zig/lib/std/special/c.zig

848 lines
23 KiB
Zig

// This is Zig's multi-target implementation of libc.
// When builtin.link_libc is true, we need to export all the functions and
// provide an entire C API.
// Otherwise, only the functions which LLVM generates calls to need to be generated,
// such as memcpy, memset, and some math functions.
const std = @import("std");
const builtin = @import("builtin");
const maxInt = std.math.maxInt;
const isNan = std.math.isNan;
const is_wasm = switch (builtin.arch) {
.wasm32, .wasm64 => true,
else => false,
};
const is_msvc = switch (builtin.abi) {
.msvc => true,
else => false,
};
const is_freestanding = switch (builtin.os.tag) {
.freestanding => true,
else => false,
};
comptime {
if (is_freestanding and is_wasm and builtin.link_libc) {
@export(wasm_start, .{ .name = "_start", .linkage = .Strong });
}
if (builtin.link_libc) {
@export(strcmp, .{ .name = "strcmp", .linkage = .Strong });
@export(strncmp, .{ .name = "strncmp", .linkage = .Strong });
@export(strerror, .{ .name = "strerror", .linkage = .Strong });
@export(strlen, .{ .name = "strlen", .linkage = .Strong });
} else if (is_msvc) {
@export(_fltused, .{ .name = "_fltused", .linkage = .Strong });
}
}
extern var _fltused: c_int = 1;
extern fn main(argc: c_int, argv: [*:null]?[*:0]u8) c_int;
fn wasm_start() callconv(.C) void {
_ = main(0, undefined);
}
fn strcmp(s1: [*:0]const u8, s2: [*:0]const u8) callconv(.C) c_int {
return std.cstr.cmp(s1, s2);
}
fn strlen(s: [*:0]const u8) callconv(.C) usize {
return std.mem.len(s);
}
fn strncmp(_l: [*:0]const u8, _r: [*:0]const u8, _n: usize) callconv(.C) c_int {
if (_n == 0) return 0;
var l = _l;
var r = _r;
var n = _n - 1;
while (l[0] != 0 and r[0] != 0 and n != 0 and l[0] == r[0]) {
l += 1;
r += 1;
n -= 1;
}
return @as(c_int, l[0]) - @as(c_int, r[0]);
}
fn strerror(errnum: c_int) callconv(.C) [*:0]const u8 {
return "TODO strerror implementation";
}
test "strncmp" {
std.testing.expect(strncmp("a", "b", 1) == -1);
std.testing.expect(strncmp("a", "c", 1) == -2);
std.testing.expect(strncmp("b", "a", 1) == 1);
std.testing.expect(strncmp("\xff", "\x02", 1) == 253);
}
// Avoid dragging in the runtime safety mechanisms into this .o file,
// unless we're trying to test this file.
pub fn panic(msg: []const u8, error_return_trace: ?*builtin.StackTrace) noreturn {
if (builtin.is_test) {
@setCold(true);
std.debug.panic("{}", .{msg});
}
if (builtin.os.tag != .freestanding and builtin.os.tag != .other) {
std.os.abort();
}
while (true) {}
}
export fn memset(dest: ?[*]u8, c: u8, n: usize) ?[*]u8 {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1)
dest.?[index] = c;
return dest;
}
export fn memcpy(noalias dest: ?[*]u8, noalias src: ?[*]const u8, n: usize) ?[*]u8 {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1)
dest.?[index] = src.?[index];
return dest;
}
export fn memmove(dest: ?[*]u8, src: ?[*]const u8, n: usize) ?[*]u8 {
@setRuntimeSafety(false);
if (@ptrToInt(dest) < @ptrToInt(src)) {
var index: usize = 0;
while (index != n) : (index += 1) {
dest.?[index] = src.?[index];
}
} else {
var index = n;
while (index != 0) {
index -= 1;
dest.?[index] = src.?[index];
}
}
return dest;
}
export fn memcmp(vl: ?[*]const u8, vr: ?[*]const u8, n: usize) isize {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1) {
