zig/lib/std/math/big/int.zig
Andrew Kelley 8766821157 rework std.math.big.Int
Now there are 3 types:
 * std.math.big.int.Const
   - the memory is immutable, only stores limbs and is_positive
   - all methods operating on constant data go here
 * std.math.big.int.Mutable
   - the memory is mutable, stores capacity in addition to limbs and
     is_positive
   - methods here have some Mutable parameters and some Const
     parameters. These methods expect callers to pre-calculate the
     amount of resources required, and asserts that the resources are
     available.
 * std.math.big.int.Managed
   - the memory is mutable and additionally stores an allocator.
   - methods here perform the resource calculations for the programmer.
   - this is the high level abstraction from before

Each of these 3 types can be converted to the other ones.

You can see the use case for this in the self-hosted compiler, where we
only store limbs, and construct the big ints as needed.

This gets rid of the hack where the allocator was optional and the
notion of "fixed" versions of the struct. Such things are now modeled
with the `big.int.Const` type.
2020-05-01 06:47:56 -04:00

2133 lines
72 KiB
Zig

const std = @import("../../std.zig");
const math = std.math;
const Limb = std.math.big.Limb;
const DoubleLimb = std.math.big.DoubleLimb;
const SignedDoubleLimb = std.math.big.SignedDoubleLimb;
const Log2Limb = std.math.big.Log2Limb;
const Allocator = std.mem.Allocator;
const mem = std.mem;
const maxInt = std.math.maxInt;
const minInt = std.math.minInt;
const assert = std.debug.assert;
/// Returns the number of limbs needed to store `scalar`, which must be a
/// primitive integer value.
pub fn calcLimbLen(scalar: var) usize {
const T = @TypeOf(scalar);
switch (@typeInfo(T)) {
.Int => |info| {
const UT = if (info.is_signed) std.meta.IntType(false, info.bits - 1) else T;
return @sizeOf(UT) / @sizeOf(Limb);
},
.ComptimeInt => {
const w_value = if (scalar < 0) -scalar else scalar;
return @divFloor(math.log2(w_value), Limb.bit_count) + 1;
},
else => @compileError("parameter must be a primitive integer type"),
}
}
pub fn calcToStringLimbsBufferLen(a_len: usize, base: u8) usize {
if (math.isPowerOfTwo(base))
return 0;
return a_len + 2 + a_len + calcDivLimbsBufferLen(a_len, 1);
}
pub fn calcDivLimbsBufferLen(a_len: usize, b_len: usize) usize {
return calcMulLimbsBufferLen(a_len, b_len, 2) * 4;
}
pub fn calcMulLimbsBufferLen(a_len: usize, b_len: usize, aliases: usize) usize {
return aliases * math.max(a_len, b_len);
}
pub fn calcSetStringLimbsBufferLen(base: u8, string_len: usize) usize {
const limb_count = calcSetStringLimbCount(base, string_len);
return calcMulLimbsBufferLen(limb_count, limb_count, 2);
}
pub fn calcSetStringLimbCount(base: u8, string_len: usize) usize {
return (string_len + (Limb.bit_count / base - 1)) / (Limb.bit_count / base);
}
/// a + b * c + *carry, sets carry to the overflow bits
pub fn addMulLimbWithCarry(a: Limb, b: Limb, c: Limb, carry: *Limb) Limb {
@setRuntimeSafety(false);
var r1: Limb = undefined;
// r1 = a + *carry
const c1: Limb = @boolToInt(@addWithOverflow(Limb, a, carry.*, &r1));
// r2 = b * c
const bc = @as(DoubleLimb, math.mulWide(Limb, b, c));
const r2 = @truncate(Limb, bc);
const c2 = @truncate(Limb, bc >> Limb.bit_count);
// r1 = r1 + r2
const c3: Limb = @boolToInt(@addWithOverflow(Limb, r1, r2, &r1));
// This never overflows, c1, c3 are either 0 or 1 and if both are 1 then
// c2 is at least <= maxInt(Limb) - 2.
carry.* = c1 + c2 + c3;
return r1;
}
/// A arbitrary-precision big integer, with a fixed set of mutable limbs.
pub const Mutable = struct {
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represented as limbs.len == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
/// These are allocated limbs; the `len` field tells the valid range.
limbs: []Limb,
len: usize,
positive: bool,
pub fn toConst(self: Mutable) Const {
return .{
.limbs = self.limbs[0..self.len],
.positive = self.positive,
};
}
/// Asserts that the allocator owns the limbs memory. If this is not the case,
/// use `toConst().toManaged()`.
pub fn toManaged(self: Mutable, allocator: *Allocator) Managed {
return .{
.allocator = allocator,
.limbs = limbs,
.metadata = if (self.positive)
self.len & ~Managed.sign_bit
else
self.len | Managed.sign_bit,
};
}
/// `value` is a primitive integer type.
/// Asserts the value fits within the provided `limbs_buffer`.
/// Note: `calcLimbLen` can be used to figure out how big an array to allocate for `limbs_buffer`.
pub fn init(limbs_buffer: []Limb, value: var) Mutable {
limbs_buffer[0] = 0;
var self: Mutable = .{
.limbs = limbs_buffer,
.len = 1,
.positive = true,
};
self.set(value);
return self;
}
/// Copies the value of a Const to an existing Mutable so that they both have the same value.
/// Asserts the value fits in the limbs buffer.
pub fn copy(self: *Mutable, other: Const) void {
if (self.limbs.ptr != other.limbs.ptr) {
mem.copy(Limb, self.limbs[0..], other.limbs[0..other.limbs.len]);
}
self.positive = other.positive;
self.len = other.limbs.len;
}
/// Efficiently swap an Mutable with another. This swaps the limb pointers and a full copy is not
/// performed. The address of the limbs field will not be the same after this function.
pub fn swap(self: *Mutable, other: *Mutable) void {
mem.swap(Mutable, self, other);
}
pub fn dump(self: Mutable) void {
for (self.limbs[0..self.len]) |limb| {
std.debug.warn("{x} ", .{limb});
}
std.debug.warn("capacity={} positive={}\n", .{ self.limbs.len, self.positive });
}
/// Clones an Mutable and returns a new Mutable with the same value. The new Mutable is a deep copy and
/// can be modified separately from the original.
/// Asserts that limbs is big enough to store the value.
pub fn clone(other: Mutable, limbs: []Limb) Mutable {
mem.copy(Limb, limbs, other.limbs[0..other.len]);
return .{
.limbs = limbs,
.len = other.len,
.positive = other.positive,
};
}
pub fn negate(self: *Mutable) void {
self.positive = !self.positive;
}
/// Modify to become the absolute value
pub fn abs(self: *Mutable) void {
self.positive = true;
}
/// Sets the Mutable to value. Value must be an primitive integer type.
/// Asserts the value fits within the limbs buffer.
/// Note: `calcLimbLen` can be used to figure out how big the limbs buffer
/// needs to be to store a specific value.
pub fn set(self: *Mutable, value: var) void {
const T = @TypeOf(value);
switch (@typeInfo(T)) {
.Int => |info| {
const UT = if (T.is_signed) std.meta.IntType(false, T.bit_count - 1) else T;
const needed_limbs = @sizeOf(UT) / @sizeOf(Limb);
assert(needed_limbs <= self.limbs.len); // value too big
self.len = 0;
self.positive = value >= 0;
var w_value: UT = if (value < 0) @intCast(UT, -value) else @intCast(UT, value);
if (info.bits <= Limb.bit_count) {
self.limbs[0] = @as(Limb, w_value);
self.len += 1;
} else {
var i: usize = 0;
while (w_value != 0) : (i += 1) {
self.limbs[i] = @truncate(Limb, w_value);
self.len += 1;
// TODO: shift == 64 at compile-time fails. Fails on u128 limbs.
w_value >>= Limb.bit_count / 2;
w_value >>= Limb.bit_count / 2;
}
}
},
.ComptimeInt => {
comptime var w_value = if (value < 0) -value else value;
const req_limbs = @divFloor(math.log2(w_value), Limb.bit_count) + 1;
assert(req_limbs <= self.limbs.len); // value too big
self.len = req_limbs;
self.positive = value >= 0;
if (w_value <= maxInt(Limb)) {
self.limbs[0] = w_value;
} else {
const mask = (1 << Limb.bit_count) - 1;
comptime var i = 0;
inline while (w_value != 0) : (i += 1) {
self.limbs[i] = w_value & mask;
w_value >>= Limb.bit_count / 2;
w_value >>= Limb.bit_count / 2;
}
}
},
else => @compileError("cannot set Mutable using type " ++ @typeName(T)),
}
}
/// Set self from the string representation `value`.
