zig/lib/std/fmt.zig
LemonBoy 27adb82fda std: Respect user-specified alignment when formatting ints
This implementation tries to do the right thing (TM) by treating the
sign as part of the number itself, therefore the alignment parameter
applies to both the sign and the digits.

In other words the format string `{:>4}` with -1 as input will not
output `-  1` but `  -1`.

And let's default to right alignment for everything as that's what users
want, especially when printing numbers. Many implementations use
different defaults for numeric vs non-numeric types, let's strive for a
consistent behaviour here.
2020-09-17 00:53:08 +02:00

1818 lines
62 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std.zig");
const math = std.math;
const assert = std.debug.assert;
const mem = std.mem;
const builtin = @import("builtin");
const errol = @import("fmt/errol.zig");
const lossyCast = std.math.lossyCast;
pub const default_max_depth = 3;
pub const Alignment = enum {
Left,
Center,
Right,
};
pub const FormatOptions = struct {
precision: ?usize = null,
width: ?usize = null,
alignment: Alignment = .Right,
fill: u8 = ' ',
};
fn peekIsAlign(comptime fmt: []const u8) bool {
// Should only be called during a state transition to the format segment.
comptime assert(fmt[0] == ':');
inline for (([_]u8{ 1, 2 })[0..]) |i| {
if (fmt.len > i and (fmt[i] == '<' or fmt[i] == '^' or fmt[i] == '>')) {
return true;
}
}
return false;
}
/// Renders fmt string with args, calling output with slices of bytes.
/// If `output` returns an error, the error is returned from `format` and
/// `output` is not called again.
///
/// The format string must be comptime known and may contain placeholders following
/// this format:
/// `{[position][specifier]:[fill][alignment][width].[precision]}`
///
/// Each word between `[` and `]` is a parameter you have to replace with something:
///
/// - *position* is the index of the argument that should be inserted
/// - *specifier* is a type-dependent formatting option that determines how a type should formatted (see below)
/// - *fill* is a single character which is used to pad the formatted text
/// - *alignment* is one of the three characters `<`, `^` or `>`. they define if the text is *left*, *center*, or *right* aligned
/// - *width* is the total width of the field in characters
/// - *precision* specifies how many decimals a formatted number should have
///
/// Note that most of the parameters are optional and may be omitted. Also you can leave out separators like `:` and `.` when
/// all parameters after the separator are omitted.
/// Only exception is the *fill* parameter. If *fill* is required, one has to specify *alignment* as well, as otherwise
/// the digits after `:` is interpreted as *width*, not *fill*.
///
/// The *specifier* has several options for types:
/// - `x` and `X`:
/// - format the non-numeric value as a string of bytes in hexadecimal notation ("binary dump") in either lower case or upper case
/// - output numeric value in hexadecimal notation
/// - `s`: print a pointer-to-many as a c-string, use zero-termination
/// - `B` and `Bi`: output a memory size in either metric (1000) or power-of-two (1024) based notation. works for both float and integer values.
/// - `e` and `E`: if printing a string, escape non-printable characters
/// - `e`: output floating point value in scientific notation
/// - `d`: output numeric value in decimal notation
/// - `b`: output integer value in binary notation
/// - `o`: output integer value in octal notation
/// - `c`: output integer as an ASCII character. Integer type must have 8 bits at max.
/// - `*`: output the address of the value instead of the value itself.
///
/// If a formatted user type contains a function of the type
/// ```
/// pub fn format(value: ?, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void
/// ```
/// with `?` being the type formatted, this function will be called instead of the default implementation.
/// This allows user types to be formatted in a logical manner instead of dumping all fields of the type.
///
/// A user type may be a `struct`, `vector`, `union` or `enum` type.
///
/// To print literal curly braces, escape them by writing them twice, e.g. `{{` or `}}`.
pub fn format(
writer: anytype,
comptime fmt: []const u8,
args: anytype,
) !void {
const ArgSetType = u32;
if (@typeInfo(@TypeOf(args)) != .Struct) {
@compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(args)));
}
if (args.len > @typeInfo(ArgSetType).Int.bits) {
@compileError("32 arguments max are supported per format call");
}
const State = enum {
Start,
Positional,
CloseBrace,
Specifier,
FormatFillAndAlign,
FormatWidth,
FormatPrecision,
};
comptime var start_index = 0;
comptime var state = State.Start;
comptime var maybe_pos_arg: ?comptime_int = null;
comptime var specifier_start = 0;
comptime var specifier_end = 0;
comptime var options = FormatOptions{};
comptime var arg_state: struct {
next_arg: usize = 0,
used_args: ArgSetType = 0,
args_len: usize = args.len,
fn hasUnusedArgs(comptime self: *@This()) bool {
return (@popCount(ArgSetType, self.used_args) != self.args_len);
}
fn nextArg(comptime self: *@This(), comptime pos_arg: ?comptime_int) comptime_int {
const next_idx = pos_arg orelse blk: {
const arg = self.next_arg;
self.next_arg += 1;
break :blk arg;
};
if (next_idx >= self.args_len) {
@compileError("Too few arguments");
}
// Mark this argument as used
self.used_args |= 1 << next_idx;
return next_idx;
}
} = .{};
inline for (fmt) |c, i| {
switch (state) {
.Start => switch (c) {
'{' => {
if (start_index < i) {
try writer.writeAll(fmt[start_index..i]);
}
start_index = i;
specifier_start = i + 1;
specifier_end = i + 1;
maybe_pos_arg = null;
state = .Positional;
options = FormatOptions{};
},
'}' => {
if (start_index < i) {
try writer.writeAll(fmt[start_index..i]);
}
state = .CloseBrace;
},
else => {},
},
.Positional => switch (c) {
'{' => {
state = .Start;
start_index = i;
},
':' => {
state = if (comptime peekIsAlign(fmt[i..])) State.FormatFillAndAlign else State.FormatWidth;
specifier_end = i;
},
'0'...'9' => {
if (maybe_pos_arg == null) {
maybe_pos_arg = 0;
}
maybe_pos_arg.? *= 10;
maybe_pos_arg.? += c - '0';
specifier_start = i + 1;
if (maybe_pos_arg.? >= args.len) {
@compileError("Positional value refers to non-existent argument");
}
},
'}' => {
const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg);
try formatType(
args[arg_to_print],
fmt[0..0],
options,
writer,
default_max_depth,
);
state = .Start;
start_index = i + 1;
},
else => {
state = .Specifier;
specifier_start = i;
},
},
.CloseBrace => switch (c) {
'}' => {
state = .Start;
start_index = i;
},
else => @compileError("Single '}' encountered in format string"),
},
.Specifier => switch (c) {
':' => {
specifier_end = i;
state = if (comptime peekIsAlign(fmt[i..])) State.FormatFillAndAlign else State.FormatWidth;
},
'}' => {
const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg);
try formatType(
args[arg_to_print],
fmt[specifier_start..i],
options,
writer,
default_max_depth,
);
state = .Start;
start_index = i + 1;
},
else => {},
},
// Only entered if the format string contains a fill/align segment.
