zig/src/codegen.cpp
Andrew Kelley 7f47b0c271 run alwaysinline pass in debug mode
before this commit, the optimized IR code that is displayed in
--verbose mode is not actually what gets emitted to an object
file.

that is now corrected, and we make sure to run the alwaysinliner
pass even in debug mode, so you can rely on "inline" keyword
inlining a function, guaranteed.

See #306
2017-04-11 03:37:44 -04:00

4859 lines
208 KiB
C++

/*
* Copyright (c) 2015 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#include "analyze.hpp"
#include "ast_render.hpp"
#include "codegen.hpp"
#include "config.h"
#include "errmsg.hpp"
#include "error.hpp"
#include "hash_map.hpp"
#include "ir.hpp"
#include "link.hpp"
#include "os.hpp"
#include "parseh.hpp"
#include "target.hpp"
#include "zig_llvm.hpp"
#include <stdio.h>
#include <errno.h>
static void init_darwin_native(CodeGen *g) {
char *osx_target = getenv("MACOSX_DEPLOYMENT_TARGET");
char *ios_target = getenv("IPHONEOS_DEPLOYMENT_TARGET");
// Allow conflicts among OSX and iOS, but choose the default platform.
if (osx_target && ios_target) {
if (g->zig_target.arch.arch == ZigLLVM_arm ||
g->zig_target.arch.arch == ZigLLVM_aarch64 ||
g->zig_target.arch.arch == ZigLLVM_thumb)
{
osx_target = nullptr;
} else {
ios_target = nullptr;
}
}
if (osx_target) {
g->mmacosx_version_min = buf_create_from_str(osx_target);
} else if (ios_target) {
g->mios_version_min = buf_create_from_str(ios_target);
} else if (g->zig_target.os != ZigLLVM_IOS) {
g->mmacosx_version_min = buf_create_from_str("10.10");
}
}
PackageTableEntry *new_package(const char *root_src_dir, const char *root_src_path) {
PackageTableEntry *entry = allocate<PackageTableEntry>(1);
entry->package_table.init(4);
buf_init_from_str(&entry->root_src_dir, root_src_dir);
buf_init_from_str(&entry->root_src_path, root_src_path);
return entry;
}
CodeGen *codegen_create(Buf *root_source_dir, const ZigTarget *target) {
CodeGen *g = allocate<CodeGen>(1);
g->import_table.init(32);
g->builtin_fn_table.init(32);
g->primitive_type_table.init(32);
g->type_table.init(32);
g->fn_type_table.init(32);
g->error_table.init(16);
g->generic_table.init(16);
g->llvm_fn_table.init(16);
g->memoized_fn_eval_table.init(16);
g->compile_vars.init(16);
g->exported_symbol_names.init(8);
g->external_prototypes.init(8);
g->is_release_build = false;
g->is_test_build = false;
g->want_h_file = true;
buf_resize(&g->global_asm, 0);
// reserve index 0 to indicate no error
g->error_decls.append(nullptr);
g->root_package = new_package(buf_ptr(root_source_dir), "");
g->std_package = new_package(ZIG_STD_DIR, "index.zig");
g->root_package->package_table.put(buf_create_from_str("std"), g->std_package);
g->zig_std_dir = buf_create_from_str(ZIG_STD_DIR);
g->zig_std_special_dir = buf_alloc();
os_path_join(g->zig_std_dir, buf_sprintf("special"), g->zig_std_special_dir);
if (target) {
// cross compiling, so we can't rely on all the configured stuff since
// that's for native compilation
g->zig_target = *target;
resolve_target_object_format(&g->zig_target);
g->dynamic_linker = buf_create_from_str("");
g->libc_lib_dir = buf_create_from_str("");
g->libc_static_lib_dir = buf_create_from_str("");
g->libc_include_dir = buf_create_from_str("");
g->darwin_linker_version = buf_create_from_str("");
g->each_lib_rpath = false;
} else {
// native compilation, we can rely on the configuration stuff
g->is_native_target = true;
get_native_target(&g->zig_target);
g->dynamic_linker = buf_create_from_str(ZIG_DYNAMIC_LINKER);
g->libc_lib_dir = buf_create_from_str(ZIG_LIBC_LIB_DIR);
g->libc_static_lib_dir = buf_create_from_str(ZIG_LIBC_STATIC_LIB_DIR);
g->libc_include_dir = buf_create_from_str(ZIG_LIBC_INCLUDE_DIR);
g->darwin_linker_version = buf_create_from_str(ZIG_HOST_LINK_VERSION);
#ifdef ZIG_EACH_LIB_RPATH
g->each_lib_rpath = true;
#endif
if (g->zig_target.os == ZigLLVM_Darwin ||
g->zig_target.os == ZigLLVM_MacOSX ||
g->zig_target.os == ZigLLVM_IOS)
{
init_darwin_native(g);
}
}
// On Darwin/MacOS/iOS, we always link libSystem which contains libc.
if (g->zig_target.os == ZigLLVM_Darwin ||
g->zig_target.os == ZigLLVM_MacOSX ||
g->zig_target.os == ZigLLVM_IOS)
{
g->link_libc = true;
g->link_libs.append(buf_create_from_str("c"));
}
return g;
}
void codegen_set_clang_argv(CodeGen *g, const char **args, size_t len) {
g->clang_argv = args;
g->clang_argv_len = len;
}
void codegen_set_is_release(CodeGen *g, bool is_release_build) {
g->is_release_build = is_release_build;
}
void codegen_set_omit_zigrt(CodeGen *g, bool omit_zigrt) {
g->omit_zigrt = omit_zigrt;
}
void codegen_set_is_test(CodeGen *g, bool is_test_build) {
g->is_test_build = is_test_build;
}
void codegen_set_is_static(CodeGen *g, bool is_static) {
g->is_static = is_static;
}
void codegen_set_verbose(CodeGen *g, bool verbose) {
g->verbose = verbose;
}
void codegen_set_each_lib_rpath(CodeGen *g, bool each_lib_rpath) {
g->each_lib_rpath = each_lib_rpath;
}
void codegen_set_errmsg_color(CodeGen *g, ErrColor err_color) {
g->err_color = err_color;
}
void codegen_set_strip(CodeGen *g, bool strip) {
g->strip_debug_symbols = strip;
}
void codegen_set_out_type(CodeGen *g, OutType out_type) {
g->out_type = out_type;
}
void codegen_set_out_name(CodeGen *g, Buf *out_name) {
g->root_out_name = out_name;
}
void codegen_set_libc_lib_dir(CodeGen *g, Buf *libc_lib_dir) {
g->libc_lib_dir = libc_lib_dir;
}
void codegen_set_libc_static_lib_dir(CodeGen *g, Buf *libc_static_lib_dir) {
g->libc_static_lib_dir = libc_static_lib_dir;
}
void codegen_set_libc_include_dir(CodeGen *g, Buf *libc_include_dir) {
g->libc_include_dir = libc_include_dir;
}
void codegen_set_zig_std_dir(CodeGen *g, Buf *zig_std_dir) {
g->zig_std_dir = zig_std_dir;
g->std_package->root_src_dir = *zig_std_dir;
}
void codegen_set_dynamic_linker(CodeGen *g, Buf *dynamic_linker) {
g->dynamic_linker = dynamic_linker;
}
void codegen_add_lib_dir(CodeGen *g, const char *dir) {
g->lib_dirs.append(dir);
}
void codegen_add_rpath(CodeGen *g, const char *name) {
g->rpath_list.append(buf_create_from_str(name));
}
void codegen_add_link_lib(CodeGen *g, const char *lib) {
if (strcmp(lib, "c") == 0) {
if (g->link_libc)
return;
g->link_libc = true;
}
g->link_libs.append(buf_create_from_str(lib));
}
void codegen_add_framework(CodeGen *g, const char *framework) {
g->darwin_frameworks.append(buf_create_from_str(framework));
}
void codegen_set_windows_subsystem(CodeGen *g, bool mwindows, bool mconsole) {
g->windows_subsystem_windows = mwindows;
g->windows_subsystem_console = mconsole;
}
void codegen_set_windows_unicode(CodeGen *g, bool municode) {
g->windows_linker_unicode = municode;
}
void codegen_set_mlinker_version(CodeGen *g, Buf *darwin_linker_version) {
g->darwin_linker_version = darwin_linker_version;
}
void codegen_set_mmacosx_version_min(CodeGen *g, Buf *mmacosx_version_min) {
g->mmacosx_version_min = mmacosx_version_min;
}
void codegen_set_mios_version_min(CodeGen *g, Buf *mios_version_min) {
g->mios_version_min = mios_version_min;
}
void codegen_set_rdynamic(CodeGen *g, bool rdynamic) {
g->linker_rdynamic = rdynamic;
}
void codegen_set_linker_script(CodeGen *g, const char *linker_script) {
g->linker_script = linker_script;
}
static void render_const_val(CodeGen *g, ConstExprValue *const_val);
static void render_const_val_global(CodeGen *g, ConstExprValue *const_val, const char *name);
static LLVMValueRef gen_const_val(CodeGen *g, ConstExprValue *const_val);
static void addLLVMAttr(LLVMValueRef val, LLVMAttributeIndex attr_index, const char *attr_name) {
unsigned kind_id = LLVMGetEnumAttributeKindForName(attr_name, strlen(attr_name));
assert(kind_id != 0);
LLVMAttributeRef llvm_attr = LLVMCreateEnumAttribute(LLVMGetGlobalContext(), kind_id, 0);
LLVMAddAttributeAtIndex(val, attr_index, llvm_attr);
}
static void addLLVMAttrStr(LLVMValueRef val, LLVMAttributeIndex attr_index,
const char *attr_name, const char *attr_val)
{
LLVMAttributeRef llvm_attr = LLVMCreateStringAttribute(LLVMGetGlobalContext(),
attr_name, (unsigned)strlen(attr_name), attr_val, (unsigned)strlen(attr_val));
LLVMAddAttributeAtIndex(val, attr_index, llvm_attr);
}
static void addLLVMFnAttr(LLVMValueRef fn_val, const char *attr_name) {
return addLLVMAttr(fn_val, -1, attr_name);
}
static void addLLVMFnAttrStr(LLVMValueRef fn_val, const char *attr_name, const char *attr_val) {
return addLLVMAttrStr(fn_val, -1, attr_name, attr_val);
}
static void addLLVMArgAttr(LLVMValueRef arg_val, unsigned param_index, const char *attr_name) {
return addLLVMAttr(arg_val, param_index + 1, attr_name);
}
static void addLLVMCallsiteAttr(LLVMValueRef call_instr, unsigned param_index, const char *attr_name) {
unsigned kind_id = LLVMGetEnumAttributeKindForName(attr_name, strlen(attr_name));
assert(kind_id != 0);
LLVMAttributeRef llvm_attr = LLVMCreateEnumAttribute(LLVMGetGlobalContext(), kind_id, 0);
LLVMAddCallSiteAttribute(call_instr, param_index + 1, llvm_attr);
}
static bool is_symbol_available(CodeGen *g, Buf *name) {
return g->exported_symbol_names.maybe_get(name) == nullptr && g->external_prototypes.maybe_get(name) == nullptr;
}
static Buf *get_mangled_name(CodeGen *g, Buf *original_name, bool external_linkage) {
if (external_linkage || is_symbol_available(g, original_name)) {
return original_name;
}
int n = 0;
for (;; n += 1) {
Buf *new_name = buf_sprintf("%s.%d", buf_ptr(original_name), n);
if (is_symbol_available(g, new_name)) {
return new_name;
}
}
}
static LLVMValueRef fn_llvm_value(CodeGen *g, FnTableEntry *fn_table_entry) {
if (fn_table_entry->llvm_value)
return fn_table_entry->llvm_value;
bool external_linkage = (fn_table_entry->linkage != GlobalLinkageIdInternal);
Buf *symbol_name = get_mangled_name(g, &fn_table_entry->symbol_name, external_linkage);
TypeTableEntry *fn_type = fn_table_entry->type_entry;
LLVMTypeRef fn_llvm_type = fn_type->data.fn.raw_type_ref;
if (external_linkage && fn_table_entry->body_node == nullptr) {
LLVMValueRef existing_llvm_fn = LLVMGetNamedFunction(g->module, buf_ptr(symbol_name));
if (existing_llvm_fn) {
fn_table_entry->llvm_value = LLVMConstBitCast(existing_llvm_fn, LLVMPointerType(fn_llvm_type, 0));
} else {