///
/// `value` must contain only digits <= `base` and is case insensitive. Base prefixes are
/// not allowed (e.g. 0x43 should simply be 43). Underscores in the input string are
/// ignored and can be used as digit separators.
///
/// Asserts there is enough memory for the value in `self.limbs`. An upper bound on number of limbs can
/// be determined with `calcSetStringLimbCount`.
/// Asserts the base is in the range [2, 16].
///
/// Returns an error if the value has invalid digits for the requested base.
///
/// `limbs_buffer` is used for temporary storage. The size required can be found with
/// `calcSetStringLimbsBufferLen`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn setString(
self: *Mutable,
base: u8,
value: []const u8,
limbs_buffer: []Limb,
allocator: ?*Allocator,
) error{InvalidCharacter}!void {
assert(base >= 2 and base <= 16);
var i: usize = 0;
var positive = true;
if (value.len > 0 and value[0] == '-') {
positive = false;
i += 1;
}
const ap_base: Const = .{ .limbs = &[_]Limb{base}, .positive = true };
self.set(0);
for (value[i..]) |ch| {
if (ch == '_') {
continue;
}
const d = try std.fmt.charToDigit(ch, base);
const ap_d: Const = .{ .limbs = &[_]Limb{d}, .positive = true };
self.mul(self.toConst(), ap_base, limbs_buffer, allocator);
self.add(self.toConst(), ap_d);
}
self.positive = positive;
}
/// r = a + scalar
///
/// r and a may be aliases.
/// scalar is a primitive integer type.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, calcLimbLen(scalar)) + 1`.
pub fn addScalar(r: *Mutable, a: Const, scalar: var) void {
var limbs: [calcLimbLen(scalar)]Limb = undefined;
const operand = init(&limbs, scalar).toConst();
return add(r, a, operand);
}
/// r = a + b
///
/// r, a and b may be aliases.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, b.limbs.len) + 1`.
pub fn add(r: *Mutable, a: Const, b: Const) void {
if (a.eqZero()) {
r.copy(b);
return;
} else if (b.eqZero()) {
r.copy(a);
return;
}
if (a.limbs.len == 1 and b.limbs.len == 1 and a.positive == b.positive) {
if (!@addWithOverflow(Limb, a.limbs[0], b.limbs[0], &r.limbs[0])) {
r.len = 1;
r.positive = a.positive;
return;
}
}
if (a.positive != b.positive) {
if (a.positive) {
// (a) + (-b) => a - b
r.sub(a, b.abs());
} else {
// (-a) + (b) => b - a
r.sub(b, a.abs());
}
} else {
if (a.limbs.len >= b.limbs.len) {
lladd(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len + 1);
} else {
lladd(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len + 1);
}
r.positive = a.positive;
}
}
/// r = a - b
///
/// r, a and b may be aliases.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, b.limbs.len) + 1`. The +1 is not needed if both operands are positive.
pub fn sub(r: *Mutable, a: Const, b: Const) void {
if (a.positive != b.positive) {
if (a.positive) {
// (a) - (-b) => a + b
r.add(a, b.abs());
} else {
// (-a) - (b) => -(a + b)
r.add(a.abs(), b);
r.positive = false;
}
} else {
if (a.positive) {
// (a) - (b) => a - b
if (a.order(b) != .lt) {
llsub(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len);
r.positive = true;
} else {
llsub(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len);
r.positive = false;
}
} else {
// (-a) - (-b) => -(a - b)
if (a.order(b) == .lt) {
llsub(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len);
r.positive = false;
} else {
llsub(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len);
r.positive = true;
}
}
}
}
/// rma = a * b
///
/// `rma` may alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len + 1`.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcMulLimbsBufferLen`.
pub fn mul(rma: *Mutable, a: Const, b: Const, limbs_buffer: []Limb, allocator: ?*Allocator) void {
var buf_index: usize = 0;
const a_copy = if (rma.limbs.ptr == a.limbs.ptr) blk: {
const start = buf_index;
mem.copy(Limb, limbs_buffer[buf_index..], a.limbs);
buf_index += a.limbs.len;
break :blk a.toMutable(limbs_buffer[start..buf_index]).toConst();
} else a;
const b_copy = if (rma.limbs.ptr == b.limbs.ptr) blk: {
const start = buf_index;
mem.copy(Limb, limbs_buffer[buf_index..], b.limbs);
buf_index += b.limbs.len;
break :blk b.toMutable(limbs_buffer[start..buf_index]).toConst();
} else b;
return rma.mulNoAlias(a_copy, b_copy, allocator);
}
/// rma = a * b
///
/// `rma` may not alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len + 1`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn mulNoAlias(rma: *Mutable, a: Const, b: Const, allocator: ?*Allocator) void {
assert(rma.limbs.ptr != a.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != b.limbs.ptr); // illegal aliasing
if (a.limbs.len == 1 and b.limbs.len == 1) {
if (!@mulWithOverflow(Limb, a.limbs[0], b.limbs[0], &rma.limbs[0])) {
rma.len = 1;
rma.positive = (a.positive == b.positive);
return;
}
}
mem.set(Limb, rma.limbs[0 .. a.limbs.len + b.limbs.len + 1], 0);
llmulacc(allocator, rma.limbs, a.limbs, b.limbs);
rma.normalize(a.limbs.len + b.limbs.len);
rma.positive = (a.positive == b.positive);
}
/// q = a / b (rem r)
///
/// a / b are floored (rounded towards 0).
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is a.limbs.len.
/// The upper bound for q limb count is given by `a.limbs.len + b.limbs.len + 1`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcDivLimbsBufferLen`.
pub fn divFloor(
q: *Mutable,
r: *Mutable,
a: Const,
b: Const,
limbs_buffer: []Limb,
allocator: ?*Allocator,
) void {
div(q, r, a, b, limbs_buffer, allocator);
// Trunc -> Floor.
if (!q.positive) {
const one: Const = .{ .limbs = &[_]Limb{1}, .positive = true };
q.sub(q.toConst(), one);
r.add(q.toConst(), one);
}
r.positive = b.positive;
}
/// q = a / b (rem r)
///
/// a / b are truncated (rounded towards -inf).
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is a.limbs.len.
/// The upper bound for q limb count is given by `calcQuotientLimbLen`. This accounts
/// for temporary space used by the division algorithm.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcDivLimbsBufferLen`.
pub fn divTrunc(
q: *Mutable,
r: *Mutable,
a: Const,
b: Const,
limbs_buffer: []Limb,
allocator: ?*Allocator,
) void {
div(q, r, a, b, limbs_buffer, allocator);
r.positive = a.positive;
}
/// r = a << shift, in other words, r = a * 2^shift
///
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// `a.limbs.len + (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftLeft(r: *Mutable, a: Const, shift: usize) void {
llshl(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.normalize(a.limbs.len + (shift / Limb.bit_count) + 1);
r.positive = a.positive;
}
/// r = a >> shift
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// `a.limbs.len - (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftRight(r: *Mutable, a: Const, shift: usize) void {
if (a.limbs.len <= shift / Limb.bit_count) {
r.len = 1;
r.positive = true;
r.limbs[0] = 0;
return;
}
const r_len = llshr(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.len = a.limbs.len - (shift / Limb.bit_count);
r.positive = a.positive;
}
/// r = a | b
/// r may alias with a or b.
///
/// a and b are zero-extended to the longer of a or b.
///
/// Asserts that r has enough limbs to store the result. Upper bound is `math.max(a.limbs.len, b.limbs.len)`.
pub fn bitOr(r: *Mutable, a: Const, b: Const) void {
if (a.limbs.len > b.limbs.len) {
llor(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.len = a.limbs.len;
} else {
llor(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.len = b.limbs.len;
}
}
/// r = a & b
/// r may alias with a or b.
///
/// Asserts that r has enough limbs to store the result. Upper bound is `math.min(a.limbs.len, b.limbs.len)`.
pub fn bitAnd(r: *Mutable, a: Const, b: Const) void {
if (a.limbs.len > b.limbs.len) {
lland(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(b.limbs.len);
} else {
lland(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(a.limbs.len);
}
}
/// r = a ^ b
/// r may alias with a or b.