.FormatFillAndAlign => switch (c) {
'<' => {
options.alignment = Alignment.Left;
state = .FormatWidth;
},
'^' => {
options.alignment = Alignment.Center;
state = .FormatWidth;
},
'>' => {
options.alignment = Alignment.Right;
state = .FormatWidth;
},
else => {
options.fill = c;
},
},
.FormatWidth => switch (c) {
'0'...'9' => {
if (options.width == null) {
options.width = 0;
}
options.width.? *= 10;
options.width.? += c - '0';
},
'.' => {
state = .FormatPrecision;
},
'}' => {
const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg);
try formatType(
args[arg_to_print],
fmt[specifier_start..specifier_end],
options,
writer,
default_max_depth,
);
state = .Start;
start_index = i + 1;
},
else => {
@compileError("Unexpected character in width value: " ++ [_]u8{c});
},
},
.FormatPrecision => switch (c) {
'0'...'9' => {
if (options.precision == null) {
options.precision = 0;
}
options.precision.? *= 10;
options.precision.? += c - '0';
},
'}' => {
const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg);
try formatType(
args[arg_to_print],
fmt[specifier_start..specifier_end],
options,
writer,
default_max_depth,
);
state = .Start;
start_index = i + 1;
},
else => {
@compileError("Unexpected character in precision value: " ++ [_]u8{c});
},
},
}
}
comptime {
if (comptime arg_state.hasUnusedArgs()) {
@compileError("Unused arguments");
}
if (state != State.Start) {
@compileError("Incomplete format string: " ++ fmt);
}
}
if (start_index < fmt.len) {
try writer.writeAll(fmt[start_index..]);
}
}
pub fn formatType(
value: anytype,
comptime fmt: []const u8,
options: FormatOptions,
writer: anytype,
max_depth: usize,
) @TypeOf(writer).Error!void {
if (comptime std.mem.eql(u8, fmt, "*")) {
try writer.writeAll(@typeName(std.meta.Child(@TypeOf(value))));
try writer.writeAll("@");
try formatInt(@ptrToInt(value), 16, false, FormatOptions{}, writer);
return;
}
const T = @TypeOf(value);
if (comptime std.meta.trait.hasFn("format")(T)) {
return try value.format(fmt, options, writer);
}
switch (@typeInfo(T)) {
.ComptimeInt, .Int, .ComptimeFloat, .Float => {
return formatValue(value, fmt, options, writer);
},
.Void => {
return formatBuf("void", options, writer);
},
.Bool => {
return formatBuf(if (value) "true" else "false", options, writer);
},
.Optional => {
if (value) |payload| {
return formatType(payload, fmt, options, writer, max_depth);
} else {
return formatBuf("null", options, writer);
}
},
.ErrorUnion => {
if (value) |payload| {
return formatType(payload, fmt, options, writer, max_depth);
} else |err| {
return formatType(err, fmt, options, writer, max_depth);
}
},
.ErrorSet => {
try writer.writeAll("error.");
return writer.writeAll(@errorName(value));
},
.Enum => |enumInfo| {
try writer.writeAll(@typeName(T));
if (enumInfo.is_exhaustive) {
try writer.writeAll(".");
try writer.writeAll(@tagName(value));
return;
}
// Use @tagName only if value is one of known fields
@setEvalBranchQuota(3 * enumInfo.fields.len);
inline for (enumInfo.fields) |enumField| {
if (@enumToInt(value) == enumField.value) {
try writer.writeAll(".");
try writer.writeAll(@tagName(value));
return;
}
}
try writer.writeAll("(");
try formatType(@enumToInt(value), fmt, options, writer, max_depth);
try writer.writeAll(")");
},
.Union => {
try writer.writeAll(@typeName(T));
if (max_depth == 0) {
return writer.writeAll("{ ... }");
}
const info = @typeInfo(T).Union;
if (info.tag_type) |UnionTagType| {
try writer.writeAll("{ .");
try writer.writeAll(@tagName(@as(UnionTagType, value)));
try writer.writeAll(" = ");
inline for (info.fields) |u_field| {
if (value == @field(UnionTagType, u_field.name)) {
try formatType(@field(value, u_field.name), fmt, options, writer, max_depth - 1);
}
}
try writer.writeAll(" }");
} else {
try format(writer, "@{x}", .{@ptrToInt(&value)});
}
},
.Struct => |StructT| {
try writer.writeAll(@typeName(T));
if (max_depth == 0) {
return writer.writeAll("{ ... }");
}
try writer.writeAll("{");
inline for (StructT.fields) |f, i| {
if (i == 0) {
try writer.writeAll(" .");
} else {
try writer.writeAll(", .");
}
try writer.writeAll(f.name);
try writer.writeAll(" = ");
try formatType(@field(value, f.name), fmt, options, writer, max_depth - 1);
}
try writer.writeAll(" }");
},
.Pointer => |ptr_info| switch (ptr_info.size) {
.One => switch (@typeInfo(ptr_info.child)) {
.Array => |info| {
if (info.child == u8) {
return formatText(value, fmt, options, writer);
}
return format(writer, "{}@{x}", .{ @typeName(@typeInfo(T).Pointer.child), @ptrToInt(value) });
},
.Enum, .Union, .Struct => {
return formatType(value.*, fmt, options, writer, max_depth);
},
else => return format(writer, "{}@{x}", .{ @typeName(@typeInfo(T).Pointer.child), @ptrToInt(value) }),
},
.Many, .C => {
if (ptr_info.sentinel) |sentinel| {
return formatType(mem.span(value), fmt, options, writer, max_depth);
}
if (ptr_info.child == u8) {
if (fmt.len > 0 and fmt[0] == 's') {
return formatText(mem.span(value), fmt, options, writer);
}
}
return format(writer, "{}@{x}", .{ @typeName(@typeInfo(T).Pointer.child), @ptrToInt(value) });
},
.Slice => {
if (fmt.len > 0 and ((fmt[0] == 'x') or (fmt[0] == 'X'))) {
return formatText(value, fmt, options, writer);
}
if (ptr_info.child == u8) {
return formatText(value, fmt, options, writer);
}
return format(writer, "{}@{x}", .{ @typeName(ptr_info.child), @ptrToInt(value.ptr) });
},
},
.Array => |info| {
const Slice = @Type(builtin.TypeInfo{
.Pointer = .{
.size = .Slice,
.is_const = true,
.is_volatile = false,
.is_allowzero = false,
.alignment = @alignOf(info.child),
.child = info.child,
.sentinel = null,
},
});
return formatType(@as(Slice, &value), fmt, options, writer, max_depth);
},
.Vector => {
const len = @typeInfo(T).Vector.len;
try writer.writeAll("{ ");
var i: usize = 0;
while (i < len) : (i += 1) {
try formatValue(value[i], fmt, options, writer);
if (i < len - 1) {
try writer.writeAll(", ");
}
}
try writer.writeAll(" }");
},
.Fn => {
return format(writer, "{}@{x}", .{ @typeName(T), @ptrToInt(value) });
},
.Type => return writer.writeAll(@typeName(T)),
.EnumLiteral => {
const buffer = [_]u8{'.'} ++ @tagName(value);
return formatType(buffer, fmt, options, writer, max_depth);
},
else => @compileError("Unable to format type '" ++ @typeName(T) ++ "'"),
}
}
fn formatValue(
value: anytype,
comptime fmt: []const u8,
options: FormatOptions,
writer: anytype,
) !void {
if (comptime std.mem.eql(u8, fmt, "B")) {
return formatBytes(value, options, 1000, writer);
} else if (comptime std.mem.eql(u8, fmt, "Bi")) {
return formatBytes(value, options, 1024, writer);
}
const T = @TypeOf(value);
switch (@typeInfo(T)) {
.Float, .ComptimeFloat => return formatFloatValue(value, fmt, options, writer),
.Int, .ComptimeInt => return formatIntValue(value, fmt, options, writer),
.Bool => return formatBuf(if (value) "true" else "false", options, writer),
else => comptime unreachable,
}
}
pub fn formatIntValue(
value: anytype,
comptime fmt: []const u8,
options: FormatOptions,
writer: anytype,
) !void {
comptime var radix = 10;
comptime var uppercase = false;
const int_value = if (@TypeOf(value) == comptime_int) blk: {
const Int = math.IntFittingRange(value, value);
break :blk @as(Int, value);
} else
value;
if (fmt.len == 0 or comptime std.mem.eql(u8, fmt, "d")) {
radix = 10;
uppercase = false;
} else if (comptime std.mem.eql(u8, fmt, "c")) {
if (@typeInfo(@TypeOf(int_value)).Int.bits <= 8) {
return formatAsciiChar(@as(u8, int_value), options, writer);
} else {
@compileError("Cannot print integer that is larger than 8 bits as a ascii");
}
} else if (comptime std.mem.eql(u8, fmt, "b")) {
radix = 2;
uppercase = false;
} else if (comptime std.mem.eql(u8, fmt, "x")) {
radix = 16;
uppercase = false;
} else if (comptime std.mem.eql(u8, fmt, "X")) {
radix = 16;
uppercase = true;
} else if (comptime std.mem.eql(u8, fmt, "o")) {
radix = 8;
uppercase = false;
} else {
@compileError("Unknown format string: '" ++ fmt ++ "'");
}
return formatInt(int_value, radix, uppercase, options, writer);
}
fn formatFloatValue(
value: anytype,
comptime fmt: []const u8,
options: FormatOptions,
writer: anytype,
) !void {
// this buffer should be enough to display all decimal places of a decimal f64 number.
