them back to the right
|
||
var buffer = Range.init(pull[pull_index].range.start, pull[pull_index].range.start + pull[pull_index].count);
|
||
while (buffer.length() > 0) {
|
||
index = findFirstForward(T, items, items[buffer.start], Range.init(buffer.end, pull[pull_index].range.end), lessThan, unique);
|
||
const amount = index - buffer.end;
|
||
mem.rotate(T, items[buffer.start..index], buffer.length());
|
||
buffer.start += (amount + 1);
|
||
buffer.end += amount;
|
||
unique -= 2;
|
||
}
|
||
} else if (pull[pull_index].from < pull[pull_index].to) {
|
||
// the values were pulled out to the right, so redistribute them back to the left
|
||
var buffer = Range.init(pull[pull_index].range.end - pull[pull_index].count, pull[pull_index].range.end);
|
||
while (buffer.length() > 0) {
|
||
index = findLastBackward(T, items, items[buffer.end - 1], Range.init(pull[pull_index].range.start, buffer.start), lessThan, unique);
|
||
const amount = buffer.start - index;
|
||
mem.rotate(T, items[index..buffer.end], amount);
|
||
buffer.start -= amount;
|
||
buffer.end -= (amount + 1);
|
||
unique -= 2;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// double the size of each A and B subarray that will be merged in the next level
|
||
if (!iterator.nextLevel()) break;
|
||
}
|
||
}
|
||
|
||
// merge operation without a buffer
|
||
fn mergeInPlace(comptime T: type, items: []T, A_arg: Range, B_arg: Range, lessThan: fn (T, T) bool) void {
|
||
if (A_arg.length() == 0 or B_arg.length() == 0) return;
|
||
|
||
// this just repeatedly binary searches into B and rotates A into position.
|
||
// the paper suggests using the 'rotation-based Hwang and Lin algorithm' here,
|
||
// but I decided to stick with this because it had better situational performance
|
||
//
|
||
// (Hwang and Lin is designed for merging subarrays of very different sizes,
|
||
// but WikiSort almost always uses subarrays that are roughly the same size)
|
||
//
|
||
// normally this is incredibly suboptimal, but this function is only called
|
||
// when none of the A or B blocks in any subarray contained 2√A unique values,
|
||
// which places a hard limit on the number of times this will ACTUALLY need
|
||
// to binary search and rotate.
|
||
//
|
||
// according to my analysis the worst case is √A rotations performed on √A items
|
||
// once the constant factors are removed, which ends up being O(n)
|
||
//
|
||
// again, this is NOT a general-purpose solution – it only works well in this case!
|
||
// kind of like how the O(n^2) insertion sort is used in some places
|
||
|
||
var A = A_arg;
|
||
var B = B_arg;
|
||
|
||
while (true) {
|
||
// find the first place in B where the first item in A needs to be inserted
|
||
const mid = binaryFirst(T, items, items[A.start], B, lessThan);
|
||
|
||
// rotate A into place
|
||
const amount = mid - A.end;
|
||
mem.rotate(T, items[A.start..mid], A.length());
|
||
if (B.end == mid) break;
|
||
|
||
// calculate the new A and B ranges
|
||
B.start = mid;
|
||
A = Range.init(A.start + amount, B.start);
|
||
A.start = binaryLast(T, items, items[A.start], A, lessThan);
|
||
if (A.length() == 0) break;
|
||
}
|
||
}
|
||
|
||
// merge operation using an internal buffer
|
||
fn mergeInternal(comptime T: type, items: []T, A: Range, B: Range, lessThan: fn (T, T) bool, buffer: Range) void {
|
||
// whenever we find a value to add to the final array, swap it with the value that's already in that spot
|
||