///
/// Asserts that r has enough limbs to store the result. Upper bound is `math.max(a.limbs.len, b.limbs.len)`.
pub fn bitXor(r: *Mutable, a: Const, b: Const) void {
if (a.limbs.len > b.limbs.len) {
llxor(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len);
} else {
llxor(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len);
}
}
/// rma may alias x or y.
/// x and y may alias each other.
/// Asserts that `rma` has enough limbs to store the result. Upper bound is
/// `math.min(x.limbs.len, y.limbs.len)`.
///
/// `limbs_buffer` is used for temporary storage during the operation. When this function returns,
/// it will have the same length as it had when the function was called.
pub fn gcd(rma: *Mutable, x: Const, y: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
const prev_len = limbs_buffer.items.len;
defer limbs_buffer.shrink(prev_len);
const x_copy = if (rma.limbs.ptr == x.limbs.ptr) blk: {
const start = limbs_buffer.items.len;
try limbs_buffer.appendSlice(x.limbs);
break :blk x.toMutable(limbs_buffer.items[start..]).toConst();
} else x;
const y_copy = if (rma.limbs.ptr == y.limbs.ptr) blk: {
const start = limbs_buffer.items.len;
try limbs_buffer.appendSlice(y.limbs);
break :blk y.toMutable(limbs_buffer.items[start..]).toConst();
} else y;
return gcdLehmer(rma, x_copy, y_copy, limbs_buffer);
}
/// rma may not alias x or y.
/// x and y may alias each other.
/// Asserts that `rma` has enough limbs to store the result. Upper bound is given by `calcGcdNoAliasLimbLen`.
///
/// `limbs_buffer` is used for temporary storage during the operation.
pub fn gcdNoAlias(rma: *Mutable, x: Const, y: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
assert(rma.limbs.ptr != x.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != y.limbs.ptr); // illegal aliasing
return gcdLehmer(rma, x, y, allocator);
}
fn gcdLehmer(result: *Mutable, xa: Const, ya: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
var x = try xa.toManaged(limbs_buffer.allocator);
defer x.deinit();
x.abs();
var y = try ya.toManaged(limbs_buffer.allocator);
defer y.deinit();
y.abs();
if (x.toConst().order(y.toConst()) == .lt) {
x.swap(&y);
}
var t_big = try Managed.init(limbs_buffer.allocator);
defer t_big.deinit();
var r = try Managed.init(limbs_buffer.allocator);
defer r.deinit();
while (y.len() > 1) {
assert(x.isPositive() and y.isPositive());
assert(x.len() >= y.len());
var xh: SignedDoubleLimb = x.limbs[x.len() - 1];
var yh: SignedDoubleLimb = if (x.len() > y.len()) 0 else y.limbs[x.len() - 1];
var A: SignedDoubleLimb = 1;
var B: SignedDoubleLimb = 0;
var C: SignedDoubleLimb = 0;
var D: SignedDoubleLimb = 1;
while (yh + C != 0 and yh + D != 0) {
const q = @divFloor(xh + A, yh + C);
const qp = @divFloor(xh + B, yh + D);
if (q != qp) {
break;
}
var t = A - q * C;
A = C;
C = t;
t = B - q * D;
B = D;
D = t;
t = xh - q * yh;
xh = yh;
yh = t;
}
if (B == 0) {
// t_big = x % y, r is unused
try r.divTrunc(&t_big, x.toConst(), y.toConst());
assert(t_big.isPositive());
x.swap(&y);
y.swap(&t_big);
} else {
var storage: [8]Limb = undefined;
const Ap = fixedIntFromSignedDoubleLimb(A, storage[0..2]).toConst();
const Bp = fixedIntFromSignedDoubleLimb(B, storage[2..4]).toConst();
const Cp = fixedIntFromSignedDoubleLimb(C, storage[4..6]).toConst();
const Dp = fixedIntFromSignedDoubleLimb(D, storage[6..8]).toConst();
// t_big = Ax + By
try r.mul(x.toConst(), Ap);
try t_big.mul(y.toConst(), Bp);
try t_big.add(r.toConst(), t_big.toConst());
// u = Cx + Dy, r as u
try x.mul(x.toConst(), Cp);
try r.mul(y.toConst(), Dp);
try r.add(x.toConst(), r.toConst());
x.swap(&t_big);
y.swap(&r);
}
}
// euclidean algorithm
assert(x.toConst().order(y.toConst()) != .lt);
while (!y.toConst().eqZero()) {
try t_big.divTrunc(&r, x.toConst(), y.toConst());
x.swap(&y);
y.swap(&r);
}
result.copy(x.toConst());
}
/// Truncates by default.
fn div(quo: *Mutable, rem: *Mutable, a: Const, b: Const, limbs_buffer: []Limb, allocator: ?*Allocator) void {
assert(!b.eqZero()); // division by zero
assert(quo != rem); // illegal aliasing
if (a.orderAbs(b) == .lt) {
// quo may alias a so handle rem first
rem.copy(a);
rem.positive = a.positive == b.positive;
quo.positive = true;
quo.len = 1;
quo.limbs[0] = 0;
return;
}
// Handle trailing zero-words of divisor/dividend. These are not handled in the following
// algorithms.
const a_zero_limb_count = blk: {
var i: usize = 0;
while (i < a.limbs.len) : (i += 1) {
if (a.limbs[i] != 0) break;
}
break :blk i;
};
const b_zero_limb_count = blk: {
var i: usize = 0;
while (i < b.limbs.len) : (i += 1) {
if (b.limbs[i] != 0) break;
}
break :blk i;
};
const ab_zero_limb_count = math.min(a_zero_limb_count, b_zero_limb_count);
if (b.limbs.len - ab_zero_limb_count == 1) {
lldiv1(quo.limbs[0..], &rem.limbs[0], a.limbs[ab_zero_limb_count..a.limbs.len], b.limbs[b.limbs.len - 1]);
quo.normalize(a.limbs.len - ab_zero_limb_count);
quo.positive = (a.positive == b.positive);
rem.len = 1;
rem.positive = true;
} else {
// x and y are modified during division
const sep_len = calcMulLimbsBufferLen(a.limbs.len, b.limbs.len, 2);
const x_limbs = limbs_buffer[0 * sep_len ..][0..sep_len];
const y_limbs = limbs_buffer[1 * sep_len ..][0..sep_len];
const t_limbs = limbs_buffer[2 * sep_len ..][0..sep_len];
const mul_limbs_buf = limbs_buffer[3 * sep_len ..][0..sep_len];
var x: Mutable = .{
.limbs = x_limbs,
.positive = a.positive,
.len = a.limbs.len - ab_zero_limb_count,
};
var y: Mutable = .{
.limbs = y_limbs,
.positive = b.positive,
.len = b.limbs.len - ab_zero_limb_count,
};
// Shrink x, y such that the trailing zero limbs shared between are removed.
mem.copy(Limb, x.limbs, a.limbs[ab_zero_limb_count..a.limbs.len]);
mem.copy(Limb, y.limbs, b.limbs[ab_zero_limb_count..b.limbs.len]);
divN(quo, rem, &x, &y, t_limbs, mul_limbs_buf, allocator);
quo.positive = (a.positive == b.positive);
}
if (ab_zero_limb_count != 0) {
rem.shiftLeft(rem.toConst(), ab_zero_limb_count * Limb.bit_count);
}
}
/// Handbook of Applied Cryptography, 14.20
///
/// x = qy + r where 0 <= r < y
fn divN(
q: *Mutable,
r: *Mutable,
x: *Mutable,
y: *Mutable,
tmp_limbs: []Limb,
mul_limb_buf: []Limb,
allocator: ?*Allocator,
) void {
assert(y.len >= 2);
assert(x.len >= y.len);
assert(q.limbs.len >= x.len + y.len - 1);
// See 3.2
var backup_tmp_limbs: [3]Limb = undefined;
const t_limbs = if (tmp_limbs.len < 3) &backup_tmp_limbs else tmp_limbs;
var tmp: Mutable = .{
.limbs = t_limbs,
.len = 1,
.positive = true,
};
tmp.limbs[0] = 0;
// Normalize so y > Limb.bit_count / 2 (i.e. leading bit is set) and even
var norm_shift = @clz(Limb, y.limbs[y.len - 1]);
if (norm_shift == 0 and y.toConst().isOdd()) {
norm_shift = Limb.bit_count;
}
x.shiftLeft(x.toConst(), norm_shift);
y.shiftLeft(y.toConst(), norm_shift);
const n = x.len - 1;
const t = y.len - 1;
// 1.
