zig/std/special/compiler_rt/extendXfYf2_test.zig

156 lines
4.6 KiB
Zig

const __extenddftf2 = @import("extendXfYf2.zig").__extenddftf2;
const __extendhfsf2 = @import("extendXfYf2.zig").__extendhfsf2;
const __extendsftf2 = @import("extendXfYf2.zig").__extendsftf2;
const assert = @import("std").debug.assert;
fn test__extenddftf2(a: f64, expectedHi: u64, expectedLo: u64) void {
const x = __extenddftf2(a);
const rep = @bitCast(u128, x);
const hi = @intCast(u64, rep >> 64);
const lo = @truncate(u64, rep);
if (hi == expectedHi and lo == expectedLo)
return;
// test other possible NaN representation(signal NaN)
if (expectedHi == 0x7fff800000000000 and expectedLo == 0x0) {
if ((hi & 0x7fff000000000000) == 0x7fff000000000000 and
((hi & 0xffffffffffff) > 0 or lo > 0))
{
return;
}
}
@panic("__extenddftf2 test failure");
}
fn test__extendhfsf2(a: u16, expected: u32) void {
const x = __extendhfsf2(a);
const rep = @bitCast(u32, x);
if (rep == expected) {
if (rep & 0x7fffffff > 0x7f800000) {
return; // NaN is always unequal.
}
if (x == @bitCast(f32, expected)) {
return;
}
}
@panic("__extendhfsf2 test failure");
}
fn test__extendsftf2(a: f32, expectedHi: u64, expectedLo: u64) void {
const x = __extendsftf2(a);
const rep = @bitCast(u128, x);
const hi = @intCast(u64, rep >> 64);
const lo = @truncate(u64, rep);
if (hi == expectedHi and lo == expectedLo)
return;
// test other possible NaN representation(signal NaN)
if (expectedHi == 0x7fff800000000000 and expectedLo == 0x0) {
if ((hi & 0x7fff000000000000) == 0x7fff000000000000 and
((hi & 0xffffffffffff) > 0 or lo > 0))
{
return;
}
}
@panic("__extendsftf2 test failure");
}
test "extenddftf2" {
// qNaN
test__extenddftf2(makeQNaN64(), 0x7fff800000000000, 0x0);
// NaN
test__extenddftf2(makeNaN64(0x7100000000000), 0x7fff710000000000, 0x0);
// inf
test__extenddftf2(makeInf64(), 0x7fff000000000000, 0x0);
// zero
test__extenddftf2(0.0, 0x0, 0x0);
test__extenddftf2(0x1.23456789abcdefp+5, 0x400423456789abcd, 0xf000000000000000);
test__extenddftf2(0x1.edcba987654321fp-9, 0x3ff6edcba9876543, 0x2000000000000000);
test__extenddftf2(0x1.23456789abcdefp+45, 0x402c23456789abcd, 0xf000000000000000);
test__extenddftf2(0x1.edcba987654321fp-45, 0x3fd2edcba9876543, 0x2000000000000000);
}
test "extendhfsf2" {
test__extendhfsf2(0x7e00, 0x7fc00000); // qNaN
test__extendhfsf2(0x7f00, 0x7fe00000); // sNaN
test__extendhfsf2(0x7c01, 0x7f802000); // sNaN
test__extendhfsf2(0, 0); // 0
test__extendhfsf2(0x8000, 0x80000000); // -0
test__extendhfsf2(0x7c00, 0x7f800000); // inf
test__extendhfsf2(0xfc00, 0xff800000); // -inf
test__extendhfsf2(0x0001, 0x33800000); // denormal (min), 2**-24
test__extendhfsf2(0x8001, 0xb3800000); // denormal (min), -2**-24
test__extendhfsf2(0x03ff, 0x387fc000); // denormal (max), 2**-14 - 2**-24
test__extendhfsf2(0x83ff, 0xb87fc000); // denormal (max), -2**-14 + 2**-24
test__extendhfsf2(0x0400, 0x38800000); // normal (min), 2**-14
test__extendhfsf2(0x8400, 0xb8800000); // normal (min), -2**-14
test__extendhfsf2(0x7bff, 0x477fe000); // normal (max), 65504
test__extendhfsf2(0xfbff, 0xc77fe000); // normal (max), -65504
test__extendhfsf2(0x3c01, 0x3f802000); // normal, 1 + 2**-10
test__extendhfsf2(0xbc01, 0xbf802000); // normal, -1 - 2**-10
test__extendhfsf2(0x3555, 0x3eaaa000); // normal, approx. 1/3
test__extendhfsf2(0xb555, 0xbeaaa000); // normal, approx. -1/3
}
test "extendsftf2" {
// qNaN
test__extendsftf2(makeQNaN32(), 0x7fff800000000000, 0x0);
// NaN
test__extendsftf2(makeNaN32(0x410000), 0x7fff820000000000, 0x0);
// inf
test__extendsftf2(makeInf32(), 0x7fff000000000000, 0x0);
// zero
test__extendsftf2(0.0, 0x0, 0x0);
test__extendsftf2(0x1.23456p+5, 0x4004234560000000, 0x0);
test__extendsftf2(0x1.edcbap-9, 0x3ff6edcba0000000, 0x0);
test__extendsftf2(0x1.23456p+45, 0x402c234560000000, 0x0);
test__extendsftf2(0x1.edcbap-45, 0x3fd2edcba0000000, 0x0);
}
fn makeQNaN64() f64 {
return @bitCast(f64, u64(0x7ff8000000000000));
}
fn makeInf64() f64 {
return @bitCast(f64, u64(0x7ff0000000000000));
}
fn makeNaN64(rand: u64) f64 {
return @bitCast(f64, 0x7ff0000000000000 | (rand & 0xfffffffffffff));
}
fn makeQNaN32() f32 {
return @bitCast(f32, u32(0x7fc00000));
}
fn makeNaN32(rand: u32) f32 {
return @bitCast(f32, 0x7f800000 | (rand & 0x7fffff));
}
fn makeInf32() f32 {
return @bitCast(f32, u32(0x7f800000));
}