// when this algorithm is finished, 'buffer' will contain its original contents, but in a different order
|
||
var A_count: usize = 0;
|
||
var B_count: usize = 0;
|
||
var insert: usize = 0;
|
||
|
||
if (B.length() > 0 and A.length() > 0) {
|
||
while (true) {
|
||
if (!lessThan(items[B.start + B_count], items[buffer.start + A_count])) {
|
||
mem.swap(T, &items[A.start + insert], &items[buffer.start + A_count]);
|
||
A_count += 1;
|
||
insert += 1;
|
||
if (A_count >= A.length()) break;
|
||
} else {
|
||
mem.swap(T, &items[A.start + insert], &items[B.start + B_count]);
|
||
B_count += 1;
|
||
insert += 1;
|
||
if (B_count >= B.length()) break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// swap the remainder of A into the final array
|
||
blockSwap(T, items, buffer.start + A_count, A.start + insert, A.length() - A_count);
|
||
}
|
||
|
||
fn blockSwap(comptime T: type, items: []T, start1: usize, start2: usize, block_size: usize) void {
|
||
var index: usize = 0;
|
||
while (index < block_size) : (index += 1) {
|
||
mem.swap(T, &items[start1 + index], &items[start2 + index]);
|
||
}
|
||
}
|
||
|
||
// combine a linear search with a binary search to reduce the number of comparisons in situations
|
||
// where have some idea as to how many unique values there are and where the next value might be
|
||
fn findFirstForward(comptime T: type, items: []T, value: T, range: Range, lessThan: fn (T, T) bool, unique: usize) usize {
|
||
if (range.length() == 0) return range.start;
|
||
const skip = math.max(range.length() / unique, usize(1));
|
||
|
||
var index = range.start + skip;
|
||
while (lessThan(items[index - 1], value)) : (index += skip) {
|
||
if (index >= range.end - skip) {
|
||
return binaryFirst(T, items, value, Range.init(index, range.end), lessThan);
|
||
}
|
||
}
|
||
|
||
return binaryFirst(T, items, value, Range.init(index - skip, index), lessThan);
|
||
}
|
||
|
||
fn findFirstBackward(comptime T: type, items: []T, value: T, range: Range, lessThan: fn (T, T) bool, unique: usize) usize {
|
||
if (range.length() == 0) return range.start;
|
||
const skip = math.max(range.length() / unique, usize(1));
|
||
|
||
var index = range.end - skip;
|
||
while (index > range.start and !lessThan(items[index - 1], value)) : (index -= skip) {
|
||
if (index < range.start + skip) {
|
||
return binaryFirst(T, items, value, Range.init(range.start, index), lessThan);
|
||
}
|
||
}
|
||
|
||
return binaryFirst(T, items, value, Range.init(index, index + skip), lessThan);
|
||
}
|
||
|
||
fn findLastForward(comptime T: type, items: []T, value: T, range: Range, lessThan: fn (T, T) bool, unique: usize) usize {
|
||
if (range.length() == 0) return range.start;
|
||
const skip = math.max(range.length() / unique, usize(1));
|
||
|
||
var index = range.start + skip;
|
||
while (!lessThan(value, items[index - 1])) : (index += skip) {
|
||
if (index >= range.end - skip) {
|
||
return binaryLast(T, items, value, Range.init(index, range.end), lessThan);
|
||
}
|
||
}
|
||
|
||
return binaryLast(T, items, value, Range.init(index - skip, index), lessThan);
|
||
}
|
||
|
||
fn findLastBackward(comptime T: type, items: []T, value: T, range: Range, lessThan: fn (T, T) bool, unique: usize) usize {
|
||
if (range.length() == 0) return range.start;
|
||
const skip = math.max(range.length() / unique, usize(1));
|
||
|
||
var index = range.end - skip;
|
||
while (index > range.start and lessThan(value, items[index - 1])) : (index -= skip) {
|
||
if (index < range.start + skip) {
