Alexandros Naskos e9b137f23a Completed basic PE linker for stage2
Added std.coff.MachineType
Added image characteristic and section flag valued to std.coff
Added std.Target.Cpu.Arch.toCoffMachine
Fixed stage2 --watch flag on windows
2020-09-04 05:15:03 +03:00

793 lines
32 KiB
Zig

const Coff = @This();
const std = @import("std");
const log = std.log.scoped(.link);
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const fs = std.fs;
const trace = @import("../tracy.zig").trace;
const Module = @import("../Module.zig");
const codegen = @import("../codegen.zig");
const link = @import("../link.zig");
const allocation_padding = 4 / 3;
const minimum_text_block_size = 64 * allocation_padding;
const section_alignment = 4096;
const file_alignment = 512;
const image_base = 0x400_000;
const section_table_size = 2 * 40;
comptime {
std.debug.assert(std.mem.isAligned(image_base, section_alignment));
}
pub const base_tag: link.File.Tag = .coff;
const msdos_stub = @embedFile("msdos-stub.bin");
base: link.File,
ptr_width: enum { p32, p64 },
error_flags: link.File.ErrorFlags = .{},
text_block_free_list: std.ArrayListUnmanaged(*TextBlock) = .{},
last_text_block: ?*TextBlock = null,
/// Section table file pointer.
section_table_offset: u32 = 0,
/// Section data file pointer.
section_data_offset: u32 = 0,
/// Optiona header file pointer.
optional_header_offset: u32 = 0,
/// Absolute virtual address of the offset table when the executable is loaded in memory.
offset_table_virtual_address: u32 = 0,
/// Current size of the offset table on disk, must be a multiple of `file_alignment`
offset_table_size: u32 = 0,
/// Contains absolute virtual addresses
offset_table: std.ArrayListUnmanaged(u64) = .{},
/// Free list of offset table indices
offset_table_free_list: std.ArrayListUnmanaged(u32) = .{},
/// Virtual address of the entry point procedure relative to `image_base`
entry_addr: ?u32 = null,
/// Absolute virtual address of the text section when the executable is loaded in memory.
text_section_virtual_address: u32 = 0,
/// Current size of the `.text` section on disk, must be a multiple of `file_alignment`
text_section_size: u32 = 0,
offset_table_size_dirty: bool = false,
text_section_size_dirty: bool = false,
/// This flag is set when the virtual size of the whole image file when loaded in memory has changed
/// and needs to be updated in the optional header.
size_of_image_dirty: bool = false,
pub const TextBlock = struct {
/// Offset of the code relative to the start of the text section
text_offset: u32,
/// Used size of the text block
size: u32,
/// This field is undefined for symbols with size = 0.
offset_table_index: u32,
/// Points to the previous and next neighbors, based on the `text_offset`.
/// This can be used to find, for example, the capacity of this `TextBlock`.
prev: ?*TextBlock,
next: ?*TextBlock,
pub const empty = TextBlock{
.text_offset = 0,
.size = 0,
.offset_table_index = undefined,
.prev = null,
.next = null,
};
/// Returns how much room there is to grow in virtual address space.
fn capacity(self: TextBlock) u64 {
if (self.next) |next| {
return next.text_offset - self.text_offset;
}
// This is the last block, the capacity is only limited by the address space.
return std.math.maxInt(u32) - self.text_offset;
}
fn freeListEligible(self: TextBlock) bool {
// No need to keep a free list node for the last block.
const next = self.next orelse return false;
const cap = next.text_offset - self.text_offset;
const ideal_cap = self.size * allocation_padding;
if (cap <= ideal_cap) return false;
const surplus = cap - ideal_cap;
return surplus >= minimum_text_block_size;
}
/// Absolute virtual address of the text block when the file is loaded in memory.
fn getVAddr(self: TextBlock, coff: Coff) u32 {
return coff.text_section_virtual_address + self.text_offset;
}
};
pub const SrcFn = void;
pub fn openPath(allocator: *Allocator, dir: fs.Dir, sub_path: []const u8, options: link.Options) !*link.File {
assert(options.object_format == .coff);
const file = try dir.createFile(sub_path, .{ .truncate = false, .read = true, .mode = link.determineMode(options) });
errdefer file.close();
var coff_file = try allocator.create(Coff);
errdefer allocator.destroy(coff_file);
coff_file.* = openFile(allocator, file, options) catch |err| switch (err) {
error.IncrFailed => try createFile(allocator, file, options),
else => |e| return e,
};
return &coff_file.base;
}
/// Returns error.IncrFailed if incremental update could not be performed.