fn_table_entry->llvm_value = LLVMAddFunction(g->module, buf_ptr(symbol_name), fn_llvm_type);
}
} else {
fn_table_entry->llvm_value = LLVMAddFunction(g->module, buf_ptr(symbol_name), fn_llvm_type);
}
switch (fn_table_entry->fn_inline) {
case FnInlineAlways:
addLLVMFnAttr(fn_table_entry->llvm_value, "alwaysinline");
break;
case FnInlineNever:
addLLVMFnAttr(fn_table_entry->llvm_value, "noinline");
break;
case FnInlineAuto:
break;
}
if (fn_type->data.fn.fn_type_id.is_naked) {
addLLVMFnAttr(fn_table_entry->llvm_value, "naked");
}
switch (fn_table_entry->linkage) {
case GlobalLinkageIdInternal:
LLVMSetLinkage(fn_table_entry->llvm_value, LLVMInternalLinkage);
break;
case GlobalLinkageIdStrong:
LLVMSetLinkage(fn_table_entry->llvm_value, LLVMExternalLinkage);
break;
case GlobalLinkageIdWeak:
LLVMSetLinkage(fn_table_entry->llvm_value, LLVMWeakODRLinkage);
break;
case GlobalLinkageIdLinkOnce:
LLVMSetLinkage(fn_table_entry->llvm_value, LLVMLinkOnceODRLinkage);
break;
}
if (fn_type->data.fn.fn_type_id.return_type->id == TypeTableEntryIdUnreachable) {
addLLVMFnAttr(fn_table_entry->llvm_value, "noreturn");
}
if (fn_table_entry->body_node != nullptr) {
bool want_fn_safety = !g->is_release_build && !fn_table_entry->def_scope->safety_off;
if (want_fn_safety) {
if (g->link_libc) {
addLLVMFnAttr(fn_table_entry->llvm_value, "sspstrong");
addLLVMFnAttrStr(fn_table_entry->llvm_value, "stack-protector-buffer-size", "4");
}
}
}
LLVMSetFunctionCallConv(fn_table_entry->llvm_value, fn_type->data.fn.calling_convention);
if (fn_type->data.fn.fn_type_id.is_cold) {
ZigLLVMAddFunctionAttrCold(fn_table_entry->llvm_value);
}
addLLVMFnAttr(fn_table_entry->llvm_value, "nounwind");
if (!g->is_release_build && fn_table_entry->fn_inline != FnInlineAlways) {
ZigLLVMAddFunctionAttr(fn_table_entry->llvm_value, "no-frame-pointer-elim", "true");
ZigLLVMAddFunctionAttr(fn_table_entry->llvm_value, "no-frame-pointer-elim-non-leaf", nullptr);
}
if (fn_table_entry->section_name) {
LLVMSetSection(fn_table_entry->llvm_value, buf_ptr(fn_table_entry->section_name));
}
if (fn_table_entry->alignment) {
LLVMSetAlignment(fn_table_entry->llvm_value, (unsigned)fn_table_entry->alignment);
}
return fn_table_entry->llvm_value;
}
static ZigLLVMDIScope *get_di_scope(CodeGen *g, Scope *scope) {
if (scope->di_scope)
return scope->di_scope;
ImportTableEntry *import = get_scope_import(scope);
switch (scope->id) {
case ScopeIdCImport:
zig_unreachable();
case ScopeIdFnDef:
{
assert(scope->parent);
ScopeFnDef *fn_scope = (ScopeFnDef *)scope;
FnTableEntry *fn_table_entry = fn_scope->fn_entry;
if (!fn_table_entry->proto_node)
return get_di_scope(g, scope->parent);
unsigned line_number = (unsigned)fn_table_entry->proto_node->line + 1;
unsigned scope_line = line_number;
bool is_definition = fn_table_entry->body_node != nullptr;
unsigned flags = 0;
bool is_optimized = g->is_release_build;
bool is_internal_linkage = (fn_table_entry->linkage == GlobalLinkageIdInternal);
ZigLLVMDISubprogram *subprogram = ZigLLVMCreateFunction(g->dbuilder,
get_di_scope(g, scope->parent), buf_ptr(&fn_table_entry->symbol_name), "",
import->di_file, line_number,
fn_table_entry->type_entry->di_type, is_internal_linkage,
is_definition, scope_line, flags, is_optimized, nullptr);
scope->di_scope = ZigLLVMSubprogramToScope(subprogram);
ZigLLVMFnSetSubprogram(fn_llvm_value(g, fn_table_entry), subprogram);
return scope->di_scope;
}
case ScopeIdDecls:
if (scope->parent) {
ScopeDecls *decls_scope = (ScopeDecls *)scope;
assert(decls_scope->container_type);
scope->di_scope = ZigLLVMTypeToScope(decls_scope->container_type->di_type);
} else {
scope->di_scope = ZigLLVMFileToScope(import->di_file);
}
return scope->di_scope;
case ScopeIdBlock:
case ScopeIdDefer:
case ScopeIdVarDecl:
{
assert(scope->parent);
ZigLLVMDILexicalBlock *di_block = ZigLLVMCreateLexicalBlock(g->dbuilder,
get_di_scope(g, scope->parent),
import->di_file,
(unsigned)scope->source_node->line + 1,
(unsigned)scope->source_node->column + 1);
scope->di_scope = ZigLLVMLexicalBlockToScope(di_block);
return scope->di_scope;
}
case ScopeIdDeferExpr:
case ScopeIdLoop:
case ScopeIdCompTime:
return get_di_scope(g, scope->parent);
}
zig_unreachable();
}
static void clear_debug_source_node(CodeGen *g) {
ZigLLVMClearCurrentDebugLocation(g->builder);
}
static LLVMValueRef get_arithmetic_overflow_fn(CodeGen *g, TypeTableEntry *type_entry,
const char *signed_name, const char *unsigned_name)
{
char fn_name[64];
assert(type_entry->id == TypeTableEntryIdInt);
const char *signed_str = type_entry->data.integral.is_signed ? signed_name : unsigned_name;
sprintf(fn_name, "llvm.%s.with.overflow.i%" PRIu32, signed_str, type_entry->data.integral.bit_count);
LLVMTypeRef return_elem_types[] = {
type_entry->type_ref,
LLVMInt1Type(),
};
LLVMTypeRef param_types[] = {
type_entry->type_ref,
type_entry->type_ref,
};
LLVMTypeRef return_struct_type = LLVMStructType(return_elem_types, 2, false);
LLVMTypeRef fn_type = LLVMFunctionType(return_struct_type, param_types, 2, false);
LLVMValueRef fn_val = LLVMAddFunction(g->module, fn_name, fn_type);
assert(LLVMGetIntrinsicID(fn_val));
return fn_val;
}
static LLVMValueRef get_int_overflow_fn(CodeGen *g, TypeTableEntry *type_entry, AddSubMul add_sub_mul) {
assert(type_entry->id == TypeTableEntryIdInt);
ZigLLVMFnKey key = {};
key.id = ZigLLVMFnIdOverflowArithmetic;
key.data.overflow_arithmetic.is_signed = type_entry->data.integral.is_signed;
key.data.overflow_arithmetic.add_sub_mul = add_sub_mul;
key.data.overflow_arithmetic.bit_count = (uint32_t)type_entry->data.integral.bit_count;
auto existing_entry = g->llvm_fn_table.maybe_get(key);
if (existing_entry)
return existing_entry->value;
LLVMValueRef fn_val;
switch (add_sub_mul) {
case AddSubMulAdd:
fn_val = get_arithmetic_overflow_fn(g, type_entry, "sadd", "uadd");
break;
case AddSubMulSub:
fn_val = get_arithmetic_overflow_fn(g, type_entry, "ssub", "usub");
break;
case AddSubMulMul:
fn_val = get_arithmetic_overflow_fn(g, type_entry, "smul", "umul");
break;
}
g->llvm_fn_table.put(key, fn_val);
return fn_val;
}
static LLVMValueRef get_handle_value(CodeGen *g, LLVMValueRef ptr, TypeTableEntry *type, bool is_volatile) {
if (type_has_bits(type)) {
if (handle_is_ptr(type)) {
return ptr;
} else {
LLVMValueRef result = LLVMBuildLoad(g->builder, ptr, "");
LLVMSetVolatile(result, is_volatile);
return result;
}
} else {
return nullptr;
}
}
static bool ir_want_debug_safety(CodeGen *g, IrInstruction *instruction) {
if (g->is_release_build)
return false;
// TODO memoize
Scope *scope = instruction->scope;
while (scope) {
if (scope->id == ScopeIdBlock) {
ScopeBlock *block_scope = (ScopeBlock *)scope;
if (block_scope->safety_set_node)
return !block_scope->safety_off;
} else if (scope->id == ScopeIdDecls) {
ScopeDecls *decls_scope = (ScopeDecls *)scope;
if (decls_scope->safety_set_node)
return !decls_scope->safety_off;
}
scope = scope->parent;
}
return true;
}
static Buf *panic_msg_buf(PanicMsgId msg_id) {
switch (msg_id) {
case PanicMsgIdCount:
zig_unreachable();
case PanicMsgIdBoundsCheckFailure:
return buf_create_from_str("index out of bounds");
case PanicMsgIdCastNegativeToUnsigned:
return buf_create_from_str("attempt to cast negative value to unsigned integer");
case PanicMsgIdCastTruncatedData:
return buf_create_from_str("integer cast truncated bits");
case PanicMsgIdIntegerOverflow:
return buf_create_from_str("integer overflow");
case PanicMsgIdShiftOverflowedBits:
return buf_create_from_str("left shift overflowed bits");
case PanicMsgIdDivisionByZero:
return buf_create_from_str("division by zero");
case PanicMsgIdRemainderDivisionByZero:
return buf_create_from_str("remainder division by zero");
case PanicMsgIdExactDivisionRemainder:
return buf_create_from_str("exact division produced remainder");
case PanicMsgIdSliceWidenRemainder:
return buf_create_from_str("slice widening size mismatch");
case PanicMsgIdUnwrapMaybeFail:
return buf_create_from_str("attempt to unwrap null");
case PanicMsgIdUnwrapErrFail:
return buf_create_from_str("attempt to unwrap error");
case PanicMsgIdUnreachable:
return buf_create_from_str("reached unreachable code");
case PanicMsgIdInvalidErrorCode:
return buf_create_from_str("invalid error code");
}
zig_unreachable();
}
static LLVMValueRef get_panic_msg_ptr_val(CodeGen *g, PanicMsgId msg_id) {
ConstExprValue *val = &g->panic_msg_vals[msg_id];
if (val->llvm_global)
return val->llvm_global;
Buf *buf_msg = panic_msg_buf(msg_id);
ConstExprValue *array_val = create_const_str_lit(g, buf_msg);
init_const_slice(g, val, array_val, 0, buf_len(buf_msg), true);
render_const_val_global(g, val, "");
render_const_val(g, val);
assert(val->llvm_global);
return val->llvm_global;
}
static void gen_panic(CodeGen *g, LLVMValueRef msg_arg) {
FnTableEntry *panic_fn = get_extern_panic_fn(g);
LLVMValueRef fn_val = fn_llvm_value(g, panic_fn);
TypeTableEntry *str_type = get_slice_type(g, g->builtin_types.entry_u8, true);
size_t ptr_index = str_type->data.structure.fields[slice_ptr_index].gen_index;
size_t len_index = str_type->data.structure.fields[slice_len_index].gen_index;
LLVMValueRef ptr_ptr = LLVMBuildStructGEP(g->builder, msg_arg, (unsigned)ptr_index, "");
LLVMValueRef len_ptr = LLVMBuildStructGEP(g->builder, msg_arg, (unsigned)len_index, "");
LLVMValueRef args[] = {
LLVMBuildLoad(g->builder, ptr_ptr, ""),
LLVMBuildLoad(g->builder, len_ptr, ""),
};
ZigLLVMBuildCall(g->builder, fn_val, args, 2, panic_fn->type_entry->data.fn.calling_convention, "");
LLVMBuildUnreachable(g->builder);
}
static void gen_debug_safety_crash(CodeGen *g, PanicMsgId msg_id) {
gen_panic(g, get_panic_msg_ptr_val(g, msg_id));
}
static void add_bounds_check(CodeGen *g, LLVMValueRef target_val,
LLVMIntPredicate lower_pred, LLVMValueRef lower_value,
LLVMIntPredicate upper_pred, LLVMValueRef upper_value)
{
if (!lower_value && !upper_value) {
return;
}
if (upper_value && !lower_value) {
lower_value = upper_value;
lower_pred = upper_pred;
upper_value = nullptr;
}
LLVMBasicBlockRef bounds_check_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "BoundsCheckFail");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "BoundsCheckOk");
LLVMBasicBlockRef lower_ok_block = upper_value ?