|
||
return binaryLast(T, items, value, Range.init(range.start, index), lessThan);
|
||
}
|
||
}
|
||
|
||
return binaryLast(T, items, value, Range.init(index, index + skip), lessThan);
|
||
}
|
||
|
||
fn binaryFirst(comptime T: type, items: []T, value: T, range: Range, lessThan: fn (T, T) bool) usize {
|
||
var start = range.start;
|
||
var end = range.end - 1;
|
||
if (range.start >= range.end) return range.end;
|
||
while (start < end) {
|
||
const mid = start + (end - start) / 2;
|
||
if (lessThan(items[mid], value)) {
|
||
start = mid + 1;
|
||
} else {
|
||
end = mid;
|
||
}
|
||
}
|
||
if (start == range.end - 1 and lessThan(items[start], value)) {
|
||
start += 1;
|
||
}
|
||
return start;
|
||
}
|
||
|
||
fn binaryLast(comptime T: type, items: []T, value: T, range: Range, lessThan: fn (T, T) bool) usize {
|
||
var start = range.start;
|
||
var end = range.end - 1;
|
||
if (range.start >= range.end) return range.end;
|
||
while (start < end) {
|
||
const mid = start + (end - start) / 2;
|
||
if (!lessThan(value, items[mid])) {
|
||
start = mid + 1;
|
||
} else {
|
||
end = mid;
|
||
}
|
||
}
|
||
if (start == range.end - 1 and !lessThan(value, items[start])) {
|
||
start += 1;
|
||
}
|
||
return start;
|
||
}
|
||
|
||
fn mergeInto(comptime T: type, from: []T, A: Range, B: Range, lessThan: fn (T, T) bool, into: []T) void {
|
||
var A_index: usize = A.start;
|
||
var B_index: usize = B.start;
|
||
const A_last = A.end;
|
||
const B_last = B.end;
|
||
var insert_index: usize = 0;
|
||
|
||
while (true) {
|
||
if (!lessThan(from[B_index], from[A_index])) {
|
||
into[insert_index] = from[A_index];
|
||
A_index += 1;
|
||
insert_index += 1;
|
||
if (A_index == A_last) {
|
||
// copy the remainder of B into the final array
|
||
mem.copy(T, into[insert_index..], from[B_index..B_last]);
|
||
break;
|
||
}
|
||
} else {
|
||
into[insert_index] = from[B_index];
|
||
B_index += 1;
|
||
insert_index += 1;
|
||
if (B_index == B_last) {
|
||
// copy the remainder of A into the final array
|
||
mem.copy(T, into[insert_index..], from[A_index..A_last]);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
fn mergeExternal(comptime T: type, items: []T, A: Range, B: Range, lessThan: fn (T, T) bool, cache: []T) void {
|
||
// A fits into the cache, so use that instead of the internal buffer
|
||
var A_index: usize = 0;
|
||
var B_index: usize = B.start;
|
||
var insert_index: usize = A.start;
|
||
const A_last = A.length();
|
||
const B_last = B.end;
|
||
|
||
if (B.length() > 0 and A.length() > 0) {
|
||
while (true) {
|
||
if (!lessThan(items[B_index], cache[A_index])) {
|
||
items[insert_index] = cache[A_index];
|
||
A_index += 1;
|
||
insert_index += 1;
|
||
if (A_index == A_last) break;
|
||
} else {
|
||
items[insert_index] = items[B_index];
|
||
B_index += 1;
|
||
insert_index += 1;
|
||
if (B_index == B_last) break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// copy the remainder of A into the final array
|
||
mem.copy(T, items[insert_index..], cache[A_index..A_last]);
|
||
}
|
||
|
||
fn swap(comptime T: type, items: []T, lessThan: fn (lhs: T, rhs: T) bool, order: *[8]u8, x: usize, y: usize) void {
|
||
if (lessThan(items[y], items[x]) or ((order.*)[x] > (order.*)[y] and !lessThan(items[x], items[y]))) {
|
||
mem.swap(T, &items[x], &items[y]);
|
||
mem.swap(u8, &(order.*)[x], &(order.*)[y]);
|
||
}
|
||
}
|
||
|
||
// Use these to generate a comparator function for a given type. e.g. `sort(u8, slice, asc(u8))`.