fn openFile(allocator: *Allocator, file: fs.File, options: link.Options) !Coff {
switch (options.output_mode) {
.Exe => {},
.Obj => return error.IncrFailed,
.Lib => return error.IncrFailed,
}
var self: Coff = .{
.base = .{
.file = file,
.tag = .coff,
.options = options,
.allocator = allocator,
},
.ptr_width = switch (options.target.cpu.arch.ptrBitWidth()) {
32 => .p32,
64 => .p64,
else => return error.UnsupportedELFArchitecture,
},
};
errdefer self.deinit();
// TODO implement reading the PE/COFF file
return error.IncrFailed;
}
/// Truncates the existing file contents and overwrites the contents.
/// Returns an error if `file` is not already open with +read +write +seek abilities.
fn createFile(allocator: *Allocator, file: fs.File, options: link.Options) !Coff {
// TODO Write object specific relocations, COFF symbol table, then enable object file output.
switch (options.output_mode) {
.Exe => {},
.Obj => return error.TODOImplementWritingObjFiles,
.Lib => return error.TODOImplementWritingLibFiles,
}
var self: Coff = .{
.base = .{
.tag = .coff,
.options = options,
.allocator = allocator,
.file = file,
},
.ptr_width = switch (options.target.cpu.arch.ptrBitWidth()) {
32 => .p32,
64 => .p64,
else => return error.UnsupportedCOFFArchitecture,
},
};
errdefer self.deinit();
var coff_file_header_offset: u32 = 0;
if (options.output_mode == .Exe) {
// Write the MS-DOS stub and the PE signature
try self.base.file.?.pwriteAll(msdos_stub ++ "PE\x00\x00", 0);
coff_file_header_offset = msdos_stub.len + 4;
}
// COFF file header
const data_directory_count = 0;
var hdr_data: [112 + data_directory_count * 8 + section_table_size]u8 = undefined;
var index: usize = 0;
const machine = self.base.options.target.cpu.arch.toCoffMachine();
if (machine == .Unknown) {
return error.UnsupportedCOFFArchitecture;
}
std.mem.writeIntLittle(u16, hdr_data[0..2], @enumToInt(machine));
index += 2;
// Number of sections (we only use .got, .text)
std.mem.writeIntLittle(u16, hdr_data[index..][0..2], 2);
index += 2;
// TimeDateStamp (u32), PointerToSymbolTable (u32), NumberOfSymbols (u32)
std.mem.set(u8, hdr_data[index..][0..12], 0);
index += 12;
const optional_header_size = switch (options.output_mode) {
.Exe => data_directory_count * 8 + switch (self.ptr_width) {
.p32 => @as(u16, 96),
.p64 => 112,
},
else => 0,
};
const section_table_offset = coff_file_header_offset + 20 + optional_header_size;
const default_offset_table_size = file_alignment;
const default_size_of_code = 0;
self.section_data_offset = std.mem.alignForwardGeneric(u32, self.section_table_offset + section_table_size, file_alignment);
const section_data_relative_virtual_address = std.mem.alignForwardGeneric(u32, self.section_table_offset + section_table_size, section_alignment);
self.offset_table_virtual_address = image_base + section_data_relative_virtual_address;
self.offset_table_size = default_offset_table_size;
self.section_table_offset = section_table_offset;
self.text_section_virtual_address = image_base + section_data_relative_virtual_address + section_alignment;
self.text_section_size = default_size_of_code;
// Size of file when loaded in memory
const size_of_image = std.mem.alignForwardGeneric(u32, self.text_section_virtual_address - image_base + default_size_of_code, section_alignment);
std.mem.writeIntLittle(u16, hdr_data[index..][0..2], optional_header_size);
index += 2;
// Characteristics
var characteristics: u16 = std.coff.IMAGE_FILE_DEBUG_STRIPPED | std.coff.IMAGE_FILE_RELOCS_STRIPPED; // TODO Remove debug info stripped flag when necessary
if (options.output_mode == .Exe) {
characteristics |= std.coff.IMAGE_FILE_EXECUTABLE_IMAGE;
}
switch (self.ptr_width) {
