zig/std/atomic/stack.zig

127 lines
4.1 KiB
Zig

const builtin = @import("builtin");
const AtomicOrder = builtin.AtomicOrder;
/// Many reader, many writer, non-allocating, thread-safe, lock-free
pub fn Stack(comptime T: type) type {
return struct {
root: ?&Node,
pub const Self = this;
pub const Node = struct {
next: ?&Node,
data: T,
};
pub fn init() Self {
return Self {
.root = null,
};
}
/// push operation, but only if you are the first item in the stack. if you did not succeed in
/// being the first item in the stack, returns the other item that was there.
pub fn pushFirst(self: &Self, node: &Node) ?&Node {
node.next = null;
return @cmpxchgStrong(?&Node, &self.root, null, node, AtomicOrder.SeqCst, AtomicOrder.SeqCst);
}
pub fn push(self: &Self, node: &Node) void {
var root = @atomicLoad(?&Node, &self.root, AtomicOrder.SeqCst);
while (true) {
node.next = root;
root = @cmpxchgWeak(?&Node, &self.root, root, node, AtomicOrder.SeqCst, AtomicOrder.SeqCst) ?? break;
}
}
pub fn pop(self: &Self) ?&Node {
var root = @atomicLoad(?&Node, &self.root, AtomicOrder.Acquire);
while (true) {
root = @cmpxchgWeak(?&Node, &self.root, root, (root ?? return null).next, AtomicOrder.SeqCst, AtomicOrder.SeqCst) ?? return root;
}
}
pub fn isEmpty(self: &Self) bool {
return @atomicLoad(?&Node, &self.root, AtomicOrder.SeqCst) == null;
}
};
}
const std = @import("std");
const Context = struct {
allocator: &std.mem.Allocator,
stack: &Stack(i32),
put_sum: isize,
get_sum: isize,
get_count: usize,
puts_done: u8, // TODO make this a bool
};
const puts_per_thread = 1000;
const put_thread_count = 3;
test "std.atomic.stack" {
var direct_allocator = std.heap.DirectAllocator.init();
defer direct_allocator.deinit();
var plenty_of_memory = try direct_allocator.allocator.alloc(u8, 64 * 1024 * 1024);
defer direct_allocator.allocator.free(plenty_of_memory);
var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory);
var a = &fixed_buffer_allocator.allocator;
var stack = Stack(i32).init();
var context = Context {
.allocator = a,
.stack = &stack,
.put_sum = 0,
.get_sum = 0,
.puts_done = 0,
.get_count = 0,
};
var putters: [put_thread_count]&std.os.Thread = undefined;
for (putters) |*t| {
*t = try std.os.spawnThread(&context, startPuts);
}
var getters: [put_thread_count]&std.os.Thread = undefined;
for (getters) |*t| {
*t = try std.os.spawnThread(&context, startGets);
}
for (putters) |t| t.wait();
_ = @atomicRmw(u8, &context.puts_done, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
for (getters) |t| t.wait();
std.debug.assert(context.put_sum == context.get_sum);
std.debug.assert(context.get_count == puts_per_thread * put_thread_count);
}
fn startPuts(ctx: &Context) u8 {
var put_count: usize = puts_per_thread;
var r = std.rand.DefaultPrng.init(0xdeadbeef);
while (put_count != 0) : (put_count -= 1) {
std.os.time.sleep(0, 1); // let the os scheduler be our fuzz
const x = @bitCast(i32, r.random.scalar(u32));
const node = ctx.allocator.create(Stack(i32).Node) catch unreachable;
node.data = x;
ctx.stack.push(node);
_ = @atomicRmw(isize, &ctx.put_sum, builtin.AtomicRmwOp.Add, x, AtomicOrder.SeqCst);
}
return 0;
}
fn startGets(ctx: &Context) u8 {
while (true) {
while (ctx.stack.pop()) |node| {
std.os.time.sleep(0, 1); // let the os scheduler be our fuzz
_ = @atomicRmw(isize, &ctx.get_sum, builtin.AtomicRmwOp.Add, node.data, builtin.AtomicOrder.SeqCst);
_ = @atomicRmw(usize, &ctx.get_count, builtin.AtomicRmwOp.Add, 1, builtin.AtomicOrder.SeqCst);
}
if (@atomicLoad(u8, &ctx.puts_done, builtin.AtomicOrder.SeqCst) == 1) {
break;
}
}
return 0;
}