const compare_val = @bitCast(i8, vl.?[index] -% vr.?[index]);
if (compare_val != 0) {
return compare_val;
}
}
return 0;
}
test "test_memcmp" {
const base_arr = []u8{ 1, 1, 1 };
const arr1 = []u8{ 1, 1, 1 };
const arr2 = []u8{ 1, 0, 1 };
const arr3 = []u8{ 1, 2, 1 };
std.testing.expect(memcmp(base_arr[0..].ptr, arr1[0..].ptr, base_arr.len) == 0);
std.testing.expect(memcmp(base_arr[0..].ptr, arr2[0..].ptr, base_arr.len) > 0);
std.testing.expect(memcmp(base_arr[0..].ptr, arr3[0..].ptr, base_arr.len) < 0);
}
export fn bcmp(vl: [*]allowzero const u8, vr: [*]allowzero const u8, n: usize) isize {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1) {
if (vl[index] != vr[index]) {
return 1;
}
}
return 0;
}
test "test_bcmp" {
const base_arr = []u8{ 1, 1, 1 };
const arr1 = []u8{ 1, 1, 1 };
const arr2 = []u8{ 1, 0, 1 };
const arr3 = []u8{ 1, 2, 1 };
std.testing.expect(bcmp(base_arr[0..].ptr, arr1[0..].ptr, base_arr.len) == 0);
std.testing.expect(bcmp(base_arr[0..].ptr, arr2[0..].ptr, base_arr.len) != 0);
std.testing.expect(bcmp(base_arr[0..].ptr, arr3[0..].ptr, base_arr.len) != 0);
}
comptime {
if (builtin.mode != builtin.Mode.ReleaseFast and
builtin.mode != builtin.Mode.ReleaseSmall and
builtin.os.tag != .windows)
{
@export(__stack_chk_fail, .{ .name = "__stack_chk_fail" });
}
if (builtin.os.tag == .linux) {
@export(clone, .{ .name = "clone" });
}
}
fn __stack_chk_fail() callconv(.C) noreturn {
@panic("stack smashing detected");
}
// TODO we should be able to put this directly in std/linux/x86_64.zig but
// it causes a segfault in release mode. this is a workaround of calling it
// across .o file boundaries. fix comptime @ptrCast of nakedcc functions.
fn clone() callconv(.Naked) void {
switch (builtin.arch) {
.i386 => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// +8, +12, +16, +20, +24, +28, +32
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// eax, ebx, ecx, edx, esi, edi
asm volatile (
\\ push %%ebp
\\ mov %%esp,%%ebp
\\ push %%ebx
\\ push %%esi
\\ push %%edi
\\ // Setup the arguments
\\ mov 16(%%ebp),%%ebx
\\ mov 12(%%ebp),%%ecx
\\ and $-16,%%ecx
\\ sub $20,%%ecx
\\ mov 20(%%ebp),%%eax
\\ mov %%eax,4(%%ecx)
\\ mov 8(%%ebp),%%eax
\\ mov %%eax,0(%%ecx)
\\ mov 24(%%ebp),%%edx
\\ mov 28(%%ebp),%%esi
\\ mov 32(%%ebp),%%edi
\\ mov $120,%%eax
\\ int $128
\\ test %%eax,%%eax
\\ jnz 1f
\\ pop %%eax
\\ xor %%ebp,%%ebp
\\ call *%%eax
\\ mov %%eax,%%ebx
\\ xor %%eax,%%eax
\\ inc %%eax
\\ int $128
\\ hlt
\\1:
\\ pop %%edi
\\ pop %%esi
\\ pop %%ebx
\\ pop %%ebp
\\ ret
);
},
.x86_64 => {
asm volatile (
\\ xor %%eax,%%eax
\\ mov $56,%%al // SYS_clone
\\ mov %%rdi,%%r11
\\ mov %%rdx,%%rdi
\\ mov %%r8,%%rdx
\\ mov %%r9,%%r8
\\ mov 8(%%rsp),%%r10
\\ mov %%r11,%%r9
\\ and $-16,%%rsi
\\ sub $8,%%rsi
\\ mov %%rcx,(%%rsi)
\\ syscall
\\ test %%eax,%%eax
\\ jnz 1f
\\ xor %%ebp,%%ebp
\\ pop %%rdi
\\ call *%%r9
\\ mov %%eax,%%edi
\\ xor %%eax,%%eax
\\ mov $60,%%al // SYS_exit
\\ syscall
\\ hlt
\\1: ret
\\
);
},
.aarch64 => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// x0, x1, w2, x3, x4, x5, x6
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// x8, x0, x1, x2, x3, x4
asm volatile (
\\ // align stack and save func,arg
\\ and x1,x1,#-16
\\ stp x0,x3,[x1,#-16]!