.p32 => characteristics |= std.coff.IMAGE_FILE_32BIT_MACHINE,
.p64 => characteristics |= std.coff.IMAGE_FILE_LARGE_ADDRESS_AWARE,
}
std.mem.writeIntLittle(u16, hdr_data[index..][0..2], characteristics);
index += 2;
assert(index == 20);
try self.base.file.?.pwriteAll(hdr_data[0..index], coff_file_header_offset);
if (options.output_mode == .Exe) {
self.optional_header_offset = coff_file_header_offset + 20;
// Optional header
index = 0;
std.mem.writeIntLittle(u16, hdr_data[0..2], switch (self.ptr_width) {
.p32 => @as(u16, 0x10b),
.p64 => 0x20b,
});
index += 2;
// Linker version (u8 + u8)
std.mem.set(u8, hdr_data[index..][0..2], 0);
index += 2;
// SizeOfCode (UNUSED, u32), SizeOfInitializedData (u32), SizeOfUninitializedData (u32), AddressOfEntryPoint (u32), BaseOfCode (UNUSED, u32)
std.mem.set(u8, hdr_data[index..][0..20], 0);
index += 20;
if (self.ptr_width == .p32) {
// Base of data relative to the image base (UNUSED)
std.mem.set(u8, hdr_data[index..][0..4], 0);
index += 4;
// Image base address
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], image_base);
index += 4;
} else {
// Image base address
std.mem.writeIntLittle(u64, hdr_data[index..][0..8], image_base);
index += 8;
}
// Section alignment
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], section_alignment);
index += 4;
// File alignment
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], file_alignment);
index += 4;
// Required OS version, 6.0 is vista
std.mem.writeIntLittle(u16, hdr_data[index..][0..2], 6);
index += 2;
std.mem.writeIntLittle(u16, hdr_data[index..][0..2], 0);
index += 2;
// Image version
std.mem.set(u8, hdr_data[index..][0..4], 0);
index += 4;
// Required subsystem version, same as OS version
std.mem.writeIntLittle(u16, hdr_data[index..][0..2], 6);
index += 2;
std.mem.writeIntLittle(u16, hdr_data[index..][0..2], 0);
index += 2;
// Reserved zeroes (u32)
std.mem.set(u8, hdr_data[index..][0..4], 0);
index += 4;
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], size_of_image);
index += 4;
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], self.section_data_offset);
index += 4;
// CheckSum (u32)
std.mem.set(u8, hdr_data[index..][0..4], 0);
index += 4;
// Subsystem, TODO: Let users specify the subsystem, always CUI for now
std.mem.writeIntLittle(u16, hdr_data[index..][0..2], 3);
index += 2;
// DLL characteristics
std.mem.writeIntLittle(u16, hdr_data[index..][0..2], 0x0);
index += 2;
switch (self.ptr_width) {
.p32 => {
// Size of stack reserve + commit
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], 0x1_000_000);
index += 4;
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], 0x1_000);
index += 4;
// Size of heap reserve + commit
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], 0x100_000);
index += 4;
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], 0x1_000);
index += 4;
},
.p64 => {
// Size of stack reserve + commit
std.mem.writeIntLittle(u64, hdr_data[index..][0..8], 0x1_000_000);
index += 8;
std.mem.writeIntLittle(u64, hdr_data[index..][0..8], 0x1_000);
index += 8;
// Size of heap reserve + commit
std.mem.writeIntLittle(u64, hdr_data[index..][0..8], 0x100_000);
index += 8;
std.mem.writeIntLittle(u64, hdr_data[index..][0..8], 0x1_000);
index += 8;
},
}
// Reserved zeroes
std.mem.set(u8, hdr_data[index..][0..4], 0);
index += 4;
// Number of data directories
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], data_directory_count);
index += 4;
// Initialize data directories to zero
std.mem.set(u8, hdr_data[index..][0 .. data_directory_count * 8], 0);
index += data_directory_count * 8;
assert(index == optional_header_size);
}
// Write section table.