LLVMAppendBasicBlock(g->cur_fn_val, "FirstBoundsCheckOk") : ok_block;
LLVMValueRef lower_ok_val = LLVMBuildICmp(g->builder, lower_pred, target_val, lower_value, "");
LLVMBuildCondBr(g->builder, lower_ok_val, lower_ok_block, bounds_check_fail_block);
LLVMPositionBuilderAtEnd(g->builder, bounds_check_fail_block);
gen_debug_safety_crash(g, PanicMsgIdBoundsCheckFailure);
if (upper_value) {
LLVMPositionBuilderAtEnd(g->builder, lower_ok_block);
LLVMValueRef upper_ok_val = LLVMBuildICmp(g->builder, upper_pred, target_val, upper_value, "");
LLVMBuildCondBr(g->builder, upper_ok_val, ok_block, bounds_check_fail_block);
}
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
static LLVMValueRef gen_widen_or_shorten(CodeGen *g, bool want_debug_safety, TypeTableEntry *actual_type_non_canon,
TypeTableEntry *wanted_type_non_canon, LLVMValueRef expr_val)
{
TypeTableEntry *actual_type = get_underlying_type(actual_type_non_canon);
TypeTableEntry *wanted_type = get_underlying_type(wanted_type_non_canon);
assert(actual_type->id == wanted_type->id);
uint64_t actual_bits;
uint64_t wanted_bits;
if (actual_type->id == TypeTableEntryIdFloat) {
actual_bits = actual_type->data.floating.bit_count;
wanted_bits = wanted_type->data.floating.bit_count;
} else if (actual_type->id == TypeTableEntryIdInt) {
actual_bits = actual_type->data.integral.bit_count;
wanted_bits = wanted_type->data.integral.bit_count;
} else {
zig_unreachable();
}
if (actual_bits >= wanted_bits && actual_type->id == TypeTableEntryIdInt &&
!wanted_type->data.integral.is_signed && actual_type->data.integral.is_signed &&
want_debug_safety)
{
LLVMValueRef zero = LLVMConstNull(actual_type->type_ref);
LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntSGE, expr_val, zero, "");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "SignCastOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "SignCastFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g, PanicMsgIdCastNegativeToUnsigned);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
if (actual_bits == wanted_bits) {
return expr_val;
} else if (actual_bits < wanted_bits) {
if (actual_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFPExt(g->builder, expr_val, wanted_type->type_ref, "");
} else if (actual_type->id == TypeTableEntryIdInt) {
if (actual_type->data.integral.is_signed) {
return LLVMBuildSExt(g->builder, expr_val, wanted_type->type_ref, "");
} else {
return LLVMBuildZExt(g->builder, expr_val, wanted_type->type_ref, "");
}
} else {
zig_unreachable();
}
} else if (actual_bits > wanted_bits) {
if (actual_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFPTrunc(g->builder, expr_val, wanted_type->type_ref, "");
} else if (actual_type->id == TypeTableEntryIdInt) {
LLVMValueRef trunc_val = LLVMBuildTrunc(g->builder, expr_val, wanted_type->type_ref, "");
if (!want_debug_safety) {
return trunc_val;
}
LLVMValueRef orig_val;
if (actual_type->data.integral.is_signed) {
orig_val = LLVMBuildSExt(g->builder, trunc_val, actual_type->type_ref, "");
} else {
orig_val = LLVMBuildZExt(g->builder, trunc_val, actual_type->type_ref, "");
}
LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, expr_val, orig_val, "");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "CastShortenOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "CastShortenFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g, PanicMsgIdCastTruncatedData);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
return trunc_val;
} else {
zig_unreachable();
}
} else {
zig_unreachable();
}
}
static LLVMValueRef gen_overflow_op(CodeGen *g, TypeTableEntry *type_entry, AddSubMul op,
LLVMValueRef val1, LLVMValueRef val2)
{
LLVMValueRef fn_val = get_int_overflow_fn(g, type_entry, op);
LLVMValueRef params[] = {
val1,
val2,
};
LLVMValueRef result_struct = LLVMBuildCall(g->builder, fn_val, params, 2, "");
LLVMValueRef result = LLVMBuildExtractValue(g->builder, result_struct, 0, "");
LLVMValueRef overflow_bit = LLVMBuildExtractValue(g->builder, result_struct, 1, "");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowFail");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowOk");
LLVMBuildCondBr(g->builder, overflow_bit, fail_block, ok_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g, PanicMsgIdIntegerOverflow);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
return result;
}
static LLVMIntPredicate cmp_op_to_int_predicate(IrBinOp cmp_op, bool is_signed) {
switch (cmp_op) {
case IrBinOpCmpEq:
return LLVMIntEQ;
case IrBinOpCmpNotEq:
return LLVMIntNE;
case IrBinOpCmpLessThan:
return is_signed ? LLVMIntSLT : LLVMIntULT;
case IrBinOpCmpGreaterThan:
return is_signed ? LLVMIntSGT : LLVMIntUGT;
case IrBinOpCmpLessOrEq:
return is_signed ? LLVMIntSLE : LLVMIntULE;
case IrBinOpCmpGreaterOrEq:
return is_signed ? LLVMIntSGE : LLVMIntUGE;
default:
zig_unreachable();
}
}
static LLVMRealPredicate cmp_op_to_real_predicate(IrBinOp cmp_op) {
switch (cmp_op) {
case IrBinOpCmpEq:
return LLVMRealOEQ;
case IrBinOpCmpNotEq:
return LLVMRealONE;
case IrBinOpCmpLessThan:
return LLVMRealOLT;
case IrBinOpCmpGreaterThan:
return LLVMRealOGT;
case IrBinOpCmpLessOrEq:
return LLVMRealOLE;
case IrBinOpCmpGreaterOrEq:
return LLVMRealOGE;
default:
zig_unreachable();
}
}
static bool is_array_of_at_least_n_bytes(CodeGen *g, TypeTableEntry *type_entry, uint32_t n) {
if (type_entry->id != TypeTableEntryIdArray)
return false;
TypeTableEntry *child_type = type_entry->data.array.child_type;
if (child_type->id != TypeTableEntryIdInt)
return false;
if (child_type != g->builtin_types.entry_u8)
return false;
if (type_entry->data.array.len < n)
return false;
return true;
}
static uint32_t get_type_alignment(CodeGen *g, TypeTableEntry *type_entry) {
uint32_t alignment = ZigLLVMGetPrefTypeAlignment(g->target_data_ref, type_entry->type_ref);
uint32_t dbl_ptr_bytes = g->pointer_size_bytes * 2;
if (is_array_of_at_least_n_bytes(g, type_entry, dbl_ptr_bytes)) {
return (alignment < dbl_ptr_bytes) ? dbl_ptr_bytes : alignment;
} else {
return alignment;
}
}
static LLVMValueRef gen_struct_memcpy(CodeGen *g, LLVMValueRef src, LLVMValueRef dest,
TypeTableEntry *type_entry)
{
assert(handle_is_ptr(type_entry));
assert(LLVMGetTypeKind(LLVMTypeOf(src)) == LLVMPointerTypeKind);
assert(LLVMGetTypeKind(LLVMTypeOf(dest)) == LLVMPointerTypeKind);
LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0);
LLVMValueRef src_ptr = LLVMBuildBitCast(g->builder, src, ptr_u8, "");
LLVMValueRef dest_ptr = LLVMBuildBitCast(g->builder, dest, ptr_u8, "");
TypeTableEntry *usize = g->builtin_types.entry_usize;
uint64_t size_bytes = LLVMStoreSizeOfType(g->target_data_ref, type_entry->type_ref);
uint64_t align_bytes = get_type_alignment(g, type_entry);
assert(size_bytes > 0);
assert(align_bytes > 0);
LLVMValueRef params[] = {
dest_ptr, // dest pointer
src_ptr, // source pointer
LLVMConstInt(usize->type_ref, size_bytes, false),
LLVMConstInt(LLVMInt32Type(), align_bytes, false),
LLVMConstNull(LLVMInt1Type()), // is volatile
};
return LLVMBuildCall(g->builder, g->memcpy_fn_val, params, 5, "");
}
static LLVMValueRef gen_assign_raw(CodeGen *g, LLVMValueRef ptr, TypeTableEntry *ptr_type,
LLVMValueRef value)
{
TypeTableEntry *child_type = get_underlying_type(ptr_type->data.pointer.child_type);
if (!type_has_bits(child_type))
return nullptr;
if (handle_is_ptr(child_type))
return gen_struct_memcpy(g, value, ptr, child_type);
uint32_t unaligned_bit_count = ptr_type->data.pointer.unaligned_bit_count;
if (unaligned_bit_count == 0) {
LLVMValueRef llvm_instruction = LLVMBuildStore(g->builder, value, ptr);
LLVMSetVolatile(llvm_instruction, ptr_type->data.pointer.is_volatile);
return nullptr;
}
LLVMValueRef containing_int = LLVMBuildLoad(g->builder, ptr, "");
uint32_t bit_offset = ptr_type->data.pointer.bit_offset;
uint32_t host_bit_count = LLVMGetIntTypeWidth(LLVMTypeOf(containing_int));
uint32_t shift_amt = host_bit_count - bit_offset - unaligned_bit_count;
LLVMValueRef shift_amt_val = LLVMConstInt(LLVMTypeOf(containing_int), shift_amt, false);
LLVMValueRef mask_val = LLVMConstAllOnes(child_type->type_ref);
mask_val = LLVMConstZExt(mask_val, LLVMTypeOf(containing_int));
mask_val = LLVMConstShl(mask_val, shift_amt_val);
mask_val = LLVMConstNot(mask_val);
LLVMValueRef anded_containing_int = LLVMBuildAnd(g->builder, containing_int, mask_val, "");
LLVMValueRef extended_value = LLVMBuildZExt(g->builder, value, LLVMTypeOf(containing_int), "");
LLVMValueRef shifted_value = LLVMBuildShl(g->builder, extended_value, shift_amt_val, "");
LLVMValueRef ored_value = LLVMBuildOr(g->builder, shifted_value, anded_containing_int, "");
LLVMValueRef llvm_instruction = LLVMBuildStore(g->builder, ored_value, ptr);
LLVMSetVolatile(llvm_instruction, ptr_type->data.pointer.is_volatile);
return nullptr;
}
static void gen_var_debug_decl(CodeGen *g, VariableTableEntry *var) {
AstNode *source_node = var->decl_node;
ZigLLVMDILocation *debug_loc = ZigLLVMGetDebugLoc((unsigned)source_node->line + 1,
(unsigned)source_node->column + 1, get_di_scope(g, var->parent_scope));
ZigLLVMInsertDeclareAtEnd(g->dbuilder, var->value_ref, var->di_loc_var, debug_loc,
LLVMGetInsertBlock(g->builder));
}
static LLVMValueRef ir_llvm_value(CodeGen *g, IrInstruction *instruction) {
if (!type_has_bits(instruction->value.type))
return nullptr;
if (!instruction->llvm_value) {
assert(instruction->value.special != ConstValSpecialRuntime);
assert(instruction->value.type);
render_const_val(g, &instruction->value);
// we might have to do some pointer casting here due to the way union
// values are rendered with a type other than the one we expect
if (handle_is_ptr(instruction->value.type)) {
render_const_val_global(g, &instruction->value, "");
TypeTableEntry *ptr_type = get_pointer_to_type(g, instruction->value.type, true);
instruction->llvm_value = LLVMBuildBitCast(g->builder, instruction->value.llvm_global, ptr_type->type_ref, "");
} else if (instruction->value.type->id == TypeTableEntryIdPointer) {
instruction->llvm_value = LLVMBuildBitCast(g->builder, instruction->value.llvm_value, instruction->value.type->type_ref, "");
} else {
instruction->llvm_value = instruction->value.llvm_value;
}
assert(instruction->llvm_value);
}
return instruction->llvm_value;
}
static LLVMValueRef ir_render_return(CodeGen *g, IrExecutable *executable, IrInstructionReturn *return_instruction) {
LLVMValueRef value = ir_llvm_value(g, return_instruction->value);
TypeTableEntry *return_type = return_instruction->value->value.type;
bool is_extern = g->cur_fn->type_entry->data.fn.fn_type_id.is_extern;
if (handle_is_ptr(return_type)) {
if (is_extern) {
LLVMValueRef by_val_value = LLVMBuildLoad(g->builder, value, "");
LLVMBuildRet(g->builder, by_val_value);
} else {
assert(g->cur_ret_ptr);
gen_assign_raw(g, g->cur_ret_ptr, get_pointer_to_type(g, return_type, false), value);
LLVMBuildRetVoid(g->builder);
}
} else {
LLVMBuildRet(g->builder, value);
}
return nullptr;
}
static LLVMValueRef gen_overflow_shl_op(CodeGen *g, TypeTableEntry *type_entry,
LLVMValueRef val1, LLVMValueRef val2)
{
// for unsigned left shifting, we do the wrapping shift, then logically shift
// right the same number of bits
// if the values don't match, we have an overflow
// for signed left shifting we do the same except arithmetic shift right
assert(type_entry->id == TypeTableEntryIdInt);
LLVMValueRef result = LLVMBuildShl(g->builder, val1, val2, "");
LLVMValueRef orig_val;
if (type_entry->data.integral.is_signed) {
orig_val = LLVMBuildAShr(g->builder, result, val2, "");
} else {
orig_val = LLVMBuildLShr(g->builder, result, val2, "");
}
LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val1, orig_val, "");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "OverflowFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g, PanicMsgIdShiftOverflowedBits);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
return result;
}
static LLVMValueRef gen_div(CodeGen *g, bool want_debug_safety, LLVMValueRef val1, LLVMValueRef val2,
TypeTableEntry *type_entry, bool exact)
{
if (want_debug_safety) {
LLVMValueRef zero = LLVMConstNull(type_entry->type_ref);