\\
\\ // syscall
\\ uxtw x0,w2
\\ mov x2,x4
\\ mov x3,x5
\\ mov x4,x6
\\ mov x8,#220 // SYS_clone
\\ svc #0
\\
\\ cbz x0,1f
\\ // parent
\\ ret
\\ // child
\\1: ldp x1,x0,[sp],#16
\\ blr x1
\\ mov x8,#93 // SYS_exit
\\ svc #0
);
},
.arm => {
asm volatile (
\\ stmfd sp!,{r4,r5,r6,r7}
\\ mov r7,#120
\\ mov r6,r3
\\ mov r5,r0
\\ mov r0,r2
\\ and r1,r1,#-16
\\ ldr r2,[sp,#16]
\\ ldr r3,[sp,#20]
\\ ldr r4,[sp,#24]
\\ svc 0
\\ tst r0,r0
\\ beq 1f
\\ ldmfd sp!,{r4,r5,r6,r7}
\\ bx lr
\\
\\1: mov r0,r6
\\ bl 3f
\\2: mov r7,#1
\\ svc 0
\\ b 2b
\\3: bx r5
);
},
.riscv64 => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// a0, a1, a2, a3, a4, a5, a6
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// a7 a0, a1, a2, a3, a4
asm volatile (
\\ # Save func and arg to stack
\\ addi a1, a1, -16
\\ sd a0, 0(a1)
\\ sd a3, 8(a1)
\\
\\ # Call SYS_clone
\\ mv a0, a2
\\ mv a2, a4
\\ mv a3, a5
\\ mv a4, a6
\\ li a7, 220 # SYS_clone
\\ ecall
\\
\\ beqz a0, 1f
\\ # Parent
\\ ret
\\
\\ # Child
\\1: ld a1, 0(sp)
\\ ld a0, 8(sp)
\\ jalr a1
\\
\\ # Exit
\\ li a7, 93 # SYS_exit
\\ ecall
);
},
.mips, .mipsel => {
asm volatile (
\\ # Save function pointer and argument pointer on new thread stack
\\ and $5, $5, -8
\\ subu $5, $5, 16
\\ sw $4, 0($5)
\\ sw $7, 4($5)
\\ # Shuffle (fn,sp,fl,arg,ptid,tls,ctid) to (fl,sp,ptid,tls,ctid)
\\ move $4, $6
\\ lw $6, 16($sp)
\\ lw $7, 20($sp)
\\ lw $9, 24($sp)
\\ subu $sp, $sp, 16
\\ sw $9, 16($sp)
\\ li $2, 4120
\\ syscall
\\ beq $7, $0, 1f
\\ nop
\\ addu $sp, $sp, 16
\\ jr $ra
\\ subu $2, $0, $2
\\1: beq $2, $0, 1f
\\ nop
\\ addu $sp, $sp, 16
\\ jr $ra
\\ nop
\\1: lw $25, 0($sp)
\\ lw $4, 4($sp)
\\ jalr $25
\\ nop
\\ move $4, $2
\\ li $2, 4001
\\ syscall
);
},
else => @compileError("Implement clone() for this arch."),
}
}
const math = std.math;
export fn fmodf(x: f32, y: f32) f32 {
return generic_fmod(f32, x, y);
}
export fn fmod(x: f64, y: f64) f64 {
return generic_fmod(f64, x, y);
}
// TODO add intrinsics for these (and probably the double version too)
// and have the math stuff use the intrinsic. same as @mod and @rem
export fn floorf(x: f32) f32 {
return math.floor(x);
}
export fn ceilf(x: f32) f32 {
return math.ceil(x);
}
export fn floor(x: f64) f64 {
return math.floor(x);
}
export fn ceil(x: f64) f64 {
return math.ceil(x);
}
export fn fma(a: f64, b: f64, c: f64) f64 {
return math.fma(f64, a, b, c);
}
export fn fmaf(a: f32, b: f32, c: f32) f32 {
return math.fma(f32, a, b, c);
}
export fn sin(a: f64) f64 {
return math.sin(a);
}
export fn sinf(a: f32) f32 {
return math.sin(a);
}
export fn cos(a: f64) f64 {
return math.cos(a);
}
export fn cosf(a: f32) f32 {
return math.cos(a);
}
export fn exp(a: f64) f64 {
return math.exp(a);
}
export fn expf(a: f32) f32 {