|
||
pub fn asc(comptime T: type) fn (T, T) bool {
|
||
const impl = struct.{
|
||
fn inner(a: T, b: T) bool {
|
||
return a < b;
|
||
}
|
||
};
|
||
|
||
return impl.inner;
|
||
}
|
||
|
||
pub fn desc(comptime T: type) fn (T, T) bool {
|
||
const impl = struct.{
|
||
fn inner(a: T, b: T) bool {
|
||
return a > b;
|
||
}
|
||
};
|
||
|
||
return impl.inner;
|
||
}
|
||
|
||
test "stable sort" {
|
||
testStableSort();
|
||
comptime testStableSort();
|
||
}
|
||
fn testStableSort() void {
|
||
var expected = []IdAndValue.{
|
||
IdAndValue.{ .id = 0, .value = 0 },
|
||
IdAndValue.{ .id = 1, .value = 0 },
|
||
IdAndValue.{ .id = 2, .value = 0 },
|
||
IdAndValue.{ .id = 0, .value = 1 },
|
||
IdAndValue.{ .id = 1, .value = 1 },
|
||
IdAndValue.{ .id = 2, .value = 1 },
|
||
IdAndValue.{ .id = 0, .value = 2 },
|
||
IdAndValue.{ .id = 1, .value = 2 },
|
||
IdAndValue.{ .id = 2, .value = 2 },
|
||
};
|
||
var cases = [][9]IdAndValue.{
|
||
[]IdAndValue.{
|
||
IdAndValue.{ .id = 0, .value = 0 },
|
||
IdAndValue.{ .id = 0, .value = 1 },
|
||
IdAndValue.{ .id = 0, .value = 2 },
|
||
IdAndValue.{ .id = 1, .value = 0 },
|
||
IdAndValue.{ .id = 1, .value = 1 },
|
||
IdAndValue.{ .id = 1, .value = 2 },
|
||
IdAndValue.{ .id = 2, .value = 0 },
|
||
IdAndValue.{ .id = 2, .value = 1 },
|
||
IdAndValue.{ .id = 2, .value = 2 },
|
||
},
|
||
[]IdAndValue.{
|
||
IdAndValue.{ .id = 0, .value = 2 },
|
||
IdAndValue.{ .id = 0, .value = 1 },
|
||
IdAndValue.{ .id = 0, .value = 0 },
|
||
IdAndValue.{ .id = 1, .value = 2 },
|
||
IdAndValue.{ .id = 1, .value = 1 },
|
||
IdAndValue.{ .id = 1, .value = 0 },
|
||
IdAndValue.{ .id = 2, .value = 2 },
|
||
IdAndValue.{ .id = 2, .value = 1 },
|
||
IdAndValue.{ .id = 2, .value = 0 },
|
||
},
|
||
};
|
||
for (cases) |*case| {
|
||
insertionSort(IdAndValue, (case.*)[0..], cmpByValue);
|
||
for (case.*) |item, i| {
|
||
assert(item.id == expected[i].id);
|
||
assert(item.value == expected[i].value);
|
||
}
|
||
}
|
||
}
|
||
const IdAndValue = struct.{
|
||
id: usize,
|
||
value: i32,
|
||
};
|
||
fn cmpByValue(a: IdAndValue, b: IdAndValue) bool {
|
||
return asc(i32)(a.value, b.value);
|
||
}
|
||
|
||
test "std.sort" {
|
||
const u8cases = [][]const []const u8.{
|
||
[][]const u8.{
|
||
"",
|
||
"",
|
||
},
|
||
[][]const u8.{
|
||
"a",
|
||
"a",
|
||
},
|
||
[][]const u8.{
|
||
"az",
|
||
"az",
|
||
},
|
||
[][]const u8.{
|
||
"za",
|
||
"az",
|
||
},
|
||
[][]const u8.{
|
||
"asdf",
|
||
"adfs",
|
||
},
|
||
[][]const u8.{
|
||
"one",
|
||
"eno",
|
||
},
|
||
};
|
||
|
||
for (u8cases) |case| {
|
||
var buf: [8]u8 = undefined;
|
||
const slice = buf[0..case[0].len];
|
||
mem.copy(u8, slice, case[0]);
|
||
sort(u8, slice, asc(u8));
|
||
assert(mem.eql(u8, slice, case[1]));
|
||
}
|
||
|
||
const i32cases = [][]const []const i32.{
|
||
[][]const i32.{
|
||
[]i32.{},
|
||
[]i32.{},
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{1},
|
||
[]i32.{1},
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{ 0, 1 },
|
||
[]i32.{ 0, 1 },
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{ 1, 0 },