LLVMValueRef is_zero_bit;
if (type_entry->id == TypeTableEntryIdInt) {
is_zero_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, zero, "");
} else if (type_entry->id == TypeTableEntryIdFloat) {
is_zero_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, val2, zero, "");
} else {
zig_unreachable();
}
LLVMBasicBlockRef div_zero_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivZeroOk");
LLVMBasicBlockRef div_zero_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivZeroFail");
LLVMBuildCondBr(g->builder, is_zero_bit, div_zero_fail_block, div_zero_ok_block);
LLVMPositionBuilderAtEnd(g->builder, div_zero_fail_block);
gen_debug_safety_crash(g, PanicMsgIdDivisionByZero);
LLVMPositionBuilderAtEnd(g->builder, div_zero_ok_block);
if (type_entry->id == TypeTableEntryIdInt && type_entry->data.integral.is_signed) {
LLVMValueRef neg_1_value = LLVMConstInt(type_entry->type_ref, -1, true);
LLVMValueRef int_min_value = LLVMConstInt(type_entry->type_ref, min_signed_val(type_entry), true);
LLVMBasicBlockRef overflow_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivOverflowOk");
LLVMBasicBlockRef overflow_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivOverflowFail");
LLVMValueRef num_is_int_min = LLVMBuildICmp(g->builder, LLVMIntEQ, val1, int_min_value, "");
LLVMValueRef den_is_neg_1 = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, neg_1_value, "");
LLVMValueRef overflow_fail_bit = LLVMBuildAnd(g->builder, num_is_int_min, den_is_neg_1, "");
LLVMBuildCondBr(g->builder, overflow_fail_bit, overflow_fail_block, overflow_ok_block);
LLVMPositionBuilderAtEnd(g->builder, overflow_fail_block);
gen_debug_safety_crash(g, PanicMsgIdIntegerOverflow);
LLVMPositionBuilderAtEnd(g->builder, overflow_ok_block);
}
}
if (type_entry->id == TypeTableEntryIdFloat) {
assert(!exact);
return LLVMBuildFDiv(g->builder, val1, val2, "");
}
assert(type_entry->id == TypeTableEntryIdInt);
if (exact) {
if (want_debug_safety) {
LLVMValueRef remainder_val;
if (type_entry->data.integral.is_signed) {
remainder_val = LLVMBuildSRem(g->builder, val1, val2, "");
} else {
remainder_val = LLVMBuildURem(g->builder, val1, val2, "");
}
LLVMValueRef zero = LLVMConstNull(type_entry->type_ref);
LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, remainder_val, zero, "");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g, PanicMsgIdExactDivisionRemainder);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
if (type_entry->data.integral.is_signed) {
return LLVMBuildExactSDiv(g->builder, val1, val2, "");
} else {
return LLVMBuildExactUDiv(g->builder, val1, val2, "");
}
} else {
if (type_entry->data.integral.is_signed) {
return LLVMBuildSDiv(g->builder, val1, val2, "");
} else {
return LLVMBuildUDiv(g->builder, val1, val2, "");
}
}
}
static LLVMValueRef gen_rem(CodeGen *g, bool want_debug_safety, LLVMValueRef val1, LLVMValueRef val2,
TypeTableEntry *type_entry)
{
if (want_debug_safety) {
LLVMValueRef zero = LLVMConstNull(type_entry->type_ref);
LLVMValueRef is_zero_bit;
if (type_entry->id == TypeTableEntryIdInt) {
is_zero_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, zero, "");
} else if (type_entry->id == TypeTableEntryIdFloat) {
is_zero_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, val2, zero, "");
} else {
zig_unreachable();
}
LLVMBasicBlockRef rem_zero_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "RemZeroOk");
LLVMBasicBlockRef rem_zero_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "RemZeroFail");
LLVMBuildCondBr(g->builder, is_zero_bit, rem_zero_fail_block, rem_zero_ok_block);
LLVMPositionBuilderAtEnd(g->builder, rem_zero_fail_block);
gen_debug_safety_crash(g, PanicMsgIdRemainderDivisionByZero);
LLVMPositionBuilderAtEnd(g->builder, rem_zero_ok_block);
if (type_entry->id == TypeTableEntryIdInt && type_entry->data.integral.is_signed) {
LLVMValueRef neg_1_value = LLVMConstInt(type_entry->type_ref, -1, true);
LLVMValueRef int_min_value = LLVMConstInt(type_entry->type_ref, min_signed_val(type_entry), true);
LLVMBasicBlockRef overflow_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "RemOverflowOk");
LLVMBasicBlockRef overflow_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "RemOverflowFail");
LLVMValueRef num_is_int_min = LLVMBuildICmp(g->builder, LLVMIntEQ, val1, int_min_value, "");
LLVMValueRef den_is_neg_1 = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, neg_1_value, "");
LLVMValueRef overflow_fail_bit = LLVMBuildAnd(g->builder, num_is_int_min, den_is_neg_1, "");
LLVMBuildCondBr(g->builder, overflow_fail_bit, overflow_fail_block, overflow_ok_block);
LLVMPositionBuilderAtEnd(g->builder, overflow_fail_block);
gen_debug_safety_crash(g, PanicMsgIdIntegerOverflow);
LLVMPositionBuilderAtEnd(g->builder, overflow_ok_block);
}
}
if (type_entry->id == TypeTableEntryIdFloat) {
return LLVMBuildFRem(g->builder, val1, val2, "");
} else {
assert(type_entry->id == TypeTableEntryIdInt);
if (type_entry->data.integral.is_signed) {
return LLVMBuildSRem(g->builder, val1, val2, "");
} else {
return LLVMBuildURem(g->builder, val1, val2, "");
}
}
}
static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutable *executable,
IrInstructionBinOp *bin_op_instruction)
{
IrBinOp op_id = bin_op_instruction->op_id;
IrInstruction *op1 = bin_op_instruction->op1;
IrInstruction *op2 = bin_op_instruction->op2;
assert(op1->value.type == op2->value.type);
TypeTableEntry *canon_type = get_underlying_type(op1->value.type);
bool want_debug_safety = bin_op_instruction->safety_check_on &&
ir_want_debug_safety(g, &bin_op_instruction->base);
LLVMValueRef op1_value = ir_llvm_value(g, op1);
LLVMValueRef op2_value = ir_llvm_value(g, op2);
switch (op_id) {
case IrBinOpInvalid:
case IrBinOpArrayCat:
case IrBinOpArrayMult:
zig_unreachable();
case IrBinOpBoolOr:
return LLVMBuildOr(g->builder, op1_value, op2_value, "");
case IrBinOpBoolAnd:
return LLVMBuildAnd(g->builder, op1_value, op2_value, "");
case IrBinOpCmpEq:
case IrBinOpCmpNotEq:
case IrBinOpCmpLessThan:
case IrBinOpCmpGreaterThan:
case IrBinOpCmpLessOrEq:
case IrBinOpCmpGreaterOrEq:
if (canon_type->id == TypeTableEntryIdFloat) {
LLVMRealPredicate pred = cmp_op_to_real_predicate(op_id);
return LLVMBuildFCmp(g->builder, pred, op1_value, op2_value, "");
} else if (canon_type->id == TypeTableEntryIdInt) {
LLVMIntPredicate pred = cmp_op_to_int_predicate(op_id, canon_type->data.integral.is_signed);
return LLVMBuildICmp(g->builder, pred, op1_value, op2_value, "");
} else if (canon_type->id == TypeTableEntryIdEnum) {
if (canon_type->data.enumeration.gen_field_count == 0) {
LLVMIntPredicate pred = cmp_op_to_int_predicate(op_id, false);
return LLVMBuildICmp(g->builder, pred, op1_value, op2_value, "");
} else {
zig_unreachable();
}
} else if (canon_type->id == TypeTableEntryIdPureError ||
canon_type->id == TypeTableEntryIdPointer ||
canon_type->id == TypeTableEntryIdBool)
{
LLVMIntPredicate pred = cmp_op_to_int_predicate(op_id, false);
return LLVMBuildICmp(g->builder, pred, op1_value, op2_value, "");
} else {
zig_unreachable();
}
case IrBinOpAdd:
case IrBinOpAddWrap:
if (canon_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFAdd(g->builder, op1_value, op2_value, "");
} else if (canon_type->id == TypeTableEntryIdInt) {
bool is_wrapping = (op_id == IrBinOpAddWrap);
if (is_wrapping) {
return LLVMBuildAdd(g->builder, op1_value, op2_value, "");
} else if (want_debug_safety) {
return gen_overflow_op(g, canon_type, AddSubMulAdd, op1_value, op2_value);
} else if (canon_type->data.integral.is_signed) {
return LLVMBuildNSWAdd(g->builder, op1_value, op2_value, "");
} else {
return LLVMBuildNUWAdd(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
}
case IrBinOpBinOr:
return LLVMBuildOr(g->builder, op1_value, op2_value, "");
case IrBinOpBinXor:
return LLVMBuildXor(g->builder, op1_value, op2_value, "");
case IrBinOpBinAnd:
return LLVMBuildAnd(g->builder, op1_value, op2_value, "");
case IrBinOpBitShiftLeft:
case IrBinOpBitShiftLeftWrap:
{
assert(canon_type->id == TypeTableEntryIdInt);
bool is_wrapping = (op_id == IrBinOpBitShiftLeftWrap);
if (is_wrapping) {
return LLVMBuildShl(g->builder, op1_value, op2_value, "");
} else if (want_debug_safety) {
return gen_overflow_shl_op(g, canon_type, op1_value, op2_value);
} else if (canon_type->data.integral.is_signed) {
return ZigLLVMBuildNSWShl(g->builder, op1_value, op2_value, "");
} else {
return ZigLLVMBuildNUWShl(g->builder, op1_value, op2_value, "");
}
}
case IrBinOpBitShiftRight:
assert(canon_type->id == TypeTableEntryIdInt);
if (canon_type->data.integral.is_signed) {
return LLVMBuildAShr(g->builder, op1_value, op2_value, "");
} else {
return LLVMBuildLShr(g->builder, op1_value, op2_value, "");
}
case IrBinOpSub:
case IrBinOpSubWrap:
if (canon_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFSub(g->builder, op1_value, op2_value, "");
} else if (canon_type->id == TypeTableEntryIdInt) {
bool is_wrapping = (op_id == IrBinOpSubWrap);
if (is_wrapping) {
return LLVMBuildSub(g->builder, op1_value, op2_value, "");
} else if (want_debug_safety) {
return gen_overflow_op(g, canon_type, AddSubMulSub, op1_value, op2_value);
} else if (canon_type->data.integral.is_signed) {
return LLVMBuildNSWSub(g->builder, op1_value, op2_value, "");
} else {
return LLVMBuildNUWSub(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
}
case IrBinOpMult:
case IrBinOpMultWrap:
if (canon_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFMul(g->builder, op1_value, op2_value, "");
} else if (canon_type->id == TypeTableEntryIdInt) {
bool is_wrapping = (op_id == IrBinOpMultWrap);
if (is_wrapping) {
return LLVMBuildMul(g->builder, op1_value, op2_value, "");
} else if (want_debug_safety) {
return gen_overflow_op(g, canon_type, AddSubMulMul, op1_value, op2_value);
} else if (canon_type->data.integral.is_signed) {
return LLVMBuildNSWMul(g->builder, op1_value, op2_value, "");
} else {
return LLVMBuildNUWMul(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
}
case IrBinOpDiv:
return gen_div(g, want_debug_safety, op1_value, op2_value, canon_type, false);
case IrBinOpRem:
return gen_rem(g, want_debug_safety, op1_value, op2_value, canon_type);
}
zig_unreachable();
}
static LLVMValueRef ir_render_cast(CodeGen *g, IrExecutable *executable,
IrInstructionCast *cast_instruction)
{
TypeTableEntry *actual_type = cast_instruction->value->value.type;
TypeTableEntry *wanted_type = cast_instruction->base.value.type;
LLVMValueRef expr_val = ir_llvm_value(g, cast_instruction->value);
assert(expr_val);
switch (cast_instruction->cast_op) {
case CastOpNoCast:
zig_unreachable();
case CastOpNoop:
return expr_val;
case CastOpResizeSlice:
{
assert(cast_instruction->tmp_ptr);
assert(wanted_type->id == TypeTableEntryIdStruct);
assert(wanted_type->data.structure.is_slice);
assert(actual_type->id == TypeTableEntryIdStruct);
assert(actual_type->data.structure.is_slice);
TypeTableEntry *actual_pointer_type = actual_type->data.structure.fields[0].type_entry;
TypeTableEntry *actual_child_type = actual_pointer_type->data.pointer.child_type;
TypeTableEntry *wanted_pointer_type = wanted_type->data.structure.fields[0].type_entry;
TypeTableEntry *wanted_child_type = wanted_pointer_type->data.pointer.child_type;
size_t actual_ptr_index = actual_type->data.structure.fields[slice_ptr_index].gen_index;
size_t actual_len_index = actual_type->data.structure.fields[slice_len_index].gen_index;
size_t wanted_ptr_index = wanted_type->data.structure.fields[slice_ptr_index].gen_index;
size_t wanted_len_index = wanted_type->data.structure.fields[slice_len_index].gen_index;
LLVMValueRef src_ptr_ptr = LLVMBuildStructGEP(g->builder, expr_val, (unsigned)actual_ptr_index, "");
LLVMValueRef src_ptr = LLVMBuildLoad(g->builder, src_ptr_ptr, "");
LLVMValueRef src_ptr_casted = LLVMBuildBitCast(g->builder, src_ptr,
wanted_type->data.structure.fields[0].type_entry->type_ref, "");
LLVMValueRef dest_ptr_ptr = LLVMBuildStructGEP(g->builder, cast_instruction->tmp_ptr,
(unsigned)wanted_ptr_index, "");
LLVMBuildStore(g->builder, src_ptr_casted, dest_ptr_ptr);
LLVMValueRef src_len_ptr = LLVMBuildStructGEP(g->builder, expr_val, (unsigned)actual_len_index, "");