// First, the .got section
hdr_data[index..][0..8].* = ".got\x00\x00\x00\x00".*;
index += 8;
if (options.output_mode == .Exe) {
// Virtual size (u32)
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], default_offset_table_size);
index += 4;
// Virtual address (u32)
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], self.offset_table_virtual_address - image_base);
index += 4;
} else {
std.mem.set(u8, hdr_data[index..][0..8], 0);
index += 8;
}
// Size of raw data (u32)
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], default_offset_table_size);
index += 4;
// File pointer to the start of the section
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], self.section_data_offset);
index += 4;
// Pointer to relocations (u32), PointerToLinenumbers (u32), NumberOfRelocations (u16), NumberOfLinenumbers (u16)
std.mem.set(u8, hdr_data[index..][0..12], 0);
index += 12;
// Section flags
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], std.coff.IMAGE_SCN_CNT_INITIALIZED_DATA | std.coff.IMAGE_SCN_MEM_READ);
index += 4;
// Then, the .text section
hdr_data[index..][0..8].* = ".text\x00\x00\x00".*;
index += 8;
if (options.output_mode == .Exe) {
// Virtual size (u32)
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], default_size_of_code);
index += 4;
// Virtual address (u32)
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], self.text_section_virtual_address - image_base);
index += 4;
} else {
std.mem.set(u8, hdr_data[index..][0..8], 0);
index += 8;
}
// Size of raw data (u32)
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], default_size_of_code);
index += 4;
// File pointer to the start of the section
std.mem.writeIntLittle(u32, hdr_data[index..][0..4], self.section_data_offset + default_offset_table_size);
index += 4;
// Pointer to relocations (u32), PointerToLinenumbers (u32), NumberOfRelocations (u16), NumberOfLinenumbers (u16)
std.mem.set(u8, hdr_data[index..][0..12], 0);
index += 12;
// Section flags
std.mem.writeIntLittle(
u32,
hdr_data[index..][0..4],
std.coff.IMAGE_SCN_CNT_CODE | std.coff.IMAGE_SCN_MEM_EXECUTE | std.coff.IMAGE_SCN_MEM_READ | std.coff.IMAGE_SCN_MEM_WRITE,
);
index += 4;
assert(index == optional_header_size + section_table_size);
try self.base.file.?.pwriteAll(hdr_data[0..index], self.optional_header_offset);
try self.base.file.?.setEndPos(self.section_data_offset + default_offset_table_size + default_size_of_code);
return self;
}
pub fn allocateDeclIndexes(self: *Coff, decl: *Module.Decl) !void {
try self.offset_table.ensureCapacity(self.base.allocator, self.offset_table.items.len + 1);
if (self.offset_table_free_list.popOrNull()) |i| {
decl.link.coff.offset_table_index = i;
} else {
decl.link.coff.offset_table_index = @intCast(u32, self.offset_table.items.len);
_ = self.offset_table.addOneAssumeCapacity();
const entry_size = self.base.options.target.cpu.arch.ptrBitWidth() / 8;
if (self.offset_table.items.len > self.offset_table_size / entry_size) {
self.offset_table_size_dirty = true;
}
}
self.offset_table.items[decl.link.coff.offset_table_index] = 0;
}
fn allocateTextBlock(self: *Coff, text_block: *TextBlock, new_block_size: u64, alignment: u64) !u64 {
const new_block_min_capacity = new_block_size * allocation_padding;
// We use these to indicate our intention to update metadata, placing the new block,
// and possibly removing a free list node.
// It would be simpler to do it inside the for loop below, but that would cause a
// problem if an error was returned later in the function. So this action
// is actually carried out at the end of the function, when errors are no longer possible.
var block_placement: ?*TextBlock = null;
var free_list_removal: ?usize = null;
const vaddr = blk: {
var i: usize = 0;
while (i < self.text_block_free_list.items.len) {
const free_block = self.text_block_free_list.items[i];
const next_block_text_offset = free_block.text_offset + free_block.capacity();
const new_block_text_offset = std.mem.alignForwardGeneric(u64, free_block.getVAddr(self.*) + free_block.size, alignment) - self.text_section_virtual_address;
if (new_block_text_offset < next_block_text_offset and next_block_text_offset - new_block_text_offset >= new_block_min_capacity) {
block_placement = free_block;
const remaining_capacity = next_block_text_offset - new_block_text_offset - new_block_min_capacity;
if (remaining_capacity < minimum_text_block_size) {
free_list_removal = i;
}
break :blk new_block_text_offset + self.text_section_virtual_address;
} else {
if (!free_block.freeListEligible()) {
_ = self.text_block_free_list.swapRemove(i);
} else {
i += 1;
}
continue;
}
} else if (self.last_text_block) |last| {
const new_block_vaddr = std.mem.alignForwardGeneric(u64, last.getVAddr(self.*) + last.size, alignment);
block_placement = last;
break :blk new_block_vaddr;
} else {
break :blk self.text_section_virtual_address;
}
};
const expand_text_section = block_placement == null or block_placement.?.next == null;
if (expand_text_section) {
const needed_size = @intCast(u32, std.mem.alignForwardGeneric(u64, vaddr + new_block_size - self.text_section_virtual_address, file_alignment));
if (needed_size > self.text_section_size) {
const current_text_section_virtual_size = std.mem.alignForwardGeneric(u32, self.text_section_size, section_alignment);
const new_text_section_virtual_size = std.mem.alignForwardGeneric(u32, needed_size, section_alignment);
if (current_text_section_virtual_size != new_text_section_virtual_size) {
self.size_of_image_dirty = true;
// Write new virtual size
var buf: [4]u8 = undefined;
std.mem.writeIntLittle(u32, &buf, new_text_section_virtual_size);
try self.base.file.?.pwriteAll(&buf, self.section_table_offset + 40 + 8);
}
self.text_section_size = needed_size;
self.text_section_size_dirty = true;
}
self.last_text_block = text_block;
}
text_block.text_offset = @intCast(u32, vaddr - self.text_section_virtual_address);
text_block.size = @intCast(u32, new_block_size);
// This function can also reallocate a text block.