var buf: [512]u8 = undefined;
var buf_stream = std.io.fixedBufferStream(&buf);
if (fmt.len == 0 or comptime std.mem.eql(u8, fmt, "e")) {
formatFloatScientific(value, options, buf_stream.writer()) catch |err| switch (err) {
error.NoSpaceLeft => unreachable,
else => |e| return e,
};
} else if (comptime std.mem.eql(u8, fmt, "d")) {
formatFloatDecimal(value, options, buf_stream.writer()) catch |err| switch (err) {
error.NoSpaceLeft => unreachable,
else => |e| return e,
};
} else {
@compileError("Unknown format string: '" ++ fmt ++ "'");
}
return formatBuf(buf_stream.getWritten(), options, writer);
}
pub fn formatText(
bytes: []const u8,
comptime fmt: []const u8,
options: FormatOptions,
writer: anytype,
) !void {
if (comptime std.mem.eql(u8, fmt, "s") or (fmt.len == 0)) {
return formatBuf(bytes, options, writer);
} else if (comptime (std.mem.eql(u8, fmt, "x") or std.mem.eql(u8, fmt, "X"))) {
for (bytes) |c| {
try formatInt(c, 16, fmt[0] == 'X', FormatOptions{ .width = 2, .fill = '0' }, writer);
}
return;
} else if (comptime (std.mem.eql(u8, fmt, "e") or std.mem.eql(u8, fmt, "E"))) {
for (bytes) |c| {
if (std.ascii.isPrint(c)) {
try writer.writeByte(c);
} else {
try writer.writeAll("\\x");
try formatInt(c, 16, fmt[0] == 'E', FormatOptions{ .width = 2, .fill = '0' }, writer);
}
}
return;
} else {
@compileError("Unknown format string: '" ++ fmt ++ "'");
}
}
pub fn formatAsciiChar(
c: u8,
options: FormatOptions,
writer: anytype,
) !void {
return writer.writeAll(@as(*const [1]u8, &c));
}
pub fn formatBuf(
buf: []const u8,
options: FormatOptions,
writer: anytype,
) !void {
const width = options.width orelse buf.len;
const padding = if (width > buf.len) (width - buf.len) else 0;
switch (options.alignment) {
.Left => {
try writer.writeAll(buf);
try writer.writeByteNTimes(options.fill, padding);
},
.Center => {
const left_padding = padding / 2;
const right_padding = (padding + 1) / 2;
try writer.writeByteNTimes(options.fill, left_padding);
try writer.writeAll(buf);
try writer.writeByteNTimes(options.fill, right_padding);
},
.Right => {
try writer.writeByteNTimes(options.fill, padding);
try writer.writeAll(buf);
},
}
}
// Print a float in scientific notation to the specified precision. Null uses full precision.
// It should be the case that every full precision, printed value can be re-parsed back to the
// same type unambiguously.
pub fn formatFloatScientific(
value: anytype,
options: FormatOptions,
writer: anytype,
) !void {
var x = @floatCast(f64, value);
// Errol doesn't handle these special cases.
if (math.signbit(x)) {
try writer.writeAll("-");
x = -x;
}
if (math.isNan(x)) {
return writer.writeAll("nan");
}
if (math.isPositiveInf(x)) {
return writer.writeAll("inf");
}
if (x == 0.0) {
try writer.writeAll("0");
if (options.precision) |precision| {
if (precision != 0) {
try writer.writeAll(".");
var i: usize = 0;
while (i < precision) : (i += 1) {
try writer.writeAll("0");
}
}
} else {
try writer.writeAll(".0");
}
try writer.writeAll("e+00");
return;
}
var buffer: [32]u8 = undefined;
var float_decimal = errol.errol3(x, buffer[0..]);
if (options.precision) |precision| {
errol.roundToPrecision(&float_decimal, precision, errol.RoundMode.Scientific);
try writer.writeAll(float_decimal.digits[0..1]);
// {e0} case prints no `.`
if (precision != 0) {
try writer.writeAll(".");
var printed: usize = 0;
if (float_decimal.digits.len > 1) {
const num_digits = math.min(float_decimal.digits.len, precision + 1);
try writer.writeAll(float_decimal.digits[1..num_digits]);
printed += num_digits - 1;
}
while (printed < precision) : (printed += 1) {
try writer.writeAll("0");
}
}
} else {
try writer.writeAll(float_decimal.digits[0..1]);
try writer.writeAll(".");
if (float_decimal.digits.len > 1) {
const num_digits = if (@TypeOf(value) == f32) math.min(@as(usize, 9), float_decimal.digits.len) else float_decimal.digits.len;
try writer.writeAll(float_decimal.digits[1..num_digits]);
} else {
try writer.writeAll("0");
}
}
try writer.writeAll("e");
const exp = float_decimal.exp - 1;
if (exp >= 0) {
try writer.writeAll("+");
if (exp > -10 and exp < 10) {
try writer.writeAll("0");
}
try formatInt(exp, 10, false, FormatOptions{ .width = 0 }, writer);
} else {
try writer.writeAll("-");
if (exp > -10 and exp < 10) {
try writer.writeAll("0");
}
try formatInt(-exp, 10, false, FormatOptions{ .width = 0 }, writer);
}
}
// Print a float of the format x.yyyyy where the number of y is specified by the precision argument.
// By default floats are printed at full precision (no rounding).
pub fn formatFloatDecimal(
value: anytype,
options: FormatOptions,
writer: anytype,
) !void {
var x = @as(f64, value);
// Errol doesn't handle these special cases.
if (math.signbit(x)) {
try writer.writeAll("-");
x = -x;
}
if (math.isNan(x)) {
return writer.writeAll("nan");
}
if (math.isPositiveInf(x)) {
return writer.writeAll("inf");
}
if (x == 0.0) {
try writer.writeAll("0");
if (options.precision) |precision| {
if (precision != 0) {
try writer.writeAll(".");
var i: usize = 0;
while (i < precision) : (i += 1) {
try writer.writeAll("0");
}
} else {
try writer.writeAll(".0");
}
}
return;
}
// non-special case, use errol3
var buffer: [32]u8 = undefined;
var float_decimal = errol.errol3(x, buffer[0..]);
if (options.precision) |precision| {
errol.roundToPrecision(&float_decimal, precision, errol.RoundMode.Decimal);
// exp < 0 means the leading is always 0 as errol result is normalized.
var num_digits_whole = if (float_decimal.exp > 0) @intCast(usize, float_decimal.exp) else 0;
// the actual slice into the buffer, we may need to zero-pad between num_digits_whole and this.
var num_digits_whole_no_pad = math.min(num_digits_whole, float_decimal.digits.len);
if (num_digits_whole > 0) {
// We may have to zero pad, for instance 1e4 requires zero padding.
try writer.writeAll(float_decimal.digits[0..num_digits_whole_no_pad]);
var i = num_digits_whole_no_pad;
while (i < num_digits_whole) : (i += 1) {
try writer.writeAll("0");
}
} else {
try writer.writeAll("0");
}
// {.0} special case doesn't want a trailing '.'