q.len = n - t + 1;
q.positive = true;
mem.set(Limb, q.limbs[0..q.len], 0);
// 2.
tmp.shiftLeft(y.toConst(), Limb.bit_count * (n - t));
while (x.toConst().order(tmp.toConst()) != .lt) {
q.limbs[n - t] += 1;
x.sub(x.toConst(), tmp.toConst());
}
// 3.
var i = n;
while (i > t) : (i -= 1) {
// 3.1
if (x.limbs[i] == y.limbs[t]) {
q.limbs[i - t - 1] = maxInt(Limb);
} else {
const num = (@as(DoubleLimb, x.limbs[i]) << Limb.bit_count) | @as(DoubleLimb, x.limbs[i - 1]);
const z = @intCast(Limb, num / @as(DoubleLimb, y.limbs[t]));
q.limbs[i - t - 1] = if (z > maxInt(Limb)) maxInt(Limb) else @as(Limb, z);
}
// 3.2
tmp.limbs[0] = if (i >= 2) x.limbs[i - 2] else 0;
tmp.limbs[1] = if (i >= 1) x.limbs[i - 1] else 0;
tmp.limbs[2] = x.limbs[i];
tmp.normalize(3);
while (true) {
// 2x1 limb multiplication unrolled against single-limb q[i-t-1]
var carry: Limb = 0;
r.limbs[0] = addMulLimbWithCarry(0, if (t >= 1) y.limbs[t - 1] else 0, q.limbs[i - t - 1], &carry);
r.limbs[1] = addMulLimbWithCarry(0, y.limbs[t], q.limbs[i - t - 1], &carry);
r.limbs[2] = carry;
r.normalize(3);
if (r.toConst().orderAbs(tmp.toConst()) != .gt) {
break;
}
q.limbs[i - t - 1] -= 1;
}
// 3.3
tmp.set(q.limbs[i - t - 1]);
tmp.mul(tmp.toConst(), y.toConst(), mul_limb_buf, allocator);
tmp.shiftLeft(tmp.toConst(), Limb.bit_count * (i - t - 1));
x.sub(x.toConst(), tmp.toConst());
if (!x.positive) {
tmp.shiftLeft(y.toConst(), Limb.bit_count * (i - t - 1));
x.add(x.toConst(), tmp.toConst());
q.limbs[i - t - 1] -= 1;
}
}
// Denormalize
q.normalize(q.len);
r.shiftRight(x.toConst(), norm_shift);
r.normalize(r.len);
}
/// Normalize a possible sequence of leading zeros.
///
/// [1, 2, 3, 4, 0] -> [1, 2, 3, 4]
/// [1, 2, 0, 0, 0] -> [1, 2]
/// [0, 0, 0, 0, 0] -> [0]
fn normalize(r: *Mutable, length: usize) void {
r.len = llnormalize(r.limbs[0..length]);
}
};
/// A arbitrary-precision big integer, with a fixed set of immutable limbs.
pub const Const = struct {
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represented as limbs.len == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
limbs: []const Limb,
positive: bool,
/// The result is an independent resource which is managed by the caller.
pub fn toManaged(self: Const, allocator: *Allocator) Allocator.Error!Managed {
const limbs = try allocator.alloc(Limb, math.max(Managed.default_capacity, self.limbs.len));
mem.copy(Limb, limbs, self.limbs);
return Managed{
.allocator = allocator,
.limbs = limbs,
.metadata = if (self.positive)
self.limbs.len & ~Managed.sign_bit
else
self.limbs.len | Managed.sign_bit,
};
}
/// Asserts `limbs` is big enough to store the value.
pub fn toMutable(self: Const, limbs: []Limb) Mutable {
mem.copy(Limb, limbs, self.limbs[0..self.limbs.len]);
return .{
.limbs = limbs,
.positive = self.positive,
.len = self.limbs.len,
};
}
pub fn dump(self: Const) void {
for (self.limbs[0..self.limbs.len]) |limb| {
std.debug.warn("{x} ", .{limb});
}
std.debug.warn("positive={}\n", .{self.positive});
}
pub fn abs(self: Const) Const {
return .{
.limbs = self.limbs,
.positive = true,
};
}
pub fn isOdd(self: Const) bool {
return self.limbs[0] & 1 != 0;
}
pub fn isEven(self: Const) bool {
return !self.isOdd();
}
/// Returns the number of bits required to represent the absolute value of an integer.
pub fn bitCountAbs(self: Const) usize {
return (self.limbs.len - 1) * Limb.bit_count + (Limb.bit_count - @clz(Limb, self.limbs[self.limbs.len - 1]));
}
/// Returns the number of bits required to represent the integer in twos-complement form.
///
/// If the integer is negative the value returned is the number of bits needed by a signed
/// integer to represent the value. If positive the value is the number of bits for an
/// unsigned integer. Any unsigned integer will fit in the signed integer with bitcount
/// one greater than the returned value.
///
/// e.g. -127 returns 8 as it will fit in an i8. 127 returns 7 since it fits in a u7.
pub fn bitCountTwosComp(self: Const) usize {
var bits = self.bitCountAbs();
// If the entire value has only one bit set (e.g. 0b100000000) then the negation in twos
// complement requires one less bit.
if (!self.positive) block: {
bits += 1;
if (@popCount(Limb, self.limbs[self.limbs.len - 1]) == 1) {
for (self.limbs[0 .. self.limbs.len - 1]) |limb| {
if (@popCount(Limb, limb) != 0) {
break :block;
}
}
bits -= 1;
}
}
return bits;
}
pub fn fitsInTwosComp(self: Const, is_signed: bool, bit_count: usize) bool {
if (self.eqZero()) {
return true;
}
if (!is_signed and !self.positive) {
return false;
}
const req_bits = self.bitCountTwosComp() + @boolToInt(self.positive and is_signed);
return bit_count >= req_bits;
}
/// Returns whether self can fit into an integer of the requested type.
pub fn fits(self: Const, comptime T: type) bool {
const info = @typeInfo(T).Int;
return self.fitsInTwosComp(info.is_signed, info.bits);
}
/// Returns the approximate size of the integer in the given base. Negative values accommodate for
/// the minus sign. This is used for determining the number of characters needed to print the
/// value. It is inexact and may exceed the given value by ~1-2 bytes.
/// TODO See if we can make this exact.
pub fn sizeInBaseUpperBound(self: Const, base: usize) usize {
const bit_count = @as(usize, @boolToInt(!self.positive)) + self.bitCountAbs();
return (bit_count / math.log2(base)) + 1;
}
pub const ConvertError = error{
NegativeIntoUnsigned,
TargetTooSmall,
};
/// Convert self to type T.
///
/// Returns an error if self cannot be narrowed into the requested type without truncation.
pub fn to(self: Const, comptime T: type) ConvertError!T {
switch (@typeInfo(T)) {
.Int => {
const UT = std.meta.IntType(false, T.bit_count);
if (self.bitCountTwosComp() > T.bit_count) {
return error.TargetTooSmall;
}
var r: UT = 0;
if (@sizeOf(UT) <= @sizeOf(Limb)) {
r = @intCast(UT, self.limbs[0]);
} else {
for (self.limbs[0..self.limbs.len]) |_, ri| {
const limb = self.limbs[self.limbs.len - ri - 1];
r <<= Limb.bit_count;
r |= limb;
}
}
if (!T.is_signed) {
return if (self.positive) @intCast(T, r) else error.NegativeIntoUnsigned;
} else {
if (self.positive) {
return @intCast(T, r);
} else {
if (math.cast(T, r)) |ok| {
return -ok;
} else |_| {
return minInt(T);
}
}
}
},
else => @compileError("cannot convert Const to type " ++ @typeName(T)),
}
}
/// To allow `std.fmt.format` to work with this type.
/// If the integer is larger than `pow(2, 64 * @sizeOf(usize) * 8), this function will fail
/// to print the string, printing "(BigInt)" instead of a number.
/// This is because the rendering algorithm requires reversing a string, which requires O(N) memory.