// In this case we need to "unplug" it from its previous location before
// plugging it in to its new location.
if (text_block.prev) |prev| {
prev.next = text_block.next;
}
if (text_block.next) |next| {
next.prev = text_block.prev;
}
if (block_placement) |big_block| {
text_block.prev = big_block;
text_block.next = big_block.next;
big_block.next = text_block;
} else {
text_block.prev = null;
text_block.next = null;
}
if (free_list_removal) |i| {
_ = self.text_block_free_list.swapRemove(i);
}
return vaddr;
}
fn growTextBlock(self: *Coff, text_block: *TextBlock, new_block_size: u64, alignment: u64) !u64 {
const block_vaddr = text_block.getVAddr(self.*);
const align_ok = std.mem.alignBackwardGeneric(u64, block_vaddr, alignment) == block_vaddr;
const need_realloc = !align_ok or new_block_size > text_block.capacity();
if (!need_realloc) return @as(u64, block_vaddr);
return self.allocateTextBlock(text_block, new_block_size, alignment);
}
fn shrinkTextBlock(self: *Coff, text_block: *TextBlock, new_block_size: u64) void {
text_block.size = @intCast(u32, new_block_size);
if (text_block.capacity() - text_block.size >= minimum_text_block_size) {
self.text_block_free_list.append(self.base.allocator, text_block) catch {};
}
}
fn freeTextBlock(self: *Coff, text_block: *TextBlock) void {
var already_have_free_list_node = false;
{
var i: usize = 0;
// TODO turn text_block_free_list into a hash map
while (i < self.text_block_free_list.items.len) {
if (self.text_block_free_list.items[i] == text_block) {
_ = self.text_block_free_list.swapRemove(i);
continue;
}
if (self.text_block_free_list.items[i] == text_block.prev) {
already_have_free_list_node = true;
}
i += 1;
}
}
if (self.last_text_block == text_block) {
self.last_text_block = text_block.prev;
}
if (text_block.prev) |prev| {
prev.next = text_block.next;
if (!already_have_free_list_node and prev.freeListEligible()) {
// The free list is heuristics, it doesn't have to be perfect, so we can
// ignore the OOM here.