return math.exp(a);
}
export fn exp2(a: f64) f64 {
return math.exp2(a);
}
export fn exp2f(a: f32) f32 {
return math.exp2(a);
}
export fn log(a: f64) f64 {
return math.ln(a);
}
export fn logf(a: f32) f32 {
return math.ln(a);
}
export fn log2(a: f64) f64 {
return math.log2(a);
}
export fn log2f(a: f32) f32 {
return math.log2(a);
}
export fn log10(a: f64) f64 {
return math.log10(a);
}
export fn log10f(a: f32) f32 {
return math.log10(a);
}
export fn fabs(a: f64) f64 {
return math.fabs(a);
}
export fn fabsf(a: f32) f32 {
return math.fabs(a);
}
export fn trunc(a: f64) f64 {
return math.trunc(a);
}
export fn truncf(a: f32) f32 {
return math.trunc(a);
}
export fn round(a: f64) f64 {
return math.round(a);
}
export fn roundf(a: f32) f32 {
return math.round(a);
}
fn generic_fmod(comptime T: type, x: T, y: T) T {
@setRuntimeSafety(false);
const uint = std.meta.Int(false, T.bit_count);
const log2uint = math.Log2Int(uint);
const digits = if (T == f32) 23 else 52;
const exp_bits = if (T == f32) 9 else 12;
const bits_minus_1 = T.bit_count - 1;
const mask = if (T == f32) 0xff else 0x7ff;
var ux = @bitCast(uint, x);
var uy = @bitCast(uint, y);
var ex = @intCast(i32, (ux >> digits) & mask);
var ey = @intCast(i32, (uy >> digits) & mask);
const sx = if (T == f32) @intCast(u32, ux & 0x80000000) else @intCast(i32, ux >> bits_minus_1);
var i: uint = undefined;
if (uy << 1 == 0 or isNan(@bitCast(T, uy)) or ex == mask)
return (x * y) / (x * y);
if (ux << 1 <= uy << 1) {
if (ux << 1 == uy << 1)
return 0 * x;
return x;
}
// normalize x and y
if (ex == 0) {
i = ux << exp_bits;
while (i >> bits_minus_1 == 0) : (b: {
ex -= 1;
i <<= 1;
}) {}
ux <<= @intCast(log2uint, @bitCast(u32, -ex + 1));
} else {
ux &= maxInt(uint) >> exp_bits;
ux |= 1 << digits;
}
if (ey == 0) {
i = uy << exp_bits;
while (i >> bits_minus_1 == 0) : (b: {
ey -= 1;
i <<= 1;
}) {}
uy <<= @intCast(log2uint, @bitCast(u32, -ey + 1));
} else {
uy &= maxInt(uint) >> exp_bits;
uy |= 1 << digits;
}
// x mod y
while (ex > ey) : (ex -= 1) {
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
ux <<= 1;
}
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
while (ux >> digits == 0) : (b: {
ux <<= 1;
ex -= 1;
}) {}
// scale result up
if (ex > 0) {
ux -%= 1 << digits;
ux |= @as(uint, @bitCast(u32, ex)) << digits;
} else {
ux >>= @intCast(log2uint, @bitCast(u32, -ex + 1));
}
if (T == f32) {
ux |= sx;
} else {
ux |= @intCast(uint, sx) << bits_minus_1;
}
return @bitCast(T, ux);
}
// NOTE: The original code is full of implicit signed -> unsigned assumptions and u32 wraparound
// behaviour. Most intermediate i32 values are changed to u32 where appropriate but there are
// potentially some edge cases remaining that are not handled in the same way.