/// See `toString` and `toStringAlloc` for a way to print big integers without failure.
pub fn format(
self: Const,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
out_stream: var,
) !void {
comptime var radix = 10;
comptime var uppercase = false;
if (fmt.len == 0 or comptime mem.eql(u8, fmt, "d")) {
radix = 10;
uppercase = false;
} else if (comptime mem.eql(u8, fmt, "b")) {
radix = 2;
uppercase = false;
} else if (comptime mem.eql(u8, fmt, "x")) {
radix = 16;
uppercase = false;
} else if (comptime mem.eql(u8, fmt, "X")) {
radix = 16;
uppercase = true;
} else {
@compileError("Unknown format string: '" ++ fmt ++ "'");
}
var limbs: [128]Limb = undefined;
const needed_limbs = calcDivLimbsBufferLen(self.limbs.len, 1);
if (needed_limbs > limbs.len)
return out_stream.writeAll("(BigInt)");
// This is the inverse of calcDivLimbsBufferLen
const available_len = (limbs.len / 3) - 2;
const biggest: Const = .{
.limbs = &([1]Limb{math.maxInt(Limb)} ** available_len),
.positive = false,
};
var buf: [biggest.sizeInBaseUpperBound(radix)]u8 = undefined;
const len = self.toString(&buf, radix, uppercase, &limbs);
return out_stream.writeAll(buf[0..len]);
}
/// Converts self to a string in the requested base.
/// Caller owns returned memory.
/// Asserts that `base` is in the range [2, 16].
/// See also `toString`, a lower level function than this.
pub fn toStringAlloc(self: Const, allocator: *Allocator, base: u8, uppercase: bool) Allocator.Error![]u8 {
assert(base >= 2);
assert(base <= 16);
if (self.eqZero()) {
return mem.dupe(allocator, u8, "0");
}
const string = try allocator.alloc(u8, self.sizeInBaseUpperBound(base));
errdefer allocator.free(string);
const limbs = try allocator.alloc(Limb, calcToStringLimbsBufferLen(self.limbs.len, base));
defer allocator.free(limbs);
return allocator.shrink(string, self.toString(string, base, uppercase, limbs));
}
/// Converts self to a string in the requested base.
/// Asserts that `base` is in the range [2, 16].
/// `string` is a caller-provided slice of at least `sizeInBaseUpperBound` bytes,
/// where the result is written to.
/// Returns the length of the string.
/// `limbs_buffer` is caller-provided memory for `toString` to use as a working area. It must have
/// length of at least `calcToStringLimbsBufferLen`.
/// In the case of power-of-two base, `limbs_buffer` is ignored.
/// See also `toStringAlloc`, a higher level function than this.
pub fn toString(self: Const, string: []u8, base: u8, uppercase: bool, limbs_buffer: []Limb) usize {
assert(base >= 2);
assert(base <= 16);
if (self.eqZero()) {
string[0] = '0';
return 1;
}
var digits_len: usize = 0;
// Power of two: can do a single pass and use masks to extract digits.
if (math.isPowerOfTwo(base)) {
const base_shift = math.log2_int(Limb, base);
outer: for (self.limbs[0..self.limbs.len]) |limb| {
var shift: usize = 0;
while (shift < Limb.bit_count) : (shift += base_shift) {
const r = @intCast(u8, (limb >> @intCast(Log2Limb, shift)) & @as(Limb, base - 1));
const ch = std.fmt.digitToChar(r, uppercase);
string[digits_len] = ch;
digits_len += 1;
// If we hit the end, it must be all zeroes from here.
if (digits_len == string.len) break :outer;
}
}
// Always will have a non-zero digit somewhere.
while (string[digits_len - 1] == '0') {
digits_len -= 1;
}
} else {
// Non power-of-two: batch divisions per word size.
const digits_per_limb = math.log(Limb, base, maxInt(Limb));
var limb_base: Limb = 1;
var j: usize = 0;
while (j < digits_per_limb) : (j += 1) {
limb_base *= base;
}
const b: Const = .{ .limbs = &[_]Limb{limb_base}, .positive = true };
var q: Mutable = .{
.limbs = limbs_buffer[0 .. self.limbs.len + 2],
.positive = true, // Make absolute by ignoring self.positive.
.len = self.limbs.len,
};
mem.copy(Limb, q.limbs, self.limbs);
var r: Mutable = .{
.limbs = limbs_buffer[q.limbs.len..][0..self.limbs.len],
.positive = true,
.len = 1,
};
r.limbs[0] = 0;
const rest_of_the_limbs_buf = limbs_buffer[q.limbs.len + r.limbs.len ..];
while (q.len >= 2) {
// Passing an allocator here would not be helpful since this division is destroying
// information, not creating it. [TODO citation needed]
q.divTrunc(&r, q.toConst(), b, rest_of_the_limbs_buf, null);
var r_word = r.limbs[0];
var i: usize = 0;
while (i < digits_per_limb) : (i += 1) {
const ch = std.fmt.digitToChar(@intCast(u8, r_word % base), uppercase);
r_word /= base;
string[digits_len] = ch;
digits_len += 1;
}
}
{
assert(q.len == 1);
var r_word = q.limbs[0];
while (r_word != 0) {
const ch = std.fmt.digitToChar(@intCast(u8, r_word % base), uppercase);
r_word /= base;
string[digits_len] = ch;
digits_len += 1;
}
}
}
if (!self.positive) {
string[digits_len] = '-';
digits_len += 1;
}
const s = string[0..digits_len];
mem.reverse(u8, s);
return s.len;
}
/// Returns `math.Order.lt`, `math.Order.eq`, `math.Order.gt` if
/// `|a| < |b|`, `|a| == |b|`, or `|a| > |b|` respectively.
pub fn orderAbs(a: Const, b: Const) math.Order {
if (a.limbs.len < b.limbs.len) {
return .lt;
}
if (a.limbs.len > b.limbs.len) {
return .gt;
}
var i: usize = a.limbs.len - 1;
while (i != 0) : (i -= 1) {
if (a.limbs[i] != b.limbs[i]) {
break;
}
}
if (a.limbs[i] < b.limbs[i]) {
return .lt;
} else if (a.limbs[i] > b.limbs[i]) {
return .gt;
} else {
return .eq;
}
}
/// Returns `math.Order.lt`, `math.Order.eq`, `math.Order.gt` if `a < b`, `a == b` or `a > b` respectively.
pub fn order(a: Const, b: Const) math.Order {
if (a.positive != b.positive) {
return if (a.positive) .gt else .lt;
} else {
const r = orderAbs(a, b);
return if (a.positive) r else switch (r) {
.lt => math.Order.gt,
.eq => math.Order.eq,
.gt => math.Order.lt,
};
}
}
/// Same as `order` but the right-hand operand is a primitive integer.
pub fn orderAgainstScalar(lhs: Const, scalar: var) math.Order {
var limbs: [calcLimbLen(scalar)]Limb = undefined;
const rhs = Mutable.init(&limbs, scalar);
return order(lhs, rhs.toConst());
}
/// Returns true if `a == 0`.
pub fn eqZero(a: Const) bool {
return a.limbs.len == 1 and a.limbs[0] == 0;
}
/// Returns true if `|a| == |b|`.
pub fn eqAbs(a: Const, b: Const) bool {
return orderAbs(a, b) == .eq;
}
/// Returns true if `a == b`.
pub fn eq(a: Const, b: Const) bool {
return order(a, b) == .eq;
}
};
/// An arbitrary-precision big integer along with an allocator which manages the memory.
///
/// Memory is allocated as needed to ensure operations never overflow. The range
/// is bounded only by available memory.
pub const Managed = struct {
pub const sign_bit: usize = 1 << (usize.bit_count - 1);
/// Default number of limbs to allocate on creation of a `Managed`.
pub const default_capacity = 4;
/// Allocator used by the Managed when requesting memory.
allocator: *Allocator,
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represent as Managed.len() == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
limbs: []Limb,
/// High bit is the sign bit. If set, Managed is negative, else Managed is positive.
/// The remaining bits represent the number of limbs used by Managed.
metadata: usize,
/// Creates a new `Managed`. `default_capacity` limbs will be allocated immediately.
/// The integer value after initializing is `0`.
pub fn init(allocator: *Allocator) !Managed {
return initCapacity(allocator, default_capacity);
}
pub fn toMutable(self: Managed) Mutable {
return .{
.limbs = self.limbs,
.positive = self.isPositive(),
.len = self.len(),
};
}
pub fn toConst(self: Managed) Const {
return .{
.limbs = self.limbs[0..self.len()],
.positive = self.isPositive(),
};
}
/// Creates a new `Managed` with value `value`.