if (precision == 0) {
return;
}
try writer.writeAll(".");
// Keep track of fractional count printed for case where we pre-pad then post-pad with 0's.
var printed: usize = 0;
// Zero-fill until we reach significant digits or run out of precision.
if (float_decimal.exp <= 0) {
const zero_digit_count = @intCast(usize, -float_decimal.exp);
const zeros_to_print = math.min(zero_digit_count, precision);
var i: usize = 0;
while (i < zeros_to_print) : (i += 1) {
try writer.writeAll("0");
printed += 1;
}
if (printed >= precision) {
return;
}
}
// Remaining fractional portion, zero-padding if insufficient.
assert(precision >= printed);
if (num_digits_whole_no_pad + precision - printed < float_decimal.digits.len) {
try writer.writeAll(float_decimal.digits[num_digits_whole_no_pad .. num_digits_whole_no_pad + precision - printed]);
return;
} else {
try writer.writeAll(float_decimal.digits[num_digits_whole_no_pad..]);
printed += float_decimal.digits.len - num_digits_whole_no_pad;
while (printed < precision) : (printed += 1) {
try writer.writeAll("0");
}
}
} else {
// exp < 0 means the leading is always 0 as errol result is normalized.
var num_digits_whole = if (float_decimal.exp > 0) @intCast(usize, float_decimal.exp) else 0;
// the actual slice into the buffer, we may need to zero-pad between num_digits_whole and this.
var num_digits_whole_no_pad = math.min(num_digits_whole, float_decimal.digits.len);
if (num_digits_whole > 0) {
// We may have to zero pad, for instance 1e4 requires zero padding.
try writer.writeAll(float_decimal.digits[0..num_digits_whole_no_pad]);
var i = num_digits_whole_no_pad;
while (i < num_digits_whole) : (i += 1) {
try writer.writeAll("0");
}
} else {
try writer.writeAll("0");
}
// Omit `.` if no fractional portion
if (float_decimal.exp >= 0 and num_digits_whole_no_pad == float_decimal.digits.len) {
return;
}
try writer.writeAll(".");
// Zero-fill until we reach significant digits or run out of precision.
if (float_decimal.exp < 0) {
const zero_digit_count = @intCast(usize, -float_decimal.exp);
var i: usize = 0;
while (i < zero_digit_count) : (i += 1) {
try writer.writeAll("0");
}
}
try writer.writeAll(float_decimal.digits[num_digits_whole_no_pad..]);
}
}
pub fn formatBytes(
value: anytype,
options: FormatOptions,
comptime radix: usize,
writer: anytype,
) !void {
if (value == 0) {
return writer.writeAll("0B");
}
const is_float = comptime std.meta.trait.is(.Float)(@TypeOf(value));
const mags_si = " kMGTPEZY";
const mags_iec = " KMGTPEZY";
const log2 = if (is_float) @floatToInt(usize, math.log2(value)) else math.log2(value);
const magnitude = switch (radix) {
1000 => math.min(log2 / comptime math.log2(1000), mags_si.len - 1),
1024 => math.min(log2 / 10, mags_iec.len - 1),
else => unreachable,
};
const new_value = lossyCast(f64, value) / math.pow(f64, lossyCast(f64, radix), lossyCast(f64, magnitude));
const suffix = switch (radix) {
1000 => mags_si[magnitude],
1024 => mags_iec[magnitude],
else => unreachable,
};
try formatFloatDecimal(new_value, options, writer);
if (suffix == ' ') {
return writer.writeAll("B");
}
const buf = switch (radix) {
1000 => &[_]u8{ suffix, 'B' },
1024 => &[_]u8{ suffix, 'i', 'B' },
else => unreachable,
};
return writer.writeAll(buf);
}
pub fn formatInt(
value: anytype,
base: u8,
uppercase: bool,
options: FormatOptions,
writer: anytype,
) !void {
assert(base >= 2);
const int_value = if (@TypeOf(value) == comptime_int) blk: {
const Int = math.IntFittingRange(value, value);
break :blk @as(Int, value);
} else
value;
const value_info = @typeInfo(@TypeOf(int_value)).Int;
// The type must have the same size as `base` or be wider in order for the
// division to work
const min_int_bits = comptime math.max(value_info.bits, 8);
const MinInt = std.meta.Int(false, min_int_bits);
const abs_value = math.absCast(int_value);
// The worst case in terms of space needed is base 2, plus 1 for the sign
var buf: [1 + math.max(value_info.bits, 1)]u8 = undefined;
var a: MinInt = abs_value;
var index: usize = buf.len;
while (true) {
const digit = a % base;
index -= 1;
buf[index] = digitToChar(@intCast(u8, digit), uppercase);
a /= base;
if (a == 0) break;
}
if (value_info.is_signed) {
if (value < 0) {
// Negative integer
index -= 1;
buf[index] = '-';
} else if (options.width == null or options.width.? == 0) {
// Positive integer, omit the plus sign
} else {
// Positive integer
index -= 1;
buf[index] = '+';
}
}
return formatBuf(buf[index..], options, writer);
}
pub fn formatIntBuf(out_buf: []u8, value: anytype, base: u8, uppercase: bool, options: FormatOptions) usize {
var fbs = std.io.fixedBufferStream(out_buf);
formatInt(value, base, uppercase, options, fbs.writer()) catch unreachable;
return fbs.pos;
}
pub const ParseIntError = error{
/// The result cannot fit in the type specified
Overflow,
/// The input was empty or had a byte that was not a digit
InvalidCharacter,
};
pub fn parseInt(comptime T: type, buf: []const u8, radix: u8) ParseIntError!T {
if (buf.len == 0) return error.InvalidCharacter;
if (buf[0] == '+') return parseWithSign(T, buf[1..], radix, .Pos);
if (buf[0] == '-') return parseWithSign(T, buf[1..], radix, .Neg);
return parseWithSign(T, buf, radix, .Pos);
}
test "parseInt" {
std.testing.expect((try parseInt(i32, "-10", 10)) == -10);
std.testing.expect((try parseInt(i32, "+10", 10)) == 10);
std.testing.expect((try parseInt(u32, "+10", 10)) == 10);
std.testing.expectError(error.Overflow, parseInt(u32, "-10", 10));
std.testing.expectError(error.InvalidCharacter, parseInt(u32, " 10", 10));
std.testing.expectError(error.InvalidCharacter, parseInt(u32, "10 ", 10));
std.testing.expect((try parseInt(u8, "255", 10)) == 255);
std.testing.expectError(error.Overflow, parseInt(u8, "256", 10));
// +0 and -0 should work for unsigned
std.testing.expect((try parseInt(u8, "-0", 10)) == 0);
std.testing.expect((try parseInt(u8, "+0", 10)) == 0);
// ensure minInt is parsed correctly
std.testing.expect((try parseInt(i8, "-128", 10)) == math.minInt(i8));
std.testing.expect((try parseInt(i43, "-4398046511104", 10)) == math.minInt(i43));
// empty string or bare +- is invalid
std.testing.expectError(error.InvalidCharacter, parseInt(u32, "", 10));
std.testing.expectError(error.InvalidCharacter, parseInt(i32, "", 10));