self.text_block_free_list.append(self.base.allocator, prev) catch {};
}
}
if (text_block.next) |next| {
next.prev = text_block.prev;
}
}
fn writeOffsetTableEntry(self: *Coff, index: usize) !void {
const entry_size = self.base.options.target.cpu.arch.ptrBitWidth() / 8;
const endian = self.base.options.target.cpu.arch.endian();
const offset_table_start = self.section_data_offset;
if (self.offset_table_size_dirty) {
const current_raw_size = self.offset_table_size;
const new_raw_size = self.offset_table_size * 2;
log.debug("growing offset table from raw size {} to {}\n", .{ current_raw_size, new_raw_size });
// Move the text section to a new place in the executable
const current_text_section_start = self.section_data_offset + current_raw_size;
const new_text_section_start = self.section_data_offset + new_raw_size;
const amt = try self.base.file.?.copyRangeAll(current_text_section_start, self.base.file.?, new_text_section_start, self.text_section_size);
if (amt != self.text_section_size) return error.InputOutput;
// Write the new raw size in the .got header
var buf: [8]u8 = undefined;
std.mem.writeIntLittle(u32, buf[0..4], new_raw_size);
try self.base.file.?.pwriteAll(buf[0..4], self.section_table_offset + 16);
// Write the new .text section file offset in the .text section header
std.mem.writeIntLittle(u32, buf[0..4], new_text_section_start);
try self.base.file.?.pwriteAll(buf[0..4], self.section_table_offset + 40 + 20);
const current_virtual_size = std.mem.alignForwardGeneric(u32, self.offset_table_size, section_alignment);
const new_virtual_size = std.mem.alignForwardGeneric(u32, new_raw_size, section_alignment);
// If we had to move in the virtual address space, we need to fix the VAs in the offset table, as well as the virtual address of the `.text` section
// and the virutal size of the `.got` section
if (new_virtual_size != current_virtual_size) {
log.debug("growing offset table from virtual size {} to {}\n", .{ current_virtual_size, new_virtual_size });
self.size_of_image_dirty = true;
const va_offset = new_virtual_size - current_virtual_size;
// Write .got virtual size
std.mem.writeIntLittle(u32, buf[0..4], new_virtual_size);
try self.base.file.?.pwriteAll(buf[0..4], self.section_table_offset + 8);
// Write .text new virtual address
self.text_section_virtual_address = self.text_section_virtual_address + va_offset;
std.mem.writeIntLittle(u32, buf[0..4], self.text_section_virtual_address - image_base);
try self.base.file.?.pwriteAll(buf[0..4], self.section_table_offset + 40 + 12);
// Fix the VAs in the offset table
for (self.offset_table.items) |*va, idx| {
if (va.* != 0) {
va.* += va_offset;
switch (entry_size) {
4 => {
std.mem.writeInt(u32, buf[0..4], @intCast(u32, va.*), endian);
try self.base.file.?.pwriteAll(buf[0..4], offset_table_start + idx * entry_size);
},
8 => {
std.mem.writeInt(u64, &buf, va.*, endian);
try self.base.file.?.pwriteAll(&buf, offset_table_start + idx * entry_size);
},
else => unreachable,
}
}
}
}
self.offset_table_size = new_raw_size;
self.offset_table_size_dirty = false;
}
// Write the new entry
switch (entry_size) {
4 => {
var buf: [4]u8 = undefined;
std.mem.writeInt(u32, &buf, @intCast(u32, self.offset_table.items[index]), endian);
try self.base.file.?.pwriteAll(&buf, offset_table_start + index * entry_size);
},
8 => {
var buf: [8]u8 = undefined;
std.mem.writeInt(u64, &buf, self.offset_table.items[index], endian);
try self.base.file.?.pwriteAll(&buf, offset_table_start + index * entry_size);
},
else => unreachable,
}
}
pub fn updateDecl(self: *Coff, module: *Module, decl: *Module.Decl) !void {
// TODO COFF/PE debug information
// TODO Implement exports
const tracy = trace(@src());
defer tracy.end();
var code_buffer = std.ArrayList(u8).init(self.base.allocator);
defer code_buffer.deinit();
const typed_value = decl.typed_value.most_recent.typed_value;
const res = try codegen.generateSymbol(&self.base, decl.src(), typed_value, &code_buffer, .none);
const code = switch (res) {
.externally_managed => |x| x,
.appended => code_buffer.items,
.fail => |em| {
decl.analysis = .codegen_failure;
try module.failed_decls.put(module.gpa, decl, em);
return;
},
};
const required_alignment = typed_value.ty.abiAlignment(self.base.options.target);
const curr_size = decl.link.coff.size;
if (curr_size != 0) {
const capacity = decl.link.coff.capacity();
const need_realloc = code.len > capacity or
!std.mem.isAlignedGeneric(u32, decl.link.coff.text_offset, required_alignment);
if (need_realloc) {
const curr_vaddr = self.getDeclVAddr(decl);
const vaddr = try self.growTextBlock(&decl.link.coff, code.len, required_alignment);
log.debug("growing {} from 0x{x} to 0x{x}\n", .{ decl.name, curr_vaddr, vaddr });
if (vaddr != curr_vaddr) {
log.debug(" (writing new offset table entry)\n", .{});
self.offset_table.items[decl.link.coff.offset_table_index] = vaddr;
try self.writeOffsetTableEntry(decl.link.coff.offset_table_index);
}
} else if (code.len < curr_size) {
self.shrinkTextBlock(&decl.link.coff, code.len);
}
} else {
const vaddr = try self.allocateTextBlock(&decl.link.coff, code.len, required_alignment);
log.debug("allocated text block for {} at 0x{x} (size: {Bi})\n", .{ std.mem.spanZ(decl.name), vaddr, code.len });
errdefer self.freeTextBlock(&decl.link.coff);
self.offset_table.items[decl.link.coff.offset_table_index] = vaddr;
try self.writeOffsetTableEntry(decl.link.coff.offset_table_index);
}
// Write the code into the file
try self.base.file.?.pwriteAll(code, self.section_data_offset + self.offset_table_size + decl.link.coff.text_offset);
// Since we updated the vaddr and the size, each corresponding export symbol also needs to be updated.