LLVMValueRef src_len = LLVMBuildLoad(g->builder, src_len_ptr, "");
uint64_t src_size = type_size(g, actual_child_type);
uint64_t dest_size = type_size(g, wanted_child_type);
LLVMValueRef new_len;
if (dest_size == 1) {
LLVMValueRef src_size_val = LLVMConstInt(g->builtin_types.entry_usize->type_ref, src_size, false);
new_len = LLVMBuildMul(g->builder, src_len, src_size_val, "");
} else if (src_size == 1) {
LLVMValueRef dest_size_val = LLVMConstInt(g->builtin_types.entry_usize->type_ref, dest_size, false);
if (ir_want_debug_safety(g, &cast_instruction->base)) {
LLVMValueRef remainder_val = LLVMBuildURem(g->builder, src_len, dest_size_val, "");
LLVMValueRef zero = LLVMConstNull(g->builtin_types.entry_usize->type_ref);
LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, remainder_val, zero, "");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "SliceWidenOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "SliceWidenFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g, PanicMsgIdSliceWidenRemainder);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
new_len = LLVMBuildExactUDiv(g->builder, src_len, dest_size_val, "");
} else {
zig_unreachable();
}
LLVMValueRef dest_len_ptr = LLVMBuildStructGEP(g->builder, cast_instruction->tmp_ptr,
(unsigned)wanted_len_index, "");
LLVMBuildStore(g->builder, new_len, dest_len_ptr);
return cast_instruction->tmp_ptr;
}
case CastOpBytesToSlice:
{
assert(cast_instruction->tmp_ptr);
assert(wanted_type->id == TypeTableEntryIdStruct);
assert(wanted_type->data.structure.is_slice);
assert(actual_type->id == TypeTableEntryIdArray);
TypeTableEntry *wanted_pointer_type = wanted_type->data.structure.fields[0].type_entry;
TypeTableEntry *wanted_child_type = wanted_pointer_type->data.pointer.child_type;
size_t wanted_ptr_index = wanted_type->data.structure.fields[0].gen_index;
LLVMValueRef dest_ptr_ptr = LLVMBuildStructGEP(g->builder, cast_instruction->tmp_ptr,
(unsigned)wanted_ptr_index, "");
LLVMValueRef src_ptr_casted = LLVMBuildBitCast(g->builder, expr_val, wanted_pointer_type->type_ref, "");
LLVMBuildStore(g->builder, src_ptr_casted, dest_ptr_ptr);
size_t wanted_len_index = wanted_type->data.structure.fields[1].gen_index;
LLVMValueRef len_ptr = LLVMBuildStructGEP(g->builder, cast_instruction->tmp_ptr,
(unsigned)wanted_len_index, "");
LLVMValueRef len_val = LLVMConstInt(g->builtin_types.entry_usize->type_ref,
actual_type->data.array.len / type_size(g, wanted_child_type), false);
LLVMBuildStore(g->builder, len_val, len_ptr);
return cast_instruction->tmp_ptr;
}
case CastOpIntToFloat:
assert(actual_type->id == TypeTableEntryIdInt);
if (actual_type->data.integral.is_signed) {
return LLVMBuildSIToFP(g->builder, expr_val, wanted_type->type_ref, "");
} else {
return LLVMBuildUIToFP(g->builder, expr_val, wanted_type->type_ref, "");
}
case CastOpFloatToInt:
assert(wanted_type->id == TypeTableEntryIdInt);
if (wanted_type->data.integral.is_signed) {
return LLVMBuildFPToSI(g->builder, expr_val, wanted_type->type_ref, "");
} else {
return LLVMBuildFPToUI(g->builder, expr_val, wanted_type->type_ref, "");
}
case CastOpBoolToInt:
assert(wanted_type->id == TypeTableEntryIdInt);
assert(actual_type->id == TypeTableEntryIdBool);
return LLVMBuildZExt(g->builder, expr_val, wanted_type->type_ref, "");
}
zig_unreachable();
}
static LLVMValueRef ir_render_ptr_cast(CodeGen *g, IrExecutable *executable,
IrInstructionPtrCast *instruction)
{
TypeTableEntry *wanted_type = instruction->base.value.type;
LLVMValueRef ptr = ir_llvm_value(g, instruction->ptr);
return LLVMBuildBitCast(g->builder, ptr, wanted_type->type_ref, "");
}
static LLVMValueRef ir_render_widen_or_shorten(CodeGen *g, IrExecutable *executable,
IrInstructionWidenOrShorten *instruction)
{
TypeTableEntry *actual_type = instruction->target->value.type;
// TODO instead of this logic, use the Noop instruction to change the type from
// enum_tag to the underlying int type
TypeTableEntry *int_type;
if (actual_type->id == TypeTableEntryIdEnum) {
TypeTableEntry *tag_type = actual_type->data.enumeration.tag_type;
assert(tag_type->id == TypeTableEntryIdEnumTag);
int_type = tag_type->data.enum_tag.int_type;
} else {
int_type = actual_type;
}
LLVMValueRef target_val = ir_llvm_value(g, instruction->target);
return gen_widen_or_shorten(g, ir_want_debug_safety(g, &instruction->base), int_type,
instruction->base.value.type, target_val);
}
static LLVMValueRef ir_render_int_to_ptr(CodeGen *g, IrExecutable *executable, IrInstructionIntToPtr *instruction) {
TypeTableEntry *wanted_type = instruction->base.value.type;
LLVMValueRef target_val = ir_llvm_value(g, instruction->target);
return LLVMBuildIntToPtr(g->builder, target_val, wanted_type->type_ref, "");
}
static LLVMValueRef ir_render_ptr_to_int(CodeGen *g, IrExecutable *executable, IrInstructionPtrToInt *instruction) {
TypeTableEntry *wanted_type = instruction->base.value.type;
LLVMValueRef target_val = ir_llvm_value(g, instruction->target);
return LLVMBuildPtrToInt(g->builder, target_val, wanted_type->type_ref, "");
}
static LLVMValueRef ir_render_int_to_enum(CodeGen *g, IrExecutable *executable, IrInstructionIntToEnum *instruction) {
TypeTableEntry *wanted_type = instruction->base.value.type;
assert(wanted_type->id == TypeTableEntryIdEnum);
TypeTableEntry *tag_type = wanted_type->data.enumeration.tag_type;
TypeTableEntry *wanted_int_type;
if (tag_type->id == TypeTableEntryIdEnumTag) {
wanted_int_type = tag_type->data.enum_tag.int_type;
} else if (tag_type->id == TypeTableEntryIdInt) {
wanted_int_type = tag_type;
} else {
zig_unreachable();
}
LLVMValueRef target_val = ir_llvm_value(g, instruction->target);
return gen_widen_or_shorten(g, ir_want_debug_safety(g, &instruction->base),
instruction->target->value.type, wanted_int_type, target_val);
}
static LLVMValueRef ir_render_int_to_err(CodeGen *g, IrExecutable *executable, IrInstructionIntToErr *instruction) {
TypeTableEntry *wanted_type = instruction->base.value.type;
assert(wanted_type->id == TypeTableEntryIdPureError);
TypeTableEntry *actual_type = instruction->target->value.type;
assert(actual_type->id == TypeTableEntryIdInt);
assert(!actual_type->data.integral.is_signed);
LLVMValueRef target_val = ir_llvm_value(g, instruction->target);
if (ir_want_debug_safety(g, &instruction->base)) {
LLVMValueRef zero = LLVMConstNull(actual_type->type_ref);
LLVMValueRef neq_zero_bit = LLVMBuildICmp(g->builder, LLVMIntNE, target_val, zero, "");
LLVMValueRef ok_bit;
uint64_t biggest_possible_err_val = max_unsigned_val(actual_type);
if (biggest_possible_err_val < g->error_decls.length) {
ok_bit = neq_zero_bit;
} else {
LLVMValueRef error_value_count = LLVMConstInt(actual_type->type_ref, g->error_decls.length, false);
LLVMValueRef in_bounds_bit = LLVMBuildICmp(g->builder, LLVMIntULT, target_val, error_value_count, "");
ok_bit = LLVMBuildAnd(g->builder, neq_zero_bit, in_bounds_bit, "");
}
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "IntToErrOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "IntToErrFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g, PanicMsgIdInvalidErrorCode);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
return gen_widen_or_shorten(g, false, actual_type, g->err_tag_type, target_val);
}
static LLVMValueRef ir_render_err_to_int(CodeGen *g, IrExecutable *executable, IrInstructionErrToInt *instruction) {
TypeTableEntry *wanted_type = instruction->base.value.type;
assert(wanted_type->id == TypeTableEntryIdInt);
assert(!wanted_type->data.integral.is_signed);
TypeTableEntry *actual_type = instruction->target->value.type;
LLVMValueRef target_val = ir_llvm_value(g, instruction->target);
if (actual_type->id == TypeTableEntryIdPureError) {
return gen_widen_or_shorten(g, ir_want_debug_safety(g, &instruction->base),
g->err_tag_type, wanted_type, target_val);
} else if (actual_type->id == TypeTableEntryIdErrorUnion) {
if (!type_has_bits(actual_type->data.error.child_type)) {
return gen_widen_or_shorten(g, ir_want_debug_safety(g, &instruction->base),
g->err_tag_type, wanted_type, target_val);
} else {
zig_panic("TODO");
}
} else {
zig_unreachable();
}
}
static LLVMValueRef ir_render_unreachable(CodeGen *g, IrExecutable *executable,
IrInstructionUnreachable *unreachable_instruction)
{
if (ir_want_debug_safety(g, &unreachable_instruction->base) || g->is_test_build) {
gen_debug_safety_crash(g, PanicMsgIdUnreachable);
} else {
LLVMBuildUnreachable(g->builder);
}
return nullptr;
}
static LLVMValueRef ir_render_cond_br(CodeGen *g, IrExecutable *executable,
IrInstructionCondBr *cond_br_instruction)
{
LLVMBuildCondBr(g->builder,
ir_llvm_value(g, cond_br_instruction->condition),
cond_br_instruction->then_block->llvm_block,
cond_br_instruction->else_block->llvm_block);
return nullptr;
}
static LLVMValueRef ir_render_br(CodeGen *g, IrExecutable *executable, IrInstructionBr *br_instruction) {
LLVMBuildBr(g->builder, br_instruction->dest_block->llvm_block);
return nullptr;
}
static LLVMValueRef ir_render_un_op(CodeGen *g, IrExecutable *executable, IrInstructionUnOp *un_op_instruction) {
IrUnOp op_id = un_op_instruction->op_id;
LLVMValueRef expr = ir_llvm_value(g, un_op_instruction->value);
TypeTableEntry *expr_type = un_op_instruction->value->value.type;
switch (op_id) {
case IrUnOpInvalid:
case IrUnOpError:
case IrUnOpMaybe:
case IrUnOpDereference:
zig_unreachable();
case IrUnOpNegation:
case IrUnOpNegationWrap:
{
if (expr_type->id == TypeTableEntryIdFloat) {
return LLVMBuildFNeg(g->builder, expr, "");
} else if (expr_type->id == TypeTableEntryIdInt) {
if (op_id == IrUnOpNegationWrap) {
return LLVMBuildNeg(g->builder, expr, "");
} else if (ir_want_debug_safety(g, &un_op_instruction->base)) {
LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(expr));
return gen_overflow_op(g, expr_type, AddSubMulSub, zero, expr);
} else if (expr_type->data.integral.is_signed) {
return LLVMBuildNSWNeg(g->builder, expr, "");
} else {
return LLVMBuildNUWNeg(g->builder, expr, "");
}
} else {
zig_unreachable();
}
}
case IrUnOpBinNot:
return LLVMBuildNot(g->builder, expr, "");
}
zig_unreachable();
}
static LLVMValueRef ir_render_bool_not(CodeGen *g, IrExecutable *executable, IrInstructionBoolNot *instruction) {
LLVMValueRef value = ir_llvm_value(g, instruction->value);
LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(value));
return LLVMBuildICmp(g->builder, LLVMIntEQ, value, zero, "");
}
static LLVMValueRef ir_render_decl_var(CodeGen *g, IrExecutable *executable,
IrInstructionDeclVar *decl_var_instruction)
{
VariableTableEntry *var = decl_var_instruction->var;
if (!type_has_bits(var->value->type))
return nullptr;
if (var->ref_count == 0 && g->is_release_build)
return nullptr;
IrInstruction *init_value = decl_var_instruction->init_value;
bool have_init_expr = false;
ConstExprValue *const_val = &init_value->value;
if (const_val->special == ConstValSpecialRuntime || const_val->special == ConstValSpecialStatic)
have_init_expr = true;
if (have_init_expr) {
assert(var->value->type == init_value->value.type);
gen_assign_raw(g, var->value_ref, get_pointer_to_type(g, var->value->type, false),
ir_llvm_value(g, init_value));
} else {
bool ignore_uninit = false;
// handle runtime stack allocation
bool want_safe = ir_want_debug_safety(g, &decl_var_instruction->base);
if (!ignore_uninit && want_safe) {
TypeTableEntry *usize = g->builtin_types.entry_usize;
uint64_t size_bytes = LLVMStoreSizeOfType(g->target_data_ref, var->value->type->type_ref);
uint64_t align_bytes = get_type_alignment(g, var->value->type);
// memset uninitialized memory to 0xa
LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0);
LLVMValueRef fill_char = LLVMConstInt(LLVMInt8Type(), 0xaa, false);
LLVMValueRef dest_ptr = LLVMBuildBitCast(g->builder, var->value_ref, ptr_u8, "");
LLVMValueRef byte_count = LLVMConstInt(usize->type_ref, size_bytes, false);
LLVMValueRef align_in_bytes = LLVMConstInt(LLVMInt32Type(), align_bytes, false);
LLVMValueRef params[] = {
dest_ptr,
fill_char,
byte_count,
align_in_bytes,
LLVMConstNull(LLVMInt1Type()), // is volatile
};
LLVMBuildCall(g->builder, g->memset_fn_val, params, 5, "");