export fn sqrt(x: f64) f64 {
const tiny: f64 = 1.0e-300;
const sign: u32 = 0x80000000;
const u = @bitCast(u64, x);
var ix0 = @intCast(u32, u >> 32);
var ix1 = @intCast(u32, u & 0xFFFFFFFF);
// sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = nan
if (ix0 & 0x7FF00000 == 0x7FF00000) {
return x * x + x;
}
// sqrt(+-0) = +-0
if (x == 0.0) {
return x;
}
// sqrt(-ve) = snan
if (ix0 & sign != 0) {
return math.snan(f64);
}
// normalize x
var m = @intCast(i32, ix0 >> 20);
if (m == 0) {
// subnormal
while (ix0 == 0) {
m -= 21;
ix0 |= ix1 >> 11;
ix1 <<= 21;
}
// subnormal
var i: u32 = 0;
while (ix0 & 0x00100000 == 0) : (i += 1) {
ix0 <<= 1;
}
m -= @intCast(i32, i) - 1;
ix0 |= ix1 >> @intCast(u5, 32 - i);
ix1 <<= @intCast(u5, i);
}
// unbias exponent
m -= 1023;
ix0 = (ix0 & 0x000FFFFF) | 0x00100000;
if (m & 1 != 0) {
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
}
m >>= 1;
// sqrt(x) bit by bit
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
var q: u32 = 0;
var q1: u32 = 0;
var s0: u32 = 0;
var s1: u32 = 0;
var r: u32 = 0x00200000;
var t: u32 = undefined;
var t1: u32 = undefined;
while (r != 0) {
t = s0 +% r;
if (t <= ix0) {
s0 = t + r;
ix0 -= t;
q += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
r = sign;
while (r != 0) {
t = s1 +% r;
t = s0;
if (t < ix0 or (t == ix0 and t1 <= ix1)) {
s1 = t1 +% r;
if (t1 & sign == sign and s1 & sign == 0) {
s0 += 1;
}
ix0 -= t;
if (ix1 < t1) {
ix0 -= 1;
}
ix1 = ix1 -% t1;
q1 += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
// rounding direction
if (ix0 | ix1 != 0) {
var z = 1.0 - tiny; // raise inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (q1 == 0xFFFFFFFF) {
q1 = 0;
q += 1;
} else if (z > 1.0) {
if (q1 == 0xFFFFFFFE) {
q += 1;
}
q1 += 2;
} else {
q1 += q1 & 1;
}
}
}
ix0 = (q >> 1) + 0x3FE00000;
ix1 = q1 >> 1;
if (q & 1 != 0) {
ix1 |= 0x80000000;
}
// NOTE: musl here appears to rely on signed twos-complement wraparound. +% has the same
// behaviour at least.