const decl_exports = module.decl_exports.get(decl) orelse &[0]*Module.Export{};
return self.updateDeclExports(module, decl, decl_exports);
}
pub fn freeDecl(self: *Coff, decl: *Module.Decl) void {
// Appending to free lists is allowed to fail because the free lists are heuristics based anyway.
self.freeTextBlock(&decl.link.coff);
self.offset_table_free_list.append(self.base.allocator, decl.link.coff.offset_table_index) catch {};
}
pub fn updateDeclExports(self: *Coff, module: *Module, decl: *const Module.Decl, exports: []const *Module.Export) !void {
for (exports) |exp| {
if (exp.options.section) |section_name| {
if (!std.mem.eql(u8, section_name, ".text")) {
try module.failed_exports.ensureCapacity(module.gpa, module.failed_exports.items().len + 1);
module.failed_exports.putAssumeCapacityNoClobber(
exp,
try Module.ErrorMsg.create(self.base.allocator, 0, "Unimplemented: ExportOptions.section", .{}),
);
continue;
}
}
if (std.mem.eql(u8, exp.options.name, "_start")) {
self.entry_addr = decl.link.coff.getVAddr(self.*) - image_base;
} else {
try module.failed_exports.ensureCapacity(module.gpa, module.failed_exports.items().len + 1);
module.failed_exports.putAssumeCapacityNoClobber(
exp,
try Module.ErrorMsg.create(self.base.allocator, 0, "Unimplemented: Exports other than '_start'", .{}),
);
continue;
}
}
}
pub fn flush(self: *Coff, module: *Module) !void {
if (self.text_section_size_dirty) {
// Write the new raw size in the .text header
var buf: [4]u8 = undefined;
std.mem.writeIntLittle(u32, &buf, self.text_section_size);
try self.base.file.?.pwriteAll(&buf, self.section_table_offset + 40 + 16);
try self.base.file.?.setEndPos(self.section_data_offset + self.offset_table_size + self.text_section_size);
self.text_section_size_dirty = false;
}
if (self.base.options.output_mode == .Exe and self.size_of_image_dirty) {
const new_size_of_image = std.mem.alignForwardGeneric(u32, self.text_section_virtual_address - image_base + self.text_section_size, section_alignment);
var buf: [4]u8 = undefined;
std.mem.writeIntLittle(u32, &buf, new_size_of_image);
try self.base.file.?.pwriteAll(&buf, self.optional_header_offset + 56);
self.size_of_image_dirty = false;
}
if (self.entry_addr == null and self.base.options.output_mode == .Exe) {
log.debug("flushing. no_entry_point_found = true\n", .{});
self.error_flags.no_entry_point_found = true;
} else {
log.debug("flushing. no_entry_point_found = false\n", .{});
self.error_flags.no_entry_point_found = false;
if (self.base.options.output_mode == .Exe) {
// Write AddressOfEntryPoint
var buf: [4]u8 = undefined;
std.mem.writeIntLittle(u32, &buf, self.entry_addr.?);
try self.base.file.?.pwriteAll(&buf, self.optional_header_offset + 16);
}
}
}
pub fn getDeclVAddr(self: *Coff, decl: *const Module.Decl) u64 {
return self.text_section_virtual_address + decl.link.coff.text_offset;
}
pub fn updateDeclLineNumber(self: *Coff, module: *Module, decl: *Module.Decl) !void {
// TODO Implement this
}
pub fn deinit(self: *Coff) void {
self.text_block_free_list.deinit(self.base.allocator);
self.offset_table.deinit(self.base.allocator);
self.offset_table_free_list.deinit(self.base.allocator);
}