}
}
gen_var_debug_decl(g, var);
return nullptr;
}
static LLVMValueRef ir_render_load_ptr(CodeGen *g, IrExecutable *executable, IrInstructionLoadPtr *instruction) {
TypeTableEntry *child_type = instruction->base.value.type;
if (!type_has_bits(child_type))
return nullptr;
LLVMValueRef ptr = ir_llvm_value(g, instruction->ptr);
TypeTableEntry *ptr_type = instruction->ptr->value.type;
assert(ptr_type->id == TypeTableEntryIdPointer);
bool is_volatile = ptr_type->data.pointer.is_volatile;
uint32_t unaligned_bit_count = ptr_type->data.pointer.unaligned_bit_count;
if (unaligned_bit_count == 0)
return get_handle_value(g, ptr, child_type, is_volatile);
assert(!handle_is_ptr(child_type));
LLVMValueRef containing_int = LLVMBuildLoad(g->builder, ptr, "");
LLVMSetVolatile(containing_int, is_volatile);
uint32_t bit_offset = ptr_type->data.pointer.bit_offset;
uint32_t host_bit_count = LLVMGetIntTypeWidth(LLVMTypeOf(containing_int));
uint32_t shift_amt = host_bit_count - bit_offset - unaligned_bit_count;
LLVMValueRef shift_amt_val = LLVMConstInt(LLVMTypeOf(containing_int), shift_amt, false);
LLVMValueRef shifted_value = LLVMBuildLShr(g->builder, containing_int, shift_amt_val, "");
return LLVMBuildTrunc(g->builder, shifted_value, child_type->type_ref, "");
}
static LLVMValueRef ir_render_store_ptr(CodeGen *g, IrExecutable *executable, IrInstructionStorePtr *instruction) {
LLVMValueRef ptr = ir_llvm_value(g, instruction->ptr);
LLVMValueRef value = ir_llvm_value(g, instruction->value);
assert(instruction->ptr->value.type->id == TypeTableEntryIdPointer);
TypeTableEntry *ptr_type = get_underlying_type(instruction->ptr->value.type);
gen_assign_raw(g, ptr, ptr_type, value);
return nullptr;
}
static LLVMValueRef ir_render_var_ptr(CodeGen *g, IrExecutable *executable, IrInstructionVarPtr *instruction) {
VariableTableEntry *var = instruction->var;
if (type_has_bits(var->value->type)) {
assert(var->value_ref);
return var->value_ref;
} else {
return nullptr;
}
}
static LLVMValueRef ir_render_elem_ptr(CodeGen *g, IrExecutable *executable, IrInstructionElemPtr *instruction) {
LLVMValueRef array_ptr_ptr = ir_llvm_value(g, instruction->array_ptr);
TypeTableEntry *array_ptr_type = instruction->array_ptr->value.type;
assert(array_ptr_type->id == TypeTableEntryIdPointer);
bool is_volatile = array_ptr_type->data.pointer.is_volatile;
TypeTableEntry *array_type = array_ptr_type->data.pointer.child_type;
LLVMValueRef array_ptr = get_handle_value(g, array_ptr_ptr, array_type, is_volatile);
LLVMValueRef subscript_value = ir_llvm_value(g, instruction->elem_index);
assert(subscript_value);
if (!type_has_bits(array_type))
return nullptr;
bool safety_check_on = ir_want_debug_safety(g, &instruction->base) && instruction->safety_check_on;
if (array_type->id == TypeTableEntryIdArray) {
if (safety_check_on) {
LLVMValueRef end = LLVMConstInt(g->builtin_types.entry_usize->type_ref,
array_type->data.array.len, false);
add_bounds_check(g, subscript_value, LLVMIntEQ, nullptr, LLVMIntULT, end);
}
if (array_ptr_type->data.pointer.unaligned_bit_count != 0) {
return array_ptr_ptr;
}
TypeTableEntry *canon_child_type = get_underlying_type(array_type->data.array.child_type);
if (canon_child_type->id == TypeTableEntryIdStruct &&
canon_child_type->data.structure.layout == ContainerLayoutPacked)
{
size_t unaligned_bit_count = instruction->base.value.type->data.pointer.unaligned_bit_count;
if (unaligned_bit_count != 0) {
LLVMTypeRef ptr_u8_type_ref = LLVMPointerType(LLVMInt8Type(), 0);
LLVMValueRef u8_array_ptr = LLVMBuildBitCast(g->builder, array_ptr, ptr_u8_type_ref, "");
assert(unaligned_bit_count % 8 == 0);
LLVMValueRef elem_size_bytes = LLVMConstInt(g->builtin_types.entry_usize->type_ref,
unaligned_bit_count / 8, false);
LLVMValueRef byte_offset = LLVMBuildNUWMul(g->builder, subscript_value, elem_size_bytes, "");
LLVMValueRef indices[] = {
byte_offset
};
LLVMValueRef elem_byte_ptr = LLVMBuildInBoundsGEP(g->builder, u8_array_ptr, indices, 1, "");
return LLVMBuildBitCast(g->builder, elem_byte_ptr, LLVMPointerType(canon_child_type->type_ref, 0), "");
}
}
LLVMValueRef indices[] = {
LLVMConstNull(g->builtin_types.entry_usize->type_ref),
subscript_value
};
return LLVMBuildInBoundsGEP(g->builder, array_ptr, indices, 2, "");
} else if (array_type->id == TypeTableEntryIdPointer) {
assert(LLVMGetTypeKind(LLVMTypeOf(array_ptr)) == LLVMPointerTypeKind);
LLVMValueRef indices[] = {
subscript_value
};
return LLVMBuildInBoundsGEP(g->builder, array_ptr, indices, 1, "");
} else if (array_type->id == TypeTableEntryIdStruct) {
assert(array_type->data.structure.is_slice);
assert(LLVMGetTypeKind(LLVMTypeOf(array_ptr)) == LLVMPointerTypeKind);
assert(LLVMGetTypeKind(LLVMGetElementType(LLVMTypeOf(array_ptr))) == LLVMStructTypeKind);
if (safety_check_on) {
size_t len_index = array_type->data.structure.fields[1].gen_index;
assert(len_index != SIZE_MAX);
LLVMValueRef len_ptr = LLVMBuildStructGEP(g->builder, array_ptr, (unsigned)len_index, "");
LLVMValueRef len = LLVMBuildLoad(g->builder, len_ptr, "");
add_bounds_check(g, subscript_value, LLVMIntEQ, nullptr, LLVMIntULT, len);
}
size_t ptr_index = array_type->data.structure.fields[0].gen_index;
assert(ptr_index != SIZE_MAX);
LLVMValueRef ptr_ptr = LLVMBuildStructGEP(g->builder, array_ptr, (unsigned)ptr_index, "");
LLVMValueRef ptr = LLVMBuildLoad(g->builder, ptr_ptr, "");
return LLVMBuildInBoundsGEP(g->builder, ptr, &subscript_value, 1, "");
} else {
zig_unreachable();
}
}
static LLVMValueRef ir_render_call(CodeGen *g, IrExecutable *executable, IrInstructionCall *instruction) {
LLVMValueRef fn_val;
TypeTableEntry *fn_type;
if (instruction->fn_entry) {
fn_val = fn_llvm_value(g, instruction->fn_entry);
fn_type = instruction->fn_entry->type_entry;
} else {
assert(instruction->fn_ref);
fn_val = ir_llvm_value(g, instruction->fn_ref);
fn_type = instruction->fn_ref->value.type;
}
FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id;
TypeTableEntry *src_return_type = fn_type_id->return_type;
bool ret_has_bits = type_has_bits(src_return_type);
bool first_arg_ret = ret_has_bits && handle_is_ptr(src_return_type);
size_t actual_param_count = instruction->arg_count + (first_arg_ret ? 1 : 0);
bool is_var_args = fn_type_id->is_var_args;
LLVMValueRef *gen_param_values = allocate<LLVMValueRef>(actual_param_count);
size_t gen_param_index = 0;
if (first_arg_ret) {
gen_param_values[gen_param_index] = instruction->tmp_ptr;
gen_param_index += 1;
}
for (size_t call_i = 0; call_i < instruction->arg_count; call_i += 1) {
IrInstruction *param_instruction = instruction->args[call_i];
TypeTableEntry *param_type = param_instruction->value.type;
if (is_var_args || type_has_bits(param_type)) {
LLVMValueRef param_value = ir_llvm_value(g, param_instruction);
assert(param_value);
gen_param_values[gen_param_index] = param_value;
gen_param_index += 1;
}
}
LLVMValueRef result = ZigLLVMBuildCall(g->builder, fn_val,
gen_param_values, (unsigned)gen_param_index, fn_type->data.fn.calling_convention, "");
for (size_t param_i = 0; param_i < fn_type_id->param_count; param_i += 1) {
FnGenParamInfo *gen_info = &fn_type->data.fn.gen_param_info[param_i];
if (gen_info->is_byval) {
addLLVMCallsiteAttr(result, (unsigned)gen_info->gen_index, "byval");
}
}
if (src_return_type->id == TypeTableEntryIdUnreachable) {
return LLVMBuildUnreachable(g->builder);
} else if (!ret_has_bits) {
return nullptr;
} else if (first_arg_ret) {
return instruction->tmp_ptr;
} else {
return result;
}
}
static LLVMValueRef ir_render_struct_field_ptr(CodeGen *g, IrExecutable *executable,
IrInstructionStructFieldPtr *instruction)
{
LLVMValueRef struct_ptr = ir_llvm_value(g, instruction->struct_ptr);
// not necessarily a pointer. could be TypeTableEntryIdStruct
TypeTableEntry *struct_ptr_type = instruction->struct_ptr->value.type;
TypeStructField *field = instruction->field;
if (!type_has_bits(field->type_entry))
return nullptr;
if (struct_ptr_type->id == TypeTableEntryIdPointer &&
struct_ptr_type->data.pointer.unaligned_bit_count != 0)
{
return struct_ptr;
}
assert(field->gen_index != SIZE_MAX);
return LLVMBuildStructGEP(g->builder, struct_ptr, (unsigned)field->gen_index, "");
}
static LLVMValueRef ir_render_enum_field_ptr(CodeGen *g, IrExecutable *executable,
IrInstructionEnumFieldPtr *instruction)
{
TypeEnumField *field = instruction->field;
if (!type_has_bits(field->type_entry))
return nullptr;
LLVMValueRef enum_ptr = ir_llvm_value(g, instruction->enum_ptr);
LLVMTypeRef field_type_ref = LLVMPointerType(field->type_entry->type_ref, 0);
LLVMValueRef union_field_ptr = LLVMBuildStructGEP(g->builder, enum_ptr, enum_gen_union_index, "");
LLVMValueRef bitcasted_union_field_ptr = LLVMBuildBitCast(g->builder, union_field_ptr, field_type_ref, "");
return bitcasted_union_field_ptr;
}
static size_t find_asm_index(CodeGen *g, AstNode *node, AsmToken *tok) {
const char *ptr = buf_ptr(node->data.asm_expr.asm_template) + tok->start + 2;
size_t len = tok->end - tok->start - 2;
size_t result = 0;
for (size_t i = 0; i < node->data.asm_expr.output_list.length; i += 1, result += 1) {
AsmOutput *asm_output = node->data.asm_expr.output_list.at(i);
if (buf_eql_mem(asm_output->asm_symbolic_name, ptr, len)) {
return result;
}
}
for (size_t i = 0; i < node->data.asm_expr.input_list.length; i += 1, result += 1) {
AsmInput *asm_input = node->data.asm_expr.input_list.at(i);
if (buf_eql_mem(asm_input->asm_symbolic_name, ptr, len)) {
return result;
}
}
return SIZE_MAX;
}
static LLVMValueRef ir_render_asm(CodeGen *g, IrExecutable *executable, IrInstructionAsm *instruction) {
AstNode *asm_node = instruction->base.source_node;
assert(asm_node->type == NodeTypeAsmExpr);
AstNodeAsmExpr *asm_expr = &asm_node->data.asm_expr;
Buf *src_template = asm_expr->asm_template;
Buf llvm_template = BUF_INIT;
buf_resize(&llvm_template, 0);
for (size_t token_i = 0; token_i < asm_expr->token_list.length; token_i += 1) {
AsmToken *asm_token = &asm_expr->token_list.at(token_i);
switch (asm_token->id) {
case AsmTokenIdTemplate:
for (size_t offset = asm_token->start; offset < asm_token->end; offset += 1) {
uint8_t c = *((uint8_t*)(buf_ptr(src_template) + offset));
if (c == '$') {
buf_append_str(&llvm_template, "$$");
} else {
buf_append_char(&llvm_template, c);
}
}
break;
case AsmTokenIdPercent:
buf_append_char(&llvm_template, '%');
break;
case AsmTokenIdVar:
{
size_t index = find_asm_index(g, asm_node, asm_token);
assert(index < SIZE_MAX);
buf_appendf(&llvm_template, "$%zu", index);
break;
}
case AsmTokenIdUniqueId:
buf_append_str(&llvm_template, "${:uid}");
break;
}
}
Buf constraint_buf = BUF_INIT;
buf_resize(&constraint_buf, 0);
assert(instruction->return_count == 0 || instruction->return_count == 1);
size_t total_constraint_count = asm_expr->output_list.length +
asm_expr->input_list.length +
asm_expr->clobber_list.length;
size_t input_and_output_count = asm_expr->output_list.length +
asm_expr->input_list.length -
instruction->return_count;
size_t total_index = 0;
size_t param_index = 0;
LLVMTypeRef *param_types = allocate<LLVMTypeRef>(input_and_output_count);
LLVMValueRef *param_values = allocate<LLVMValueRef>(input_and_output_count);
for (size_t i = 0; i < asm_expr->output_list.length; i += 1, total_index += 1) {
AsmOutput *asm_output = asm_expr->output_list.at(i);
bool is_return = (asm_output->return_type != nullptr);
assert(*buf_ptr(asm_output->constraint) == '=');
if (is_return) {
buf_appendf(&constraint_buf, "=%s", buf_ptr(asm_output->constraint) + 1);
} else {
buf_appendf(&constraint_buf, "=*%s", buf_ptr(asm_output->constraint) + 1);
}
if (total_index + 1 < total_constraint_count) {
buf_append_char(&constraint_buf, ',');
}
if (!is_return) {
VariableTableEntry *variable = instruction->output_vars[i];
assert(variable);
param_types[param_index] = LLVMTypeOf(variable->value_ref);
param_values[param_index] = variable->value_ref;
param_index += 1;
}
}
for (size_t i = 0; i < asm_expr->input_list.length; i += 1, total_index += 1, param_index += 1) {
AsmInput *asm_input = asm_expr->input_list.at(i);
IrInstruction *ir_input = instruction->input_list[i];