std.testing.expectError(error.InvalidCharacter, parseInt(u32, "+", 10));
std.testing.expectError(error.InvalidCharacter, parseInt(i32, "+", 10));
std.testing.expectError(error.InvalidCharacter, parseInt(u32, "-", 10));
std.testing.expectError(error.InvalidCharacter, parseInt(i32, "-", 10));
}
fn parseWithSign(
comptime T: type,
buf: []const u8,
radix: u8,
comptime sign: enum { Pos, Neg },
) ParseIntError!T {
if (buf.len == 0) return error.InvalidCharacter;
const add = switch (sign) {
.Pos => math.add,
.Neg => math.sub,
};
var x: T = 0;
for (buf) |c| {
const digit = try charToDigit(c, radix);
if (x != 0) x = try math.mul(T, x, try math.cast(T, radix));
x = try add(T, x, try math.cast(T, digit));
}
return x;
}
pub fn parseUnsigned(comptime T: type, buf: []const u8, radix: u8) ParseIntError!T {
return parseWithSign(T, buf, radix, .Pos);
}
test "parseUnsigned" {
std.testing.expect((try parseUnsigned(u16, "050124", 10)) == 50124);
std.testing.expect((try parseUnsigned(u16, "65535", 10)) == 65535);
std.testing.expectError(error.Overflow, parseUnsigned(u16, "65536", 10));
std.testing.expect((try parseUnsigned(u64, "0ffffffffffffffff", 16)) == 0xffffffffffffffff);
std.testing.expectError(error.Overflow, parseUnsigned(u64, "10000000000000000", 16));
std.testing.expect((try parseUnsigned(u32, "DeadBeef", 16)) == 0xDEADBEEF);
std.testing.expect((try parseUnsigned(u7, "1", 10)) == 1);
std.testing.expect((try parseUnsigned(u7, "1000", 2)) == 8);
std.testing.expectError(error.InvalidCharacter, parseUnsigned(u32, "f", 10));
std.testing.expectError(error.InvalidCharacter, parseUnsigned(u8, "109", 8));
std.testing.expect((try parseUnsigned(u32, "NUMBER", 36)) == 1442151747);
// these numbers should fit even though the radix itself doesn't fit in the destination type
std.testing.expect((try parseUnsigned(u1, "0", 10)) == 0);
std.testing.expect((try parseUnsigned(u1, "1", 10)) == 1);
std.testing.expectError(error.Overflow, parseUnsigned(u1, "2", 10));
std.testing.expect((try parseUnsigned(u1, "001", 16)) == 1);
std.testing.expect((try parseUnsigned(u2, "3", 16)) == 3);
std.testing.expectError(error.Overflow, parseUnsigned(u2, "4", 16));
// parseUnsigned does not expect a sign
std.testing.expectError(error.InvalidCharacter, parseUnsigned(u8, "+0", 10));
std.testing.expectError(error.InvalidCharacter, parseUnsigned(u8, "-0", 10));
// test empty string error
std.testing.expectError(error.InvalidCharacter, parseUnsigned(u8, "", 10));
}
pub const parseFloat = @import("fmt/parse_float.zig").parseFloat;
test "parseFloat" {
_ = @import("fmt/parse_float.zig");
}
pub fn charToDigit(c: u8, radix: u8) (error{InvalidCharacter}!u8) {
const value = switch (c) {
'0'...'9' => c - '0',
'A'...'Z' => c - 'A' + 10,
'a'...'z' => c - 'a' + 10,
else => return error.InvalidCharacter,
};
if (value >= radix) return error.InvalidCharacter;
return value;
}
pub fn digitToChar(digit: u8, uppercase: bool) u8 {
return switch (digit) {
0...9 => digit + '0',
10...35 => digit + ((if (uppercase) @as(u8, 'A') else @as(u8, 'a')) - 10),
else => unreachable,
};
}
pub const BufPrintError = error{
/// As much as possible was written to the buffer, but it was too small to fit all the printed bytes.
NoSpaceLeft,
};
pub fn bufPrint(buf: []u8, comptime fmt: []const u8, args: anytype) BufPrintError![]u8 {
var fbs = std.io.fixedBufferStream(buf);
try format(fbs.writer(), fmt, args);
return fbs.getWritten();
}
// Count the characters needed for format. Useful for preallocating memory
pub fn count(comptime fmt: []const u8, args: anytype) u64 {
var counting_writer = std.io.countingWriter(std.io.null_writer);
format(counting_writer.writer(), fmt, args) catch |err| switch (err) {};
return counting_writer.bytes_written;
}
pub const AllocPrintError = error{OutOfMemory};
pub fn allocPrint(allocator: *mem.Allocator, comptime fmt: []const u8, args: anytype) AllocPrintError![]u8 {
const size = math.cast(usize, count(fmt, args)) catch |err| switch (err) {
// Output too long. Can't possibly allocate enough memory to display it.
error.Overflow => return error.OutOfMemory,
};
const buf = try allocator.alloc(u8, size);
return bufPrint(buf, fmt, args) catch |err| switch (err) {
error.NoSpaceLeft => unreachable, // we just counted the size above
};
}
pub fn allocPrint0(allocator: *mem.Allocator, comptime fmt: []const u8, args: anytype) AllocPrintError![:0]u8 {
const result = try allocPrint(allocator, fmt ++ "\x00", args);
return result[0 .. result.len - 1 :0];
}
test "bufPrintInt" {
var buffer: [100]u8 = undefined;
const buf = buffer[0..];
std.testing.expectEqualSlices(u8, "-1", bufPrintIntToSlice(buf, @as(i1, -1), 10, false, FormatOptions{}));
std.testing.expectEqualSlices(u8, "-101111000110000101001110", bufPrintIntToSlice(buf, @as(i32, -12345678), 2, false, FormatOptions{}));
std.testing.expectEqualSlices(u8, "-12345678", bufPrintIntToSlice(buf, @as(i32, -12345678), 10, false, FormatOptions{}));
std.testing.expectEqualSlices(u8, "-bc614e", bufPrintIntToSlice(buf, @as(i32, -12345678), 16, false, FormatOptions{}));
std.testing.expectEqualSlices(u8, "-BC614E", bufPrintIntToSlice(buf, @as(i32, -12345678), 16, true, FormatOptions{}));
std.testing.expectEqualSlices(u8, "12345678", bufPrintIntToSlice(buf, @as(u32, 12345678), 10, true, FormatOptions{}));
std.testing.expectEqualSlices(u8, " 666", bufPrintIntToSlice(buf, @as(u32, 666), 10, false, FormatOptions{ .width = 6 }));
std.testing.expectEqualSlices(u8, " 1234", bufPrintIntToSlice(buf, @as(u32, 0x1234), 16, false, FormatOptions{ .width = 6 }));
std.testing.expectEqualSlices(u8, "1234", bufPrintIntToSlice(buf, @as(u32, 0x1234), 16, false, FormatOptions{ .width = 1 }));
std.testing.expectEqualSlices(u8, "+42", bufPrintIntToSlice(buf, @as(i32, 42), 10, false, FormatOptions{ .width = 3 }));
std.testing.expectEqualSlices(u8, "-42", bufPrintIntToSlice(buf, @as(i32, -42), 10, false, FormatOptions{ .width = 3 }));
}
fn bufPrintIntToSlice(buf: []u8, value: anytype, base: u8, uppercase: bool, options: FormatOptions) []u8 {
return buf[0..formatIntBuf(buf, value, base, uppercase, options)];
}
test "parse u64 digit too big" {
_ = parseUnsigned(u64, "123a", 10) catch |err| {
if (err == error.InvalidCharacter) return;
unreachable;
};