///
/// This is identical to an `init`, followed by a `set`.
pub fn initSet(allocator: *Allocator, value: var) !Managed {
var s = try Managed.init(allocator);
try s.set(value);
return s;
}
/// Creates a new Managed with a specific capacity. If capacity < default_capacity then the
/// default capacity will be used instead.
/// The integer value after initializing is `0`.
pub fn initCapacity(allocator: *Allocator, capacity: usize) !Managed {
return Managed{
.allocator = allocator,
.metadata = 1,
.limbs = block: {
const limbs = try allocator.alloc(Limb, math.max(default_capacity, capacity));
limbs[0] = 0;
break :block limbs;
},
};
}
/// Returns the number of limbs currently in use.
pub fn len(self: Managed) usize {
return self.metadata & ~sign_bit;
}
/// Returns whether an Managed is positive.
pub fn isPositive(self: Managed) bool {
return self.metadata & sign_bit == 0;
}
/// Sets the sign of an Managed.
pub fn setSign(self: *Managed, positive: bool) void {
if (positive) {
self.metadata &= ~sign_bit;
} else {
self.metadata |= sign_bit;
}
}
/// Sets the length of an Managed.
///
/// If setLen is used, then the Managed must be normalized to suit.
pub fn setLen(self: *Managed, new_len: usize) void {
self.metadata &= sign_bit;
self.metadata |= new_len;
}
pub fn setMetadata(self: *Managed, positive: bool, length: usize) void {
self.metadata = if (positive) length & ~sign_bit else length | sign_bit;
}
/// Ensures an Managed has enough space allocated for capacity limbs. If the Managed does not have
/// sufficient capacity, the exact amount will be allocated. This occurs even if the requested
/// capacity is only greater than the current capacity by one limb.
pub fn ensureCapacity(self: *Managed, capacity: usize) !void {
if (capacity <= self.limbs.len) {
return;
}
self.limbs = try self.allocator.realloc(self.limbs, capacity);
}
/// Frees all associated memory.
pub fn deinit(self: *Managed) void {
self.allocator.free(self.limbs);
self.* = undefined;
}
/// Returns a `Managed` with the same value. The returned `Managed` is a deep copy and
/// can be modified separately from the original, and its resources are managed
/// separately from the original.
pub fn clone(other: Managed) !Managed {
return other.cloneWithDifferentAllocator(other.allocator);
}
pub fn cloneWithDifferentAllocator(other: Managed, allocator: *Allocator) !Managed {
return Managed{
.allocator = allocator,
.metadata = other.metadata,
.limbs = block: {
var limbs = try allocator.alloc(Limb, other.len());
mem.copy(Limb, limbs[0..], other.limbs[0..other.len()]);
break :block limbs;
},
};
}
/// Copies the value of the integer to an existing `Managed` so that they both have the same value.
/// Extra memory will be allocated if the receiver does not have enough capacity.
pub fn copy(self: *Managed, other: Const) !void {
if (self.limbs.ptr == other.limbs.ptr) return;
try self.ensureCapacity(other.limbs.len);
mem.copy(Limb, self.limbs[0..], other.limbs[0..other.limbs.len]);
self.setMetadata(other.positive, other.limbs.len);
}
/// Efficiently swap a `Managed` with another. This swaps the limb pointers and a full copy is not
/// performed. The address of the limbs field will not be the same after this function.
pub fn swap(self: *Managed, other: *Managed) void {
mem.swap(Managed, self, other);
}
/// Debugging tool: prints the state to stderr.
pub fn dump(self: Managed) void {
for (self.limbs[0..self.len()]) |limb| {
std.debug.warn("{x} ", .{limb});
}
std.debug.warn("capacity={} positive={}\n", .{ self.limbs.len, self.positive });
}
/// Negate the sign.
pub fn negate(self: *Managed) void {
self.metadata ^= sign_bit;
}
/// Make positive.
pub fn abs(self: *Managed) void {
self.metadata &= ~sign_bit;
}
pub fn isOdd(self: Managed) bool {
return self.limbs[0] & 1 != 0;
}
pub fn isEven(self: Managed) bool {
return !self.isOdd();
}
/// Returns the number of bits required to represent the absolute value of an integer.
pub fn bitCountAbs(self: Managed) usize {
return self.toConst().bitCountAbs();
}
/// Returns the number of bits required to represent the integer in twos-complement form.
///
/// If the integer is negative the value returned is the number of bits needed by a signed
/// integer to represent the value. If positive the value is the number of bits for an
/// unsigned integer. Any unsigned integer will fit in the signed integer with bitcount
/// one greater than the returned value.
///
/// e.g. -127 returns 8 as it will fit in an i8. 127 returns 7 since it fits in a u7.
pub fn bitCountTwosComp(self: Managed) usize {
return self.toConst().bitCountTwosComp();
}
pub fn fitsInTwosComp(self: Managed, is_signed: bool, bit_count: usize) bool {
return self.toConst().fitsInTwosComp(is_signed, bit_count);
}
/// Returns whether self can fit into an integer of the requested type.
pub fn fits(self: Managed, comptime T: type) bool {
return self.toConst().fits(T);
}
/// Returns the approximate size of the integer in the given base. Negative values accommodate for
/// the minus sign. This is used for determining the number of characters needed to print the
/// value. It is inexact and may exceed the given value by ~1-2 bytes.
pub fn sizeInBaseUpperBound(self: Managed, base: usize) usize {
return self.toConst().sizeInBaseUpperBound(base);
}
/// Sets an Managed to value. Value must be an primitive integer type.
pub fn set(self: *Managed, value: var) Allocator.Error!void {
try self.ensureCapacity(calcLimbLen(value));
var m = self.toMutable();
m.set(value);
self.setMetadata(m.positive, m.len);
}
pub const ConvertError = Const.ConvertError;
/// Convert self to type T.
///
/// Returns an error if self cannot be narrowed into the requested type without truncation.
pub fn to(self: Managed, comptime T: type) ConvertError!T {
return self.toConst().to(T);
}
/// Set self from the string representation `value`.
///
/// `value` must contain only digits <= `base` and is case insensitive. Base prefixes are
/// not allowed (e.g. 0x43 should simply be 43). Underscores in the input string are
/// ignored and can be used as digit separators.
///
/// Returns an error if memory could not be allocated or `value` has invalid digits for the
/// requested base.
///
/// self's allocator is used for temporary storage to boost multiplication performance.
pub fn setString(self: *Managed, base: u8, value: []const u8) !void {
if (base < 2 or base > 16) return error.InvalidBase;
const den = (@sizeOf(Limb) * 8 / base);
try self.ensureCapacity((value.len + (den - 1)) / den);
const limbs_buffer = try self.allocator.alloc(Limb, calcSetStringLimbsBufferLen(base, value.len));
defer self.allocator.free(limbs_buffer);
var m = self.toMutable();
try m.setString(base, value, limbs_buffer, self.allocator);
self.setMetadata(m.positive, m.len);
}
/// Converts self to a string in the requested base. Memory is allocated from the provided
/// allocator and not the one present in self.
pub fn toString(self: Managed, allocator: *Allocator, base: u8, uppercase: bool) ![]u8 {
if (base < 2 or base > 16) return error.InvalidBase;
return self.toConst().toStringAlloc(self.allocator, base, uppercase);
}
/// To allow `std.fmt.format` to work with `Managed`.
/// If the integer is larger than `pow(2, 64 * @sizeOf(usize) * 8), this function will fail
/// to print the string, printing "(BigInt)" instead of a number.
/// This is because the rendering algorithm requires reversing a string, which requires O(N) memory.
/// See `toString` and `toStringAlloc` for a way to print big integers without failure.
pub fn format(
self: Managed,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
out_stream: var,
) !void {
return self.toConst().format(fmt, options, out_stream);
}
/// Returns math.Order.lt, math.Order.eq, math.Order.gt if |a| < |b|, |a| ==
/// |b| or |a| > |b| respectively.
pub fn orderAbs(a: Managed, b: Managed) math.Order {
return a.toConst().orderAbs(b.toConst());
}
/// Returns math.Order.lt, math.Order.eq, math.Order.gt if a < b, a == b or a
/// > b respectively.
pub fn order(a: Managed, b: Managed) math.Order {
return a.toConst().order(b.toConst());
}
/// Returns true if a == 0.
pub fn eqZero(a: Managed) bool {
return a.toConst().eqZero();
}
/// Returns true if |a| == |b|.
pub fn eqAbs(a: Managed, b: Managed) bool {
return a.toConst().eqAbs(b.toConst());
}
/// Returns true if a == b.
pub fn eq(a: Managed, b: Managed) bool {
return a.toConst().eq(b.toConst());
}
/// Normalize a possible sequence of leading zeros.