|
||
[]i32.{ 0, 1 },
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{ 1, -1, 0 },
|
||
[]i32.{ -1, 0, 1 },
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{ 2, 1, 3 },
|
||
[]i32.{ 1, 2, 3 },
|
||
},
|
||
};
|
||
|
||
for (i32cases) |case| {
|
||
var buf: [8]i32 = undefined;
|
||
const slice = buf[0..case[0].len];
|
||
mem.copy(i32, slice, case[0]);
|
||
sort(i32, slice, asc(i32));
|
||
assert(mem.eql(i32, slice, case[1]));
|
||
}
|
||
}
|
||
|
||
test "std.sort descending" {
|
||
const rev_cases = [][]const []const i32.{
|
||
[][]const i32.{
|
||
[]i32.{},
|
||
[]i32.{},
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{1},
|
||
[]i32.{1},
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{ 0, 1 },
|
||
[]i32.{ 1, 0 },
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{ 1, 0 },
|
||
[]i32.{ 1, 0 },
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{ 1, -1, 0 },
|
||
[]i32.{ 1, 0, -1 },
|
||
},
|
||
[][]const i32.{
|
||
[]i32.{ 2, 1, 3 },
|
||
[]i32.{ 3, 2, 1 },
|
||
},
|
||
};
|
||
|
||
for (rev_cases) |case| {
|
||
var buf: [8]i32 = undefined;
|
||
const slice = buf[0..case[0].len];
|
||
mem.copy(i32, slice, case[0]);
|
||
sort(i32, slice, desc(i32));
|
||
assert(mem.eql(i32, slice, case[1]));
|
||
}
|
||
}
|
||
|
||
test "another sort case" {
|
||
var arr = []i32.{ 5, 3, 1, 2, 4 };
|
||
sort(i32, arr[0..], asc(i32));
|
||
|
||
assert(mem.eql(i32, arr, []i32.{ 1, 2, 3, 4, 5 }));
|
||
}
|
||
|
||
test "sort fuzz testing" {
|
||
var prng = std.rand.DefaultPrng.init(0x12345678);
|
||
const test_case_count = 10;
|
||
var i: usize = 0;
|
||
while (i < test_case_count) : (i += 1) {
|
||
fuzzTest(&prng.random);
|
||
}
|
||
}
|
||
|
||
var fixed_buffer_mem: [100 * 1024]u8 = undefined;
|
||
|
||
fn fuzzTest(rng: *std.rand.Random) void {
|
||
const array_size = rng.range(usize, 0, 1000);
|
||
var fixed_allocator = std.heap.FixedBufferAllocator.init(fixed_buffer_mem[0..]);
|
||
var array = fixed_allocator.allocator.alloc(IdAndValue, array_size) catch unreachable;
|
||
// populate with random data
|
||
for (array) |*item, index| {
|
||
item.id = index;
|
||
item.value = rng.range(i32, 0, 100);
|
||
}
|
||
sort(IdAndValue, array, cmpByValue);
|
||
|
||
var index: usize = 1;
|
||
while (index < array.len) : (index += 1) {
|
||
if (array[index].value == array[index - 1].value) {
|
||
assert(array[index].id > array[index - 1].id);
|
||
} else {
|
||
assert(array[index].value > array[index - 1].value);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn min(comptime T: type, items: []T, lessThan: fn (lhs: T, rhs: T) bool) T {
|
||
var i: usize = 0;
|
||
var smallest = items[0];
|
||
for (items[1..]) |item| {
|
||
if (lessThan(item, smallest)) {
|
||
smallest = item;
|
||
}
|
||
}
|
||
return smallest;
|
||
}
|
||
|
||
pub fn max(comptime T: type, items: []T, lessThan: fn (lhs: T, rhs: T) bool) T {
|
||
var i: usize = 0;
|
||
var biggest = items[0];
|
||
for (items[1..]) |item| {
|
||
if (lessThan(biggest, item)) {
|
||
biggest = item;
|
||
}
|
||
}
|
||
return biggest;
|
||
}
|