unreachable;
}
test "parse unsigned comptime" {
comptime {
std.testing.expect((try parseUnsigned(usize, "2", 10)) == 2);
}
}
test "optional" {
{
const value: ?i32 = 1234;
try testFmt("optional: 1234\n", "optional: {}\n", .{value});
}
{
const value: ?i32 = null;
try testFmt("optional: null\n", "optional: {}\n", .{value});
}
{
const value = @intToPtr(?*i32, 0xf000d000);
try testFmt("optional: *i32@f000d000\n", "optional: {*}\n", .{value});
}
}
test "error" {
{
const value: anyerror!i32 = 1234;
try testFmt("error union: 1234\n", "error union: {}\n", .{value});
}
{
const value: anyerror!i32 = error.InvalidChar;
try testFmt("error union: error.InvalidChar\n", "error union: {}\n", .{value});
}
}
test "int.small" {
{
const value: u3 = 0b101;
try testFmt("u3: 5\n", "u3: {}\n", .{value});
}
}
test "int.specifier" {
{
const value: u8 = 'a';
try testFmt("u8: a\n", "u8: {c}\n", .{value});
}
{
const value: u8 = 0b1100;
try testFmt("u8: 0b1100\n", "u8: 0b{b}\n", .{value});
}
{
const value: u16 = 0o1234;
try testFmt("u16: 0o1234\n", "u16: 0o{o}\n", .{value});
}
}
test "int.padded" {
try testFmt("u8: ' 1'", "u8: '{:4}'", .{@as(u8, 1)});
try testFmt("u8: '1000'", "u8: '{:0<4}'", .{@as(u8, 1)});
try testFmt("u8: '0001'", "u8: '{:0>4}'", .{@as(u8, 1)});
try testFmt("u8: '0100'", "u8: '{:0^4}'", .{@as(u8, 1)});
try testFmt("i8: '-1 '", "i8: '{:<4}'", .{@as(i8, -1)});
try testFmt("i8: ' -1'", "i8: '{:>4}'", .{@as(i8, -1)});
try testFmt("i8: ' -1 '", "i8: '{:^4}'", .{@as(i8, -1)});
try testFmt("i16: '-1234'", "i16: '{:4}'", .{@as(i16, -1234)});
try testFmt("i16: '+1234'", "i16: '{:4}'", .{@as(i16, 1234)});
try testFmt("i16: '-12345'", "i16: '{:4}'", .{@as(i16, -12345)});
try testFmt("i16: '+12345'", "i16: '{:4}'", .{@as(i16, 12345)});
try testFmt("u16: '12345'", "u16: '{:4}'", .{@as(u16, 12345)});
}
test "buffer" {
{
var buf1: [32]u8 = undefined;
var fbs = std.io.fixedBufferStream(&buf1);
try formatType(1234, "", FormatOptions{}, fbs.writer(), default_max_depth);
std.testing.expect(mem.eql(u8, fbs.getWritten(), "1234"));
fbs.reset();
try formatType('a', "c", FormatOptions{}, fbs.writer(), default_max_depth);
std.testing.expect(mem.eql(u8, fbs.getWritten(), "a"));
fbs.reset();
try formatType(0b1100, "b", FormatOptions{}, fbs.writer(), default_max_depth);
std.testing.expect(mem.eql(u8, fbs.getWritten(), "1100"));
}
}
test "array" {
{
const value: [3]u8 = "abc".*;
try testFmt("array: abc\n", "array: {}\n", .{value});
try testFmt("array: abc\n", "array: {}\n", .{&value});
var buf: [100]u8 = undefined;
try testFmt(
try bufPrint(buf[0..], "array: [3]u8@{x}\n", .{@ptrToInt(&value)}),
"array: {*}\n",
.{&value},
);
}
}
test "slice" {
{
const value: []const u8 = "abc";
try testFmt("slice: abc\n", "slice: {}\n", .{value});
}
{
var runtime_zero: usize = 0;
const value = @intToPtr([*]align(1) const []const u8, 0xdeadbeef)[runtime_zero..runtime_zero];
try testFmt("slice: []const u8@deadbeef\n", "slice: {}\n", .{value});
}
try testFmt("buf: Test\n", "buf: {s:5}\n", .{"Test"});
try testFmt("buf: Test\n Other text", "buf: {s}\n Other text", .{"Test"});
}
test "escape non-printable" {
try testFmt("abc", "{e}", .{"abc"});
try testFmt("ab\\xffc", "{e}", .{"ab\xffc"});
try testFmt("ab\\xFFc", "{E}", .{"ab\xffc"});
}
test "pointer" {
{
const value = @intToPtr(*align(1) i32, 0xdeadbeef);
try testFmt("pointer: i32@deadbeef\n", "pointer: {}\n", .{value});
try testFmt("pointer: i32@deadbeef\n", "pointer: {*}\n", .{value});
}
{
const value = @intToPtr(fn () void, 0xdeadbeef);
try testFmt("pointer: fn() void@deadbeef\n", "pointer: {}\n", .{value});
}
{
const value = @intToPtr(fn () void, 0xdeadbeef);
try testFmt("pointer: fn() void@deadbeef\n", "pointer: {}\n", .{value});
}
}
test "cstr" {
try testFmt(
"cstr: Test C\n",
"cstr: {s}\n",
.{@ptrCast([*c]const u8, "Test C")},
);
try testFmt(
"cstr: Test C\n",
"cstr: {s:10}\n",
.{@ptrCast([*c]const u8, "Test C")},
);
}
test "filesize" {
try testFmt("file size: 63MiB\n", "file size: {Bi}\n", .{@as(usize, 63 * 1024 * 1024)});
try testFmt("file size: 66.06MB\n", "file size: {B:.2}\n", .{@as(usize, 63 * 1024 * 1024)});
}
test "struct" {
{
const Struct = struct {
field: u8,
};
const value = Struct{ .field = 42 };
try testFmt("struct: Struct{ .field = 42 }\n", "struct: {}\n", .{value});
try testFmt("struct: Struct{ .field = 42 }\n", "struct: {}\n", .{&value});
}
{
const Struct = struct {
a: u0,
b: u1,
};
const value = Struct{ .a = 0, .b = 1 };
try testFmt("struct: Struct{ .a = 0, .b = 1 }\n", "struct: {}\n", .{value});
}
}
test "enum" {
const Enum = enum {
One,
Two,
};
const value = Enum.Two;
try testFmt("enum: Enum.Two\n", "enum: {}\n", .{value});
try testFmt("enum: Enum.Two\n", "enum: {}\n", .{&value});
try testFmt("enum: Enum.One\n", "enum: {x}\n", .{Enum.One});
try testFmt("enum: Enum.Two\n", "enum: {X}\n", .{Enum.Two});
// test very large enum to verify ct branch quota is large enough
try testFmt("enum: Win32Error.INVALID_FUNCTION\n", "enum: {}\n", .{std.os.windows.Win32Error.INVALID_FUNCTION});
}
test "non-exhaustive enum" {
const Enum = enum(u16) {
One = 0x000f,
Two = 0xbeef,
_,
};
try testFmt("enum: Enum.One\n", "enum: {}\n", .{Enum.One});
try testFmt("enum: Enum.Two\n", "enum: {}\n", .{Enum.Two});
try testFmt("enum: Enum(4660)\n", "enum: {}\n", .{@intToEnum(Enum, 0x1234)});
try testFmt("enum: Enum.One\n", "enum: {x}\n", .{Enum.One});
try testFmt("enum: Enum.Two\n", "enum: {x}\n", .{Enum.Two});
try testFmt("enum: Enum.Two\n", "enum: {X}\n", .{Enum.Two});
try testFmt("enum: Enum(1234)\n", "enum: {x}\n", .{@intToEnum(Enum, 0x1234)});
}
test "float.scientific" {
try testFmt("f32: 1.34000003e+00", "f32: {e}", .{@as(f32, 1.34)});
try testFmt("f32: 1.23400001e+01", "f32: {e}", .{@as(f32, 12.34)});
try testFmt("f64: -1.234e+11", "f64: {e}", .{@as(f64, -12.34e10)});
try testFmt("f64: 9.99996e-40", "f64: {e}", .{@as(f64, 9.999960e-40)});
}
test "float.scientific.precision" {
try testFmt("f64: 1.40971e-42", "f64: {e:.5}", .{@as(f64, 1.409706e-42)});
try testFmt("f64: 1.00000e-09", "f64: {e:.5}", .{@as(f64, @bitCast(f32, @as(u32, 814313563)))});
try testFmt("f64: 7.81250e-03", "f64: {e:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1006632960)))});
// libc rounds 1.000005e+05 to 1.00000e+05 but zig does 1.00001e+05.