///
/// [1, 2, 3, 4, 0] -> [1, 2, 3, 4]
/// [1, 2, 0, 0, 0] -> [1, 2]
/// [0, 0, 0, 0, 0] -> [0]
pub fn normalize(r: *Managed, length: usize) void {
assert(length > 0);
assert(length <= r.limbs.len);
var j = length;
while (j > 0) : (j -= 1) {
if (r.limbs[j - 1] != 0) {
break;
}
}
// Handle zero
r.setLen(if (j != 0) j else 1);
}
/// r = a + scalar
///
/// r and a may be aliases.
/// scalar is a primitive integer type.
///
/// Returns an error if memory could not be allocated.
pub fn addScalar(r: *Managed, a: Const, scalar: var) Allocator.Error!void {
try r.ensureCapacity(math.max(a.limbs.len, calcLimbLen(scalar)) + 1);
var m = r.toMutable();
m.addScalar(a, scalar);
r.setMetadata(m.positive, m.len);
}
/// r = a + b
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn add(r: *Managed, a: Const, b: Const) Allocator.Error!void {
try r.ensureCapacity(math.max(a.limbs.len, b.limbs.len) + 1);
var m = r.toMutable();
m.add(a, b);
r.setMetadata(m.positive, m.len);
}
/// r = a - b
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn sub(r: *Managed, a: Const, b: Const) !void {
try r.ensureCapacity(math.max(a.limbs.len, b.limbs.len) + 1);
var m = r.toMutable();
m.sub(a, b);
r.setMetadata(m.positive, m.len);
}
/// rma = a * b
///
/// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b.
///
/// Returns an error if memory could not be allocated.
///
/// rma's allocator is used for temporary storage to speed up the multiplication.
pub fn mul(rma: *Managed, a: Const, b: Const) !void {
try rma.ensureCapacity(a.limbs.len + b.limbs.len + 1);
var alias_count: usize = 0;
if (rma.limbs.ptr == a.limbs.ptr)
alias_count += 1;
if (rma.limbs.ptr == b.limbs.ptr)
alias_count += 1;
var m = rma.toMutable();
if (alias_count == 0) {
m.mulNoAlias(a, b, rma.allocator);
} else {
const limb_count = calcMulLimbsBufferLen(a.limbs.len, b.limbs.len, alias_count);
const limbs_buffer = try rma.allocator.alloc(Limb, limb_count);
defer rma.allocator.free(limbs_buffer);
m.mul(a, b, limbs_buffer, rma.allocator);
}
rma.setMetadata(m.positive, m.len);
}
/// q = a / b (rem r)
///
/// a / b are floored (rounded towards 0).
///
/// Returns an error if memory could not be allocated.
///
/// q's allocator is used for temporary storage to speed up the multiplication.
pub fn divFloor(q: *Managed, r: *Managed, a: Const, b: Const) !void {
try q.ensureCapacity(a.limbs.len + b.limbs.len + 1);
try r.ensureCapacity(a.limbs.len);
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.limbs.len, b.limbs.len));
defer q.allocator.free(limbs_buffer);
mq.divFloor(&mr, a, b, limbs_buffer, q.allocator);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
/// q = a / b (rem r)
///
/// a / b are truncated (rounded towards -inf).
///
/// Returns an error if memory could not be allocated.
///
/// q's allocator is used for temporary storage to speed up the multiplication.
pub fn divTrunc(q: *Managed, r: *Managed, a: Const, b: Const) !void {
try q.ensureCapacity(a.limbs.len + b.limbs.len + 1);
try r.ensureCapacity(a.limbs.len);
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.limbs.len, b.limbs.len));
defer q.allocator.free(limbs_buffer);
mq.divTrunc(&mr, a, b, limbs_buffer, q.allocator);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
/// r = a << shift, in other words, r = a * 2^shift
pub fn shiftLeft(r: *Managed, a: Managed, shift: usize) !void {
try r.ensureCapacity(a.len() + (shift / Limb.bit_count) + 1);
var m = r.toMutable();
m.shiftLeft(a.toConst(), shift);
r.setMetadata(m.positive, m.len);
}
/// r = a >> shift
pub fn shiftRight(r: *Managed, a: Managed, shift: usize) !void {
if (a.len() <= shift / Limb.bit_count) {
r.metadata = 1;
r.limbs[0] = 0;
return;
}
try r.ensureCapacity(a.len() - (shift / Limb.bit_count));
var m = r.toMutable();
m.shiftRight(a.toConst(), shift);
r.setMetadata(m.positive, m.len);
}
/// r = a | b
///
/// a and b are zero-extended to the longer of a or b.
pub fn bitOr(r: *Managed, a: Managed, b: Managed) !void {
try r.ensureCapacity(math.max(a.len(), b.len()));
var m = r.toMutable();
m.bitOr(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a & b
pub fn bitAnd(r: *Managed, a: Managed, b: Managed) !void {
try r.ensureCapacity(math.min(a.len(), b.len()));
var m = r.toMutable();
m.bitAnd(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a ^ b
pub fn bitXor(r: *Managed, a: Managed, b: Managed) !void {
try r.ensureCapacity(math.max(a.len(), b.len()));
var m = r.toMutable();
m.bitXor(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// rma may alias x or y.
/// x and y may alias each other.
///
/// rma's allocator is used for temporary storage to boost multiplication performance.
pub fn gcd(rma: *Managed, x: Managed, y: Managed) !void {
try rma.ensureCapacity(math.min(x.len(), y.len()));
var m = rma.toMutable();
var limbs_buffer = std.ArrayList(Limb).init(rma.allocator);
defer limbs_buffer.deinit();
try m.gcd(x.toConst(), y.toConst(), &limbs_buffer);
rma.setMetadata(m.positive, m.len);
}
};
/// Knuth 4.3.1, Algorithm M.
///
/// r MUST NOT alias any of a or b.
fn llmulacc(opt_allocator: ?*Allocator, r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(false);
const a_norm = a[0..llnormalize(a)];
const b_norm = b[0..llnormalize(b)];
var x = a_norm;
var y = b_norm;
if (a_norm.len > b_norm.len) {
x = b_norm;
y = a_norm;
}
assert(r.len >= x.len + y.len + 1);
// 48 is a pretty abitrary size chosen based on performance of a factorial program.
if (x.len > 48) {
if (opt_allocator) |allocator| {
llmulacc_karatsuba(allocator, r, x, y) catch |err| switch (err) {
error.OutOfMemory => {}, // handled below
};
}
}
// Basecase multiplication
var i: usize = 0;
while (i < x.len) : (i += 1) {
llmulDigit(r[i..], y, x[i]);
}
}
/// Knuth 4.3.1, Algorithm M.