buf_append_buf(&constraint_buf, asm_input->constraint);
if (total_index + 1 < total_constraint_count) {
buf_append_char(&constraint_buf, ',');
}
param_types[param_index] = ir_input->value.type->type_ref;
param_values[param_index] = ir_llvm_value(g, ir_input);
}
for (size_t i = 0; i < asm_expr->clobber_list.length; i += 1, total_index += 1) {
Buf *clobber_buf = asm_expr->clobber_list.at(i);
buf_appendf(&constraint_buf, "~{%s}", buf_ptr(clobber_buf));
if (total_index + 1 < total_constraint_count) {
buf_append_char(&constraint_buf, ',');
}
}
LLVMTypeRef ret_type;
if (instruction->return_count == 0) {
ret_type = LLVMVoidType();
} else {
ret_type = instruction->base.value.type->type_ref;
}
LLVMTypeRef function_type = LLVMFunctionType(ret_type, param_types, (unsigned)input_and_output_count, false);
bool is_x86 = (g->zig_target.arch.arch == ZigLLVM_x86 || g->zig_target.arch.arch == ZigLLVM_x86_64);
bool is_volatile = asm_expr->is_volatile || (asm_expr->output_list.length == 0);
LLVMValueRef asm_fn = ZigLLVMConstInlineAsm(function_type, buf_ptr(&llvm_template),
buf_ptr(&constraint_buf), is_volatile, false, is_x86);
return LLVMBuildCall(g->builder, asm_fn, param_values, (unsigned)input_and_output_count, "");
}
static LLVMValueRef gen_non_null_bit(CodeGen *g, TypeTableEntry *maybe_type, LLVMValueRef maybe_handle) {
assert(maybe_type->id == TypeTableEntryIdMaybe);
TypeTableEntry *child_type = maybe_type->data.maybe.child_type;
if (child_type->zero_bits) {
return maybe_handle;
} else {
bool maybe_is_ptr = (child_type->id == TypeTableEntryIdPointer || child_type->id == TypeTableEntryIdFn);
if (maybe_is_ptr) {
return LLVMBuildICmp(g->builder, LLVMIntNE, maybe_handle, LLVMConstNull(maybe_type->type_ref), "");
} else {
LLVMValueRef maybe_field_ptr = LLVMBuildStructGEP(g->builder, maybe_handle, maybe_null_index, "");
return LLVMBuildLoad(g->builder, maybe_field_ptr, "");
}
}
}
static LLVMValueRef ir_render_test_non_null(CodeGen *g, IrExecutable *executable,
IrInstructionTestNonNull *instruction)
{
return gen_non_null_bit(g, instruction->value->value.type, ir_llvm_value(g, instruction->value));
}
static LLVMValueRef ir_render_unwrap_maybe(CodeGen *g, IrExecutable *executable,
IrInstructionUnwrapMaybe *instruction)
{
TypeTableEntry *ptr_type = instruction->value->value.type;
assert(ptr_type->id == TypeTableEntryIdPointer);
bool is_volatile = ptr_type->data.pointer.is_volatile;
TypeTableEntry *maybe_type = ptr_type->data.pointer.child_type;
assert(maybe_type->id == TypeTableEntryIdMaybe);
TypeTableEntry *child_type = maybe_type->data.maybe.child_type;
LLVMValueRef maybe_ptr = ir_llvm_value(g, instruction->value);
LLVMValueRef maybe_handle = get_handle_value(g, maybe_ptr, maybe_type, is_volatile);
if (ir_want_debug_safety(g, &instruction->base) && instruction->safety_check_on) {
LLVMValueRef non_null_bit = gen_non_null_bit(g, maybe_type, maybe_handle);
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnwrapMaybeOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnwrapMaybeFail");
LLVMBuildCondBr(g->builder, non_null_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_debug_safety_crash(g, PanicMsgIdUnwrapMaybeFail);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
if (child_type->zero_bits) {
return nullptr;
} else {
bool maybe_is_ptr = (child_type->id == TypeTableEntryIdPointer || child_type->id == TypeTableEntryIdFn);
if (maybe_is_ptr) {
return maybe_ptr;
} else {
LLVMValueRef maybe_struct_ref = get_handle_value(g, maybe_ptr, maybe_type, is_volatile);
return LLVMBuildStructGEP(g->builder, maybe_struct_ref, maybe_child_index, "");
}
}
}
static LLVMValueRef get_int_builtin_fn(CodeGen *g, TypeTableEntry *int_type, BuiltinFnId fn_id) {
ZigLLVMFnKey key = {};
const char *fn_name;
if (fn_id == BuiltinFnIdCtz) {
fn_name = "cttz";
key.id = ZigLLVMFnIdCtz;
key.data.ctz.bit_count = (uint32_t)int_type->data.integral.bit_count;
} else {
fn_name = "ctlz";
key.id = ZigLLVMFnIdClz;
key.data.clz.bit_count = (uint32_t)int_type->data.integral.bit_count;
}
auto existing_entry = g->llvm_fn_table.maybe_get(key);
if (existing_entry)
return existing_entry->value;
char llvm_name[64];
sprintf(llvm_name, "llvm.%s.i%" PRIu32, fn_name, int_type->data.integral.bit_count);
LLVMTypeRef param_types[] = {
int_type->type_ref,
LLVMInt1Type(),
};
LLVMTypeRef fn_type = LLVMFunctionType(int_type->type_ref, param_types, 2, false);
LLVMValueRef fn_val = LLVMAddFunction(g->module, llvm_name, fn_type);
g->llvm_fn_table.put(key, fn_val);
return fn_val;
}
static LLVMValueRef ir_render_clz(CodeGen *g, IrExecutable *executable, IrInstructionClz *instruction) {
TypeTableEntry *int_type = instruction->base.value.type;
LLVMValueRef fn_val = get_int_builtin_fn(g, int_type, BuiltinFnIdClz);
LLVMValueRef operand = ir_llvm_value(g, instruction->value);
LLVMValueRef params[] {
operand,
LLVMConstNull(LLVMInt1Type()),
};
return LLVMBuildCall(g->builder, fn_val, params, 2, "");
}
static LLVMValueRef ir_render_ctz(CodeGen *g, IrExecutable *executable, IrInstructionCtz *instruction) {
TypeTableEntry *int_type = instruction->base.value.type;
LLVMValueRef fn_val = get_int_builtin_fn(g, int_type, BuiltinFnIdCtz);
LLVMValueRef operand = ir_llvm_value(g, instruction->value);
LLVMValueRef params[] {
operand,
LLVMConstNull(LLVMInt1Type()),
};
return LLVMBuildCall(g->builder, fn_val, params, 2, "");
}
static LLVMValueRef ir_render_switch_br(CodeGen *g, IrExecutable *executable, IrInstructionSwitchBr *instruction) {
LLVMValueRef target_value = ir_llvm_value(g, instruction->target_value);
LLVMBasicBlockRef else_block = instruction->else_block->llvm_block;
LLVMValueRef switch_instr = LLVMBuildSwitch(g->builder, target_value, else_block,
(unsigned)instruction->case_count);
for (size_t i = 0; i < instruction->case_count; i += 1) {
IrInstructionSwitchBrCase *this_case = &instruction->cases[i];
LLVMAddCase(switch_instr, ir_llvm_value(g, this_case->value), this_case->block->llvm_block);
}
return nullptr;
}
static LLVMValueRef ir_render_phi(CodeGen *g, IrExecutable *executable, IrInstructionPhi *instruction) {
if (!type_has_bits(instruction->base.value.type))
return nullptr;
LLVMTypeRef phi_type;
if (handle_is_ptr(instruction->base.value.type)) {
phi_type = LLVMPointerType(instruction->base.value.type->type_ref, 0);
} else {
phi_type = instruction->base.value.type->type_ref;
}
LLVMValueRef phi = LLVMBuildPhi(g->builder, phi_type, "");
LLVMValueRef *incoming_values = allocate<LLVMValueRef>(instruction->incoming_count);
LLVMBasicBlockRef *incoming_blocks = allocate<LLVMBasicBlockRef>(instruction->incoming_count);
for (size_t i = 0; i < instruction->incoming_count; i += 1) {
incoming_values[i] = ir_llvm_value(g, instruction->incoming_values[i]);
incoming_blocks[i] = instruction->incoming_blocks[i]->llvm_exit_block;
}
LLVMAddIncoming(phi, incoming_values, incoming_blocks, (unsigned)instruction->incoming_count);
return phi;
}
static LLVMValueRef ir_render_ref(CodeGen *g, IrExecutable *executable, IrInstructionRef *instruction) {
LLVMValueRef value = ir_llvm_value(g, instruction->value);
if (handle_is_ptr(instruction->value->value.type)) {
return value;
} else {
assert(instruction->tmp_ptr);
LLVMBuildStore(g->builder, value, instruction->tmp_ptr);
return instruction->tmp_ptr;
}
}
static LLVMValueRef ir_render_err_name(CodeGen *g, IrExecutable *executable, IrInstructionErrName *instruction) {
assert(g->generate_error_name_table);
if (g->error_decls.length == 1) {
LLVMBuildUnreachable(g->builder);
return nullptr;
}
LLVMValueRef err_val = ir_llvm_value(g, instruction->value);
if (ir_want_debug_safety(g, &instruction->base)) {
LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(err_val));
LLVMValueRef end_val = LLVMConstInt(LLVMTypeOf(err_val), g->error_decls.length, false);
add_bounds_check(g, err_val, LLVMIntNE, zero, LLVMIntULT, end_val);
}
LLVMValueRef indices[] = {
LLVMConstNull(g->builtin_types.entry_usize->type_ref),
err_val,
};
return LLVMBuildInBoundsGEP(g->builder, g->err_name_table, indices, 2, "");
}
static LLVMValueRef ir_render_enum_tag_name(CodeGen *g, IrExecutable *executable,
IrInstructionEnumTagName *instruction)
{
TypeTableEntry *enum_tag_type = instruction->target->value.type;
assert(enum_tag_type->data.enum_tag.generate_name_table);
LLVMValueRef enum_tag_value = ir_llvm_value(g, instruction->target);
if (ir_want_debug_safety(g, &instruction->base)) {
TypeTableEntry *enum_type = enum_tag_type->data.enum_tag.enum_type;
size_t field_count = enum_type->data.enumeration.src_field_count;
LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(enum_tag_value));
LLVMValueRef end_val = LLVMConstInt(LLVMTypeOf(enum_tag_value), field_count, false);
add_bounds_check(g, enum_tag_value, LLVMIntUGE, zero, LLVMIntULT, end_val);
}
LLVMValueRef indices[] = {
LLVMConstNull(g->builtin_types.entry_usize->type_ref),
enum_tag_value,
};
return LLVMBuildInBoundsGEP(g->builder, enum_tag_type->data.enum_tag.name_table, indices, 2, "");
}
static LLVMAtomicOrdering to_LLVMAtomicOrdering(AtomicOrder atomic_order) {
switch (atomic_order) {
case AtomicOrderUnordered: return LLVMAtomicOrderingUnordered;
case AtomicOrderMonotonic: return LLVMAtomicOrderingMonotonic;
case AtomicOrderAcquire: return LLVMAtomicOrderingAcquire;
case AtomicOrderRelease: return LLVMAtomicOrderingRelease;
case AtomicOrderAcqRel: return LLVMAtomicOrderingAcquireRelease;
case AtomicOrderSeqCst: return LLVMAtomicOrderingSequentiallyConsistent;
}
zig_unreachable();
}
static LLVMValueRef ir_render_cmpxchg(CodeGen *g, IrExecutable *executable, IrInstructionCmpxchg *instruction) {
LLVMValueRef ptr_val = ir_llvm_value(g, instruction->ptr);
LLVMValueRef cmp_val = ir_llvm_value(g, instruction->cmp_value);
LLVMValueRef new_val = ir_llvm_value(g, instruction->new_value);
LLVMAtomicOrdering success_order = to_LLVMAtomicOrdering(instruction->success_order);
LLVMAtomicOrdering failure_order = to_LLVMAtomicOrdering(instruction->failure_order);
LLVMValueRef result_val = ZigLLVMBuildCmpXchg(g->builder, ptr_val, cmp_val, new_val,
success_order, failure_order);
return LLVMBuildExtractValue(g->builder, result_val, 1, "");
}
static LLVMValueRef ir_render_fence(CodeGen *g, IrExecutable *executable, IrInstructionFence *instruction) {
LLVMAtomicOrdering atomic_order = to_LLVMAtomicOrdering(instruction->order);
LLVMBuildFence(g->builder, atomic_order, false, "");
return nullptr;
}
static LLVMValueRef ir_render_div_exact(CodeGen *g, IrExecutable *executable, IrInstructionDivExact *instruction) {
LLVMValueRef op1_val = ir_llvm_value(g, instruction->op1);
LLVMValueRef op2_val = ir_llvm_value(g, instruction->op2);
bool want_debug_safety = ir_want_debug_safety(g, &instruction->base);
return gen_div(g, want_debug_safety, op1_val, op2_val, instruction->base.value.type, true);
}
static LLVMValueRef ir_render_truncate(CodeGen *g, IrExecutable *executable, IrInstructionTruncate *instruction) {
LLVMValueRef target_val = ir_llvm_value(g, instruction->target);
TypeTableEntry *dest_type = get_underlying_type(instruction->base.value.type);
TypeTableEntry *src_type = get_underlying_type(instruction->target->value.type);
if (dest_type == src_type) {
// no-op
return target_val;
} if (src_type->data.integral.bit_count == dest_type->data.integral.bit_count) {
return LLVMBuildBitCast(g->builder, target_val, dest_type->type_ref, "");
} else {
LLVMValueRef target_val = ir_llvm_value(g, instruction->target);
return LLVMBuildTrunc(g->builder, target_val, dest_type->type_ref, "");
}
}
static LLVMValueRef ir_render_memset(CodeGen *g, IrExecutable *executable, IrInstructionMemset *instruction) {
LLVMValueRef dest_ptr = ir_llvm_value(g, instruction->dest_ptr);
LLVMValueRef char_val = ir_llvm_value(g, instruction->byte);
LLVMValueRef len_val = ir_llvm_value(g, instruction->count);
LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0);
LLVMValueRef dest_ptr_casted = LLVMBuildBitCast(g->builder, dest_ptr, ptr_u8, "");
TypeTableEntry *ptr_type = get_underlying_type(instruction->dest_ptr->value.type);
assert(ptr_type->id == TypeTableEntryIdPointer);
LLVMValueRef is_volatile = ptr_type->data.pointer.is_volatile ?