// In fact, libc doesn't round a lot of 5 cases up when one past the precision point.
try testFmt("f64: 1.00001e+05", "f64: {e:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1203982400)))});
}
test "float.special" {
try testFmt("f64: nan", "f64: {}", .{math.nan_f64});
// negative nan is not defined by IEE 754,
// and ARM thus normalizes it to positive nan
if (builtin.arch != builtin.Arch.arm) {
try testFmt("f64: -nan", "f64: {}", .{-math.nan_f64});
}
try testFmt("f64: inf", "f64: {}", .{math.inf_f64});
try testFmt("f64: -inf", "f64: {}", .{-math.inf_f64});
}
test "float.decimal" {
try testFmt("f64: 152314000000000000000000000000", "f64: {d}", .{@as(f64, 1.52314e+29)});
try testFmt("f32: 0", "f32: {d}", .{@as(f32, 0.0)});
try testFmt("f32: 1.1", "f32: {d:.1}", .{@as(f32, 1.1234)});
try testFmt("f32: 1234.57", "f32: {d:.2}", .{@as(f32, 1234.567)});
// -11.1234 is converted to f64 -11.12339... internally (errol3() function takes f64).
// -11.12339... is rounded back up to -11.1234
try testFmt("f32: -11.1234", "f32: {d:.4}", .{@as(f32, -11.1234)});
try testFmt("f32: 91.12345", "f32: {d:.5}", .{@as(f32, 91.12345)});
try testFmt("f64: 91.1234567890", "f64: {d:.10}", .{@as(f64, 91.12345678901235)});
try testFmt("f64: 0.00000", "f64: {d:.5}", .{@as(f64, 0.0)});
try testFmt("f64: 6", "f64: {d:.0}", .{@as(f64, 5.700)});
try testFmt("f64: 10.0", "f64: {d:.1}", .{@as(f64, 9.999)});
try testFmt("f64: 1.000", "f64: {d:.3}", .{@as(f64, 1.0)});
try testFmt("f64: 0.00030000", "f64: {d:.8}", .{@as(f64, 0.0003)});
try testFmt("f64: 0.00000", "f64: {d:.5}", .{@as(f64, 1.40130e-45)});
try testFmt("f64: 0.00000", "f64: {d:.5}", .{@as(f64, 9.999960e-40)});
}
test "float.libc.sanity" {
try testFmt("f64: 0.00001", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 916964781)))});
try testFmt("f64: 0.00001", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 925353389)))});
try testFmt("f64: 0.10000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1036831278)))});
try testFmt("f64: 1.00000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1065353133)))});
try testFmt("f64: 10.00000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1092616192)))});
// libc differences
//
// This is 0.015625 exactly according to gdb. We thus round down,
// however glibc rounds up for some reason. This occurs for all
// floats of the form x.yyyy25 on a precision point.
try testFmt("f64: 0.01563", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1015021568)))});
// errol3 rounds to ... 630 but libc rounds to ...632. Grisu3
// also rounds to 630 so I'm inclined to believe libc is not
// optimal here.
try testFmt("f64: 18014400656965630.00000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1518338049)))});
}
test "custom" {
const Vec2 = struct {
const SelfType = @This();
x: f32,
y: f32,
pub fn format(
self: SelfType,
comptime fmt: []const u8,
options: FormatOptions,
writer: anytype,
) !void {
if (fmt.len == 0 or comptime std.mem.eql(u8, fmt, "p")) {
return std.fmt.format(writer, "({d:.3},{d:.3})", .{ self.x, self.y });
} else if (comptime std.mem.eql(u8, fmt, "d")) {
return std.fmt.format(writer, "{d:.3}x{d:.3}", .{ self.x, self.y });
} else {
@compileError("Unknown format character: '" ++ fmt ++ "'");
}
}
};
var buf1: [32]u8 = undefined;
var value = Vec2{
.x = 10.2,
.y = 2.22,
};
try testFmt("point: (10.200,2.220)\n", "point: {}\n", .{&value});
try testFmt("dim: 10.200x2.220\n", "dim: {d}\n", .{&value});
// same thing but not passing a pointer
try testFmt("point: (10.200,2.220)\n", "point: {}\n", .{value});
try testFmt("dim: 10.200x2.220\n", "dim: {d}\n", .{value});
}
test "struct" {
const S = struct {
a: u32,
b: anyerror,
};
const inst = S{
.a = 456,
.b = error.Unused,
};
try testFmt("S{ .a = 456, .b = error.Unused }", "{}", .{inst});
}
test "union" {
const TU = union(enum) {
float: f32,
int: u32,
};
const UU = union {
float: f32,
int: u32,
};
const EU = extern union {
float: f32,
int: u32,
};
const tu_inst = TU{ .int = 123 };
const uu_inst = UU{ .int = 456 };
const eu_inst = EU{ .float = 321.123 };
try testFmt("TU{ .int = 123 }", "{}", .{tu_inst});
var buf: [100]u8 = undefined;
const uu_result = try bufPrint(buf[0..], "{}", .{uu_inst});
std.testing.expect(mem.eql(u8, uu_result[0..3], "UU@"));
const eu_result = try bufPrint(buf[0..], "{}", .{eu_inst});
std.testing.expect(mem.eql(u8, uu_result[0..3], "EU@"));
}
test "enum" {
const E = enum {
One,
Two,
Three,
};
const inst = E.Two;
try testFmt("E.Two", "{}", .{inst});
}
test "struct.self-referential" {
const S = struct {
const SelfType = @This();
a: ?*SelfType,
};
var inst = S{
.a = null,
};
inst.a = &inst;
try testFmt("S{ .a = S{ .a = S{ .a = S{ ... } } } }", "{}", .{inst});
}
test "struct.zero-size" {
const A = struct {
fn foo() void {}
};
const B = struct {
a: A,
c: i32,
};
const a = A{};
const b = B{ .a = a, .c = 0 };
try testFmt("B{ .a = A{ }, .c = 0 }", "{}", .{b});
}
test "bytes.hex" {
const some_bytes = "\xCA\xFE\xBA\xBE";
try testFmt("lowercase: cafebabe\n", "lowercase: {x}\n", .{some_bytes});
try testFmt("uppercase: CAFEBABE\n", "uppercase: {X}\n", .{some_bytes});
//Test Slices
try testFmt("uppercase: CAFE\n", "uppercase: {X}\n", .{some_bytes[0..2]});
try testFmt("lowercase: babe\n", "lowercase: {x}\n", .{some_bytes[2..]});
const bytes_with_zeros = "\x00\x0E\xBA\xBE";
try testFmt("lowercase: 000ebabe\n", "lowercase: {x}\n", .{bytes_with_zeros});
}
fn testFmt(expected: []const u8, comptime template: []const u8, args: anytype) !void {
var buf: [100]u8 = undefined;
const result = try bufPrint(buf[0..], template, args);
if (mem.eql(u8, result, expected)) return;
std.debug.warn("\n====== expected this output: =========\n", .{});
std.debug.warn("{}", .{expected});
std.debug.warn("\n======== instead found this: =========\n", .{});
std.debug.warn("{}", .{result});
std.debug.warn("\n======================================\n", .{});
return error.TestFailed;
}
pub fn trim(buf: []const u8) []const u8 {
var start: usize = 0;
while (start < buf.len and isWhiteSpace(buf[start])) : (start += 1) {}
var end: usize = buf.len;
while (true) {
if (end > start) {
const new_end = end - 1;
if (isWhiteSpace(buf[new_end])) {