///
/// r MUST NOT alias any of a or b.
fn llmulacc_karatsuba(allocator: *Allocator, r: []Limb, x: []const Limb, y: []const Limb) error{OutOfMemory}!void {
@setRuntimeSafety(false);
assert(r.len >= x.len + y.len + 1);
const split = @divFloor(x.len, 2);
var x0 = x[0..split];
var x1 = x[split..x.len];
var y0 = y[0..split];
var y1 = y[split..y.len];
var tmp = try allocator.alloc(Limb, x1.len + y1.len + 1);
defer allocator.free(tmp);
mem.set(Limb, tmp, 0);
llmulacc(allocator, tmp, x1, y1);
var length = llnormalize(tmp);
_ = llaccum(r[split..], tmp[0..length]);
_ = llaccum(r[split * 2 ..], tmp[0..length]);
mem.set(Limb, tmp[0..length], 0);
llmulacc(allocator, tmp, x0, y0);
length = llnormalize(tmp);
_ = llaccum(r[0..], tmp[0..length]);
_ = llaccum(r[split..], tmp[0..length]);
const x_cmp = llcmp(x1, x0);
const y_cmp = llcmp(y1, y0);
if (x_cmp * y_cmp == 0) {
return;
}
const x0_len = llnormalize(x0);
const x1_len = llnormalize(x1);
var j0 = try allocator.alloc(Limb, math.max(x0_len, x1_len));
defer allocator.free(j0);
if (x_cmp == 1) {
llsub(j0, x1[0..x1_len], x0[0..x0_len]);
} else {
llsub(j0, x0[0..x0_len], x1[0..x1_len]);
}
const y0_len = llnormalize(y0);
const y1_len = llnormalize(y1);
var j1 = try allocator.alloc(Limb, math.max(y0_len, y1_len));
defer allocator.free(j1);
if (y_cmp == 1) {
llsub(j1, y1[0..y1_len], y0[0..y0_len]);
} else {
llsub(j1, y0[0..y0_len], y1[0..y1_len]);
}
const j0_len = llnormalize(j0);
const j1_len = llnormalize(j1);
if (x_cmp == y_cmp) {
mem.set(Limb, tmp[0..length], 0);
llmulacc(allocator, tmp, j0, j1);
length = llnormalize(tmp);
llsub(r[split..], r[split..], tmp[0..length]);
} else {
llmulacc(allocator, r[split..], j0, j1);
}
}
// r = r + a
fn llaccum(r: []Limb, a: []const Limb) Limb {
@setRuntimeSafety(false);
assert(r.len != 0 and a.len != 0);
assert(r.len >= a.len);
var i: usize = 0;
var carry: Limb = 0;
while (i < a.len) : (i += 1) {
var c: Limb = 0;
c += @boolToInt(@addWithOverflow(Limb, r[i], a[i], &r[i]));
c += @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i]));
carry = c;
}
while ((carry != 0) and i < r.len) : (i += 1) {
carry = @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i]));
}
return carry;
}
/// Returns -1, 0, 1 if |a| < |b|, |a| == |b| or |a| > |b| respectively for limbs.
pub fn llcmp(a: []const Limb, b: []const Limb) i8 {
@setRuntimeSafety(false);
const a_len = llnormalize(a);
const b_len = llnormalize(b);
if (a_len < b_len) {
return -1;
}
if (a_len > b_len) {
return 1;
}
var i: usize = a_len - 1;
while (i != 0) : (i -= 1) {
if (a[i] != b[i]) {
break;
}
}
if (a[i] < b[i]) {
return -1;
} else if (a[i] > b[i]) {
return 1;
} else {
return 0;
}
}
fn llmulDigit(acc: []Limb, y: []const Limb, xi: Limb) void {
@setRuntimeSafety(false);
if (xi == 0) {
return;
}
var carry: usize = 0;
var a_lo = acc[0..y.len];
var a_hi = acc[y.len..];
var j: usize = 0;
while (j < a_lo.len) : (j += 1) {
a_lo[j] = @call(.{ .modifier = .always_inline }, addMulLimbWithCarry, .{ a_lo[j], y[j], xi, &carry });
}
j = 0;
while ((carry != 0) and (j < a_hi.len)) : (j += 1) {
carry = @boolToInt(@addWithOverflow(Limb, a_hi[j], carry, &a_hi[j]));
}
}
/// returns the min length the limb could be.
fn llnormalize(a: []const Limb) usize {
@setRuntimeSafety(false);
var j = a.len;
while (j > 0) : (j -= 1) {
if (a[j - 1] != 0) {
break;
}
}
// Handle zero
return if (j != 0) j else 1;
}
/// Knuth 4.3.1, Algorithm S.
fn llsub(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(false);
assert(a.len != 0 and b.len != 0);
assert(a.len > b.len or (a.len == b.len and a[a.len - 1] >= b[b.len - 1]));
assert(r.len >= a.len);
var i: usize = 0;
var borrow: Limb = 0;
while (i < b.len) : (i += 1) {
var c: Limb = 0;
c += @boolToInt(@subWithOverflow(Limb, a[i], b[i], &r[i]));
c += @boolToInt(@subWithOverflow(Limb, r[i], borrow, &r[i]));
borrow = c;
}
while (i < a.len) : (i += 1) {
borrow = @boolToInt(@subWithOverflow(Limb, a[i], borrow, &r[i]));
}
assert(borrow == 0);
}
/// Knuth 4.3.1, Algorithm A.
fn lladd(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(false);
assert(a.len != 0 and b.len != 0);
assert(a.len >= b.len);
assert(r.len >= a.len + 1);
var i: usize = 0;
var carry: Limb = 0;
while (i < b.len) : (i += 1) {
var c: Limb = 0;
c += @boolToInt(@addWithOverflow(Limb, a[i], b[i], &r[i]));
c += @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i]));
carry = c;
}
while (i < a.len) : (i += 1) {
carry = @boolToInt(@addWithOverflow(Limb, a[i], carry, &r[i]));
}
r[i] = carry;
}
/// Knuth 4.3.1, Exercise 16.
fn lldiv1(quo: []Limb, rem: *Limb, a: []const Limb, b: Limb) void {
@setRuntimeSafety(false);
assert(a.len > 1 or a[0] >= b);
assert(quo.len >= a.len);
rem.* = 0;
for (a) |_, ri| {
const i = a.len - ri - 1;
const pdiv = ((@as(DoubleLimb, rem.*) << Limb.bit_count) | a[i]);
if (pdiv == 0) {
quo[i] = 0;
rem.* = 0;
} else if (pdiv < b) {
quo[i] = 0;
rem.* = @truncate(Limb, pdiv);
} else if (pdiv == b) {
quo[i] = 1;
rem.* = 0;
} else {
quo[i] = @truncate(Limb, @divTrunc(pdiv, b));
rem.* = @truncate(Limb, pdiv - (quo[i] *% b));
}
}
}
fn llshl(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(false);
assert(a.len >= 1);
assert(r.len >= a.len + (shift / Limb.bit_count) + 1);
const limb_shift = shift / Limb.bit_count + 1;
const interior_limb_shift = @intCast(Log2Limb, shift % Limb.bit_count);
var carry: Limb = 0;
var i: usize = 0;
while (i < a.len) : (i += 1) {
const src_i = a.len - i - 1;
const dst_i = src_i + limb_shift;
const src_digit = a[src_i];
r[dst_i] = carry | @call(.{ .modifier = .always_inline }, math.shr, .{
Limb,
src_digit,
Limb.bit_count - @intCast(Limb, interior_limb_shift),
});
carry = (src_digit << interior_limb_shift);
}
r[limb_shift - 1] = carry;
mem.set(Limb, r[0 .. limb_shift - 1], 0);
}
fn llshr(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(false);
assert(a.len >= 1);
assert(r.len >= a.len - (shift / Limb.bit_count));
const limb_shift = shift / Limb.bit_count;
const interior_limb_shift = @intCast(Log2Limb, shift % Limb.bit_count);
var carry: Limb = 0;
var i: usize = 0;
while (i < a.len - limb_shift) : (i += 1) {
const src_i = a.len - i - 1;
const dst_i = src_i - limb_shift;
const src_digit = a[src_i];
r[dst_i] = carry | (src_digit >> interior_limb_shift);
carry = @call(.{ .modifier = .always_inline }, math.shl, .{
Limb,
src_digit,
Limb.bit_count - @intCast(Limb, interior_limb_shift),
});
}
}
fn llor(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(false);
assert(r.len >= a.len);
assert(a.len >= b.len);
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] | b[i];
}
while (i < a.len) : (i += 1) {
r[i] = a[i];
}
}
fn lland(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(false);
assert(r.len >= b.len);
assert(a.len >= b.len);
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] & b[i];
}
}
fn llxor(r: []Limb, a: []const Limb, b: []const Limb) void {
assert(r.len >= a.len);
assert(a.len >= b.len);
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] ^ b[i];
}
while (i < a.len) : (i += 1) {
r[i] = a[i];
}
}
// Storage must live for the lifetime of the returned value
fn fixedIntFromSignedDoubleLimb(A: SignedDoubleLimb, storage: []Limb) Mutable {
assert(storage.len >= 2);
const A_is_positive = A >= 0;
const Au = @intCast(DoubleLimb, if (A < 0) -A else A);
storage[0] = @truncate(Limb, Au);
storage[1] = @truncate(Limb, Au >> Limb.bit_count);
return .{
.limbs = storage[0..2],
.positive = A_is_positive,
.len = 2,
};
}
test "" {
_ = @import("int_test.zig");
}