var iix0 = @intCast(i32, ix0);
iix0 = iix0 +% (m << 20);
const uz = (@intCast(u64, iix0) << 32) | ix1;
return @bitCast(f64, uz);
}
test "sqrt" {
const epsilon = 0.000001;
std.testing.expect(sqrt(0.0) == 0.0);
std.testing.expect(std.math.approxEq(f64, sqrt(2.0), 1.414214, epsilon));
std.testing.expect(std.math.approxEq(f64, sqrt(3.6), 1.897367, epsilon));
std.testing.expect(sqrt(4.0) == 2.0);
std.testing.expect(std.math.approxEq(f64, sqrt(7.539840), 2.745877, epsilon));
std.testing.expect(std.math.approxEq(f64, sqrt(19.230934), 4.385309, epsilon));
std.testing.expect(sqrt(64.0) == 8.0);
std.testing.expect(std.math.approxEq(f64, sqrt(64.1), 8.006248, epsilon));
std.testing.expect(std.math.approxEq(f64, sqrt(8942.230469), 94.563367, epsilon));
}
test "sqrt special" {
std.testing.expect(std.math.isPositiveInf(sqrt(std.math.inf(f64))));
std.testing.expect(sqrt(0.0) == 0.0);
std.testing.expect(sqrt(-0.0) == -0.0);
std.testing.expect(std.math.isNan(sqrt(-1.0)));
std.testing.expect(std.math.isNan(sqrt(std.math.nan(f64))));
}
export fn sqrtf(x: f32) f32 {
const tiny: f32 = 1.0e-30;
const sign: i32 = @bitCast(i32, @as(u32, 0x80000000));
var ix: i32 = @bitCast(i32, x);
if ((ix & 0x7F800000) == 0x7F800000) {
return x * x + x; // sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = snan
}
// zero
if (ix <= 0) {
if (ix & ~sign == 0) {
return x; // sqrt (+-0) = +-0
}
if (ix < 0) {
return math.snan(f32);
}
}
// normalize
var m = ix >> 23;
if (m == 0) {
// subnormal
var i: i32 = 0;
while (ix & 0x00800000 == 0) : (i += 1) {
ix <<= 1;
}
m -= i - 1;
}
m -= 127; // unbias exponent
ix = (ix & 0x007FFFFF) | 0x00800000;
if (m & 1 != 0) { // odd m, double x to even
ix += ix;
}
m >>= 1; // m = [m / 2]
// sqrt(x) bit by bit
ix += ix;
var q: i32 = 0; // q = sqrt(x)
var s: i32 = 0;
var r: i32 = 0x01000000; // r = moving bit right -> left
while (r != 0) {
const t = s + r;
if (t <= ix) {
s = t + r;
ix -= t;
q += r;
}
ix += ix;
r >>= 1;
}
// floating add to find rounding direction
if (ix != 0) {
var z = 1.0 - tiny; // inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (z > 1.0) {
q += 2;
} else {
if (q & 1 != 0) {
q += 1;
}
}
}
}
ix = (q >> 1) + 0x3f000000;
ix += m << 23;
return @bitCast(f32, ix);
}
test "sqrtf" {
const epsilon = 0.000001;
std.testing.expect(sqrtf(0.0) == 0.0);
std.testing.expect(std.math.approxEq(f32, sqrtf(2.0), 1.414214, epsilon));
std.testing.expect(std.math.approxEq(f32, sqrtf(3.6), 1.897367, epsilon));
std.testing.expect(sqrtf(4.0) == 2.0);
std.testing.expect(std.math.approxEq(f32, sqrtf(7.539840), 2.745877, epsilon));
std.testing.expect(std.math.approxEq(f32, sqrtf(19.230934), 4.385309, epsilon));
std.testing.expect(sqrtf(64.0) == 8.0);
std.testing.expect(std.math.approxEq(f32, sqrtf(64.1), 8.006248, epsilon));
std.testing.expect(std.math.approxEq(f32, sqrtf(8942.230469), 94.563370, epsilon));
}
test "sqrtf special" {
std.testing.expect(std.math.isPositiveInf(sqrtf(std.math.inf(f32))));
std.testing.expect(sqrtf(0.0) == 0.0);
std.testing.expect(sqrtf(-0.0) == -0.0);
std.testing.expect(std.math.isNan(sqrtf(-1.0)));
std.testing.expect(std.math.isNan(sqrtf(std.math.nan(f32))));
}