LLVMConstAllOnes(LLVMInt1Type()) : LLVMConstNull(LLVMInt1Type());
LLVMValueRef params[] = {
dest_ptr_casted, // dest pointer
char_val, // source pointer
len_val, // byte count
LLVMConstInt(LLVMInt32Type(), 1, false), // align in bytes
is_volatile,
};
LLVMBuildCall(g->builder, g->memset_fn_val, params, 5, "");
return nullptr;
}
static LLVMValueRef ir_render_memcpy(CodeGen *g, IrExecutable *executable, IrInstructionMemcpy *instruction) {
LLVMValueRef dest_ptr = ir_llvm_value(g, instruction->dest_ptr);
LLVMValueRef src_ptr = ir_llvm_value(g, instruction->src_ptr);
LLVMValueRef len_val = ir_llvm_value(g, instruction->count);
LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0);
LLVMValueRef dest_ptr_casted = LLVMBuildBitCast(g->builder, dest_ptr, ptr_u8, "");
LLVMValueRef src_ptr_casted = LLVMBuildBitCast(g->builder, src_ptr, ptr_u8, "");
TypeTableEntry *dest_ptr_type = get_underlying_type(instruction->dest_ptr->value.type);
TypeTableEntry *src_ptr_type = get_underlying_type(instruction->src_ptr->value.type);
assert(dest_ptr_type->id == TypeTableEntryIdPointer);
assert(src_ptr_type->id == TypeTableEntryIdPointer);
LLVMValueRef is_volatile = (dest_ptr_type->data.pointer.is_volatile || src_ptr_type->data.pointer.is_volatile) ?
LLVMConstAllOnes(LLVMInt1Type()) : LLVMConstNull(LLVMInt1Type());
LLVMValueRef params[] = {
dest_ptr_casted, // dest pointer
src_ptr_casted, // source pointer
len_val, // byte count
LLVMConstInt(LLVMInt32Type(), 1, false), // align in bytes
is_volatile,
};
LLVMBuildCall(g->builder, g->memcpy_fn_val, params, 5, "");
return nullptr;
}
static LLVMValueRef ir_render_slice(CodeGen *g, IrExecutable *executable, IrInstructionSlice *instruction) {
assert(instruction->tmp_ptr);
LLVMValueRef array_ptr_ptr = ir_llvm_value(g, instruction->ptr);
TypeTableEntry *array_ptr_type = instruction->ptr->value.type;
assert(array_ptr_type->id == TypeTableEntryIdPointer);
bool is_volatile = array_ptr_type->data.pointer.is_volatile;
TypeTableEntry *array_type = array_ptr_type->data.pointer.child_type;
LLVMValueRef array_ptr = get_handle_value(g, array_ptr_ptr, array_type, is_volatile);
LLVMValueRef tmp_struct_ptr = instruction->tmp_ptr;
bool want_debug_safety = instruction->safety_check_on && ir_want_debug_safety(g, &instruction->base);
if (array_type->id == TypeTableEntryIdArray) {
LLVMValueRef start_val = ir_llvm_value(g, instruction->start);
LLVMValueRef end_val;
if (instruction->end) {
end_val = ir_llvm_value(g, instruction->end);
} else {
end_val = LLVMConstInt(g->builtin_types.entry_usize->type_ref, array_type->data.array.len, false);
}
if (want_debug_safety) {
add_bounds_check(g, start_val, LLVMIntEQ, nullptr, LLVMIntULE, end_val);
if (instruction->end) {
LLVMValueRef array_end = LLVMConstInt(g->builtin_types.entry_usize->type_ref,
array_type->data.array.len, false);
add_bounds_check(g, end_val, LLVMIntEQ, nullptr, LLVMIntULE, array_end);
}
}
LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, slice_ptr_index, "");
LLVMValueRef indices[] = {
LLVMConstNull(g->builtin_types.entry_usize->type_ref),
start_val,
};
LLVMValueRef slice_start_ptr = LLVMBuildInBoundsGEP(g->builder, array_ptr, indices, 2, "");
LLVMBuildStore(g->builder, slice_start_ptr, ptr_field_ptr);
LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, slice_len_index, "");
LLVMValueRef len_value = LLVMBuildNSWSub(g->builder, end_val, start_val, "");
LLVMBuildStore(g->builder, len_value, len_field_ptr);
return tmp_struct_ptr;
} else if (array_type->id == TypeTableEntryIdPointer) {
LLVMValueRef start_val = ir_llvm_value(g, instruction->start);
LLVMValueRef end_val = ir_llvm_value(g, instruction->end);
if (want_debug_safety) {
add_bounds_check(g, start_val, LLVMIntEQ, nullptr, LLVMIntULE, end_val);
}
LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, slice_ptr_index, "");
LLVMValueRef slice_start_ptr = LLVMBuildInBoundsGEP(g->builder, array_ptr, &start_val, 1, "");
LLVMBuildStore(g->builder, slice_start_ptr, ptr_field_ptr);
LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, slice_len_index, "");
LLVMValueRef len_value = LLVMBuildNSWSub(g->builder, end_val, start_val, "");
LLVMBuildStore(g->builder, len_value, len_field_ptr);
return tmp_struct_ptr;
} else if (array_type->id == TypeTableEntryIdStruct) {
assert(array_type->data.structure.is_slice);
assert(LLVMGetTypeKind(LLVMTypeOf(array_ptr)) == LLVMPointerTypeKind);
assert(LLVMGetTypeKind(LLVMGetElementType(LLVMTypeOf(array_ptr))) == LLVMStructTypeKind);
size_t ptr_index = array_type->data.structure.fields[slice_ptr_index].gen_index;
assert(ptr_index != SIZE_MAX);
size_t len_index = array_type->data.structure.fields[slice_len_index].gen_index;
assert(len_index != SIZE_MAX);
LLVMValueRef prev_end = nullptr;
if (!instruction->end || want_debug_safety) {
LLVMValueRef src_len_ptr = LLVMBuildStructGEP(g->builder, array_ptr, (unsigned)len_index, "");
prev_end = LLVMBuildLoad(g->builder, src_len_ptr, "");
}
LLVMValueRef start_val = ir_llvm_value(g, instruction->start);
LLVMValueRef end_val;
if (instruction->end) {
end_val = ir_llvm_value(g, instruction->end);
} else {
end_val = prev_end;
}
if (want_debug_safety) {
assert(prev_end);
add_bounds_check(g, start_val, LLVMIntEQ, nullptr, LLVMIntULE, end_val);
if (instruction->end) {
add_bounds_check(g, end_val, LLVMIntEQ, nullptr, LLVMIntULE, prev_end);
}
}
LLVMValueRef src_ptr_ptr = LLVMBuildStructGEP(g->builder, array_ptr, (unsigned)ptr_index, "");
LLVMValueRef src_ptr = LLVMBuildLoad(g->builder, src_ptr_ptr, "");
LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, (unsigned)ptr_index, "");
LLVMValueRef slice_start_ptr = LLVMBuildInBoundsGEP(g->builder, src_ptr, &start_val, (unsigned)len_index, "");
LLVMBuildStore(g->builder, slice_start_ptr, ptr_field_ptr);
LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, (unsigned)len_index, "");
LLVMValueRef len_value = LLVMBuildNSWSub(g->builder, end_val, start_val, "");
LLVMBuildStore(g->builder, len_value, len_field_ptr);
return tmp_struct_ptr;
} else {
zig_unreachable();
}
}
static LLVMValueRef ir_render_breakpoint(CodeGen *g, IrExecutable *executable, IrInstructionBreakpoint *instruction) {
LLVMBuildCall(g->builder, g->trap_fn_val, nullptr, 0, "");
return nullptr;
}
static LLVMValueRef ir_render_return_address(CodeGen *g, IrExecutable *executable,
IrInstructionReturnAddress *instruction)
{
LLVMValueRef zero = LLVMConstNull(g->builtin_types.entry_i32->type_ref);
return LLVMBuildCall(g->builder, g->return_address_fn_val, &zero, 1, "");
}
static LLVMValueRef ir_render_frame_address(CodeGen *g, IrExecutable *executable,
IrInstructionFrameAddress *instruction)
{
LLVMValueRef zero = LLVMConstNull(g->builtin_types.entry_i32->type_ref);
return LLVMBuildCall(g->builder, g->frame_address_fn_val, &zero, 1, "");
}
static LLVMValueRef render_shl_with_overflow(CodeGen *g, IrInstructionOverflowOp *instruction) {
TypeTableEntry *int_type = get_underlying_type(instruction->result_ptr_type);
assert(int_type->id == TypeTableEntryIdInt);
LLVMValueRef op1 = ir_llvm_value(g, instruction->op1);
LLVMValueRef op2 = ir_llvm_value(g, instruction->op2);
LLVMValueRef ptr_result = ir_llvm_value(g, instruction->result_ptr);
LLVMValueRef result = LLVMBuildShl(g->builder, op1, op2, "");
LLVMValueRef orig_val;
if (int_type->data.integral.is_signed) {
orig_val = LLVMBuildAShr(g->builder, result, op2, "");
} else {
orig_val = LLVMBuildLShr(g->builder, result, op2, "");
}
LLVMValueRef overflow_bit = LLVMBuildICmp(g->builder, LLVMIntNE, op1, orig_val, "");
LLVMBuildStore(g->builder, result, ptr_result);
return overflow_bit;
}
static LLVMValueRef ir_render_overflow_op(CodeGen *g, IrExecutable *executable, IrInstructionOverflowOp *instruction) {
AddSubMul add_sub_mul;
switch (instruction->op) {
case IrOverflowOpAdd:
add_sub_mul = AddSubMulAdd;
break;
case IrOverflowOpSub:
add_sub_mul = AddSubMulSub;
break;
case IrOverflowOpMul:
add_sub_mul = AddSubMulMul;
break;
case IrOverflowOpShl:
return render_shl_with_overflow(g, instruction);
}
TypeTableEntry *int_type = get_underlying_type(instruction->result_ptr_type);
assert(int_type->id == TypeTableEntryIdInt);
LLVMValueRef fn_val = get_int_overflow_fn(g, int_type, add_sub_mul);
LLVMValueRef op1 = ir_llvm_value(g, instruction->op1);
LLVMValueRef op2 = ir_llvm_value(g, instruction->op2);
LLVMValueRef ptr_result = ir_llvm_value(g, instruction->result_ptr);
LLVMValueRef params[] = {
op1,
op2,
};
LLVMValueRef result_struct = LLVMBuildCall(g->builder, fn_val, params, 2, "");
LLVMValueRef result = LLVMBuildExtractValue(g->builder, result_struct, 0, "");
LLVMValueRef overflow_bit = LLVMBuildExtractValue(g->builder, result_struct, 1, "");
LLVMBuildStore(g->builder, result, ptr_result);
return overflow_bit;
}
static LLVMValueRef ir_render_test_err(CodeGen *g, IrExecutable *executable, IrInstructionTestErr *instruction) {
TypeTableEntry *err_union_type = get_underlying_type(instruction->value->value.type);
TypeTableEntry *child_type = get_underlying_type(err_union_type->data.error.child_type);
LLVMValueRef err_union_handle = ir_llvm_value(g, instruction->value);
LLVMValueRef err_val;
if (type_has_bits(child_type)) {
LLVMValueRef err_val_ptr = LLVMBuildStructGEP(g->builder, err_union_handle, err_union_err_index, "");
err_val = LLVMBuildLoad(g->builder, err_val_ptr, "");
} else {
err_val = err_union_handle;
}
LLVMValueRef zero = LLVMConstNull(g->err_tag_type->type_ref);
return LLVMBuildICmp(g->builder, LLVMIntNE, err_val, zero, "");
}
static LLVMValueRef ir_render_unwrap_err_code(CodeGen *g, IrExecutable *executable, IrInstructionUnwrapErrCode *instruction) {
TypeTableEntry *ptr_type = get_underlying_type(instruction->value->value.type);
assert(ptr_type->id == TypeTableEntryIdPointer);
bool is_volatile = ptr_type->data.pointer.is_volatile;
TypeTableEntry *err_union_type = get_underlying_type(ptr_type->data.pointer.child_type);
TypeTableEntry *child_type = get_underlying_type(err_union_type->data.error.child_type);
LLVMValueRef err_union_ptr = ir_llvm_value(g, instruction->value);
LLVMValueRef err_union_handle = get_handle_value(g, err_union_ptr, err_union_type, is_volatile);
if (type_has_bits(child_type)) {
LLVMValueRef err_val_ptr = LLVMBuildStructGEP(g->builder, err_union_handle, err_union_err_index, "");
return LLVMBuildLoad(g->builder, err_val_ptr, "");
} else {
return err_union_handle;
}
}
static LLVMValueRef ir_render_unwrap_err_payload(CodeGen *g, IrExecutable *executable, IrInstructionUnwrapErrPayload *instruction) {
TypeTableEntry *ptr_type = get_underlying_type(instruction->value->value.type);
assert(ptr_type