end = new_end;
continue;
}
}
break;
}
return buf[start..end];
}
test "trim" {
std.testing.expect(mem.eql(u8, "abc", trim("\n abc \t")));
std.testing.expect(mem.eql(u8, "", trim(" ")));
std.testing.expect(mem.eql(u8, "", trim("")));
std.testing.expect(mem.eql(u8, "abc", trim(" abc")));
std.testing.expect(mem.eql(u8, "abc", trim("abc ")));
}
pub fn isWhiteSpace(byte: u8) bool {
return switch (byte) {
' ', '\t', '\n', '\r' => true,
else => false,
};
}
pub fn hexToBytes(out: []u8, input: []const u8) !void {
if (out.len * 2 < input.len)
return error.InvalidLength;
var in_i: usize = 0;
while (in_i != input.len) : (in_i += 2) {
const hi = try charToDigit(input[in_i], 16);
const lo = try charToDigit(input[in_i + 1], 16);
out[in_i / 2] = (hi << 4) | lo;
}
}
test "hexToBytes" {
const test_hex_str = "909A312BB12ED1F819B3521AC4C1E896F2160507FFC1C8381E3B07BB16BD1706";
var pb: [32]u8 = undefined;
try hexToBytes(pb[0..], test_hex_str);
try testFmt(test_hex_str, "{X}", .{pb});
}
test "formatIntValue with comptime_int" {
const value: comptime_int = 123456789123456789;
var buf: [20]u8 = undefined;
var fbs = std.io.fixedBufferStream(&buf);
try formatIntValue(value, "", FormatOptions{}, fbs.writer());
std.testing.expect(mem.eql(u8, fbs.getWritten(), "123456789123456789"));
}
test "formatFloatValue with comptime_float" {
const value: comptime_float = 1.0;
var buf: [20]u8 = undefined;
var fbs = std.io.fixedBufferStream(&buf);
try formatFloatValue(value, "", FormatOptions{}, fbs.writer());
std.testing.expect(mem.eql(u8, fbs.getWritten(), "1.0e+00"));
try testFmt("1.0e+00", "{}", .{value});
try testFmt("1.0e+00", "{}", .{1.0});
}
test "formatType max_depth" {
const Vec2 = struct {
const SelfType = @This();
x: f32,
y: f32,
pub fn format(
self: SelfType,
comptime fmt: []const u8,
options: FormatOptions,
writer: anytype,
) !void {
if (fmt.len == 0) {
return std.fmt.format(writer, "({d:.3},{d:.3})", .{ self.x, self.y });
} else {
@compileError("Unknown format string: '" ++ fmt ++ "'");
}
}
};
const E = enum {
One,
Two,
Three,
};
const TU = union(enum) {
const SelfType = @This();
float: f32,
int: u32,
ptr: ?*SelfType,
};
const S = struct {
const SelfType = @This();
a: ?*SelfType,
tu: TU,
e: E,
vec: Vec2,
};
var inst = S{
.a = null,
.tu = TU{ .ptr = null },
.e = E.Two,
.vec = Vec2{ .x = 10.2, .y = 2.22 },
};
inst.a = &inst;
inst.tu.ptr = &inst.tu;
var buf: [1000]u8 = undefined;
var fbs = std.io.fixedBufferStream(&buf);
try formatType(inst, "", FormatOptions{}, fbs.writer(), 0);
std.testing.expect(mem.eql(u8, fbs.getWritten(), "S{ ... }"));
fbs.reset();
try formatType(inst, "", FormatOptions{}, fbs.writer(), 1);
std.testing.expect(mem.eql(u8, fbs.getWritten(), "S{ .a = S{ ... }, .tu = TU{ ... }, .e = E.Two, .vec = (10.200,2.220) }"));
fbs.reset();
try formatType(inst, "", FormatOptions{}, fbs.writer(), 2);
std.testing.expect(mem.eql(u8, fbs.getWritten(), "S{ .a = S{ .a = S{ ... }, .tu = TU{ ... }, .e = E.Two, .vec = (10.200,2.220) }, .tu = TU{ .ptr = TU{ ... } }, .e = E.Two, .vec = (10.200,2.220) }"));
fbs.reset();
try formatType(inst, "", FormatOptions{}, fbs.writer(), 3);
std.testing.expect(mem.eql(u8, fbs.getWritten(), "S{ .a = S{ .a = S{ .a = S{ ... }, .tu = TU{ ... }, .e = E.Two, .vec = (10.200,2.220) }, .tu = TU{ .ptr = TU{ ... } }, .e = E.Two, .vec = (10.200,2.220) }, .tu = TU{ .ptr = TU{ .ptr = TU{ ... } } }, .e = E.Two, .vec = (10.200,2.220) }"));
}
test "positional" {
try testFmt("2 1 0", "{2} {1} {0}", .{ @as(usize, 0), @as(usize, 1), @as(usize, 2) });
try testFmt("2 1 0", "{2} {1} {}", .{ @as(usize, 0), @as(usize, 1), @as(usize, 2) });
try testFmt("0 0", "{0} {0}", .{@as(usize, 0)});
try testFmt("0 1", "{} {1}", .{ @as(usize, 0), @as(usize, 1) });
try testFmt("1 0 0 1", "{1} {} {0} {}", .{ @as(usize, 0), @as(usize, 1) });
}
test "positional with specifier" {
try testFmt("10.0", "{0d:.1}", .{@as(f64, 9.999)});
}
test "positional/alignment/width/precision" {
try testFmt("10.0", "{0d: >3.1}", .{@as(f64, 9.999)});
}
test "vector" {
if (builtin.arch == .mipsel or builtin.arch == .mips) {
// https://github.com/ziglang/zig/issues/3317
return error.SkipZigTest;
}
if (builtin.arch == .riscv64) {
// https://github.com/ziglang/zig/issues/4486
return error.SkipZigTest;
}
if (builtin.arch == .wasm32) {
// https://github.com/ziglang/zig/issues/5339
return error.SkipZigTest;
}
const vbool: std.meta.Vector(4, bool) = [_]bool{ true, false, true, false };
const vi64: std.meta.Vector(4, i64) = [_]i64{ -2, -1, 0, 1 };
const vu64: std.meta.Vector(4, u64) = [_]u64{ 1000, 2000, 3000, 4000 };
try testFmt("{ true, false, true, false }", "{}", .{vbool});
try testFmt("{ -2, -1, 0, 1 }", "{}", .{vi64});
try testFmt("{ -2, -1, +0, +1 }", "{d:5}", .{vi64});
try testFmt("{ 1000, 2000, 3000, 4000 }", "{}", .{vu64});
try testFmt("{ 3e8, 7d0, bb8, fa0 }", "{x}", .{vu64});
try testFmt("{ 1kB, 2kB, 3kB, 4kB }", "{B}", .{vu64});
try testFmt("{ 1000B, 1.953125KiB, 2.9296875KiB, 3.90625KiB }", "{Bi}", .{vu64});
}
test "enum-literal" {
try testFmt(".hello_world", "{}", .{.hello_world});
}
test "padding" {
try testFmt("Simple", "{}", .{"Simple"});
try testFmt(" true", "{:10}", .{true});
try testFmt(" true", "{:>10}", .{true});
try testFmt("======true", "{:=>10}", .{true});
try testFmt("true======", "{:=<10}", .{true});
try testFmt(" true ", "{:^10}", .{true});
try testFmt("===true===", "{:=^10}", .{true});
try testFmt(" Minimum width", "{:18} width", .{"Minimum"});
try testFmt("==================Filled", "{:=>24}", .{"Filled"});
try testFmt(" Centered ", "{:^24}", .{"Centered"});
try testFmt("-", "{:-^1}", .{""});
}
test "decimal float padding" {
var number: f32 = 3.1415;
try testFmt("left-pad: **3.141\n", "left-pad: {d:*>7.3}\n", .{number});
try testFmt("center-pad: *3.141*\n", "center-pad: {d:*^7.3}\n", .{number});
try testFmt("right-pad: 3.141**\n", "right-pad: {d:*<7.3}\n", .{number});
}
test "sci float padding" {
var number: f32 = 3.1415;
try testFmt("left-pad: **3.141e+00\n", "left-pad: {e:*>11.3}\n", .{number});
try testFmt("center-pad: *3.141e+00*\n", "center-pad: {e:*^11.3}\n", .{number});
try testFmt("right-pad: 3.141e+00**\n", "right-pad: {e:*<11.3}\n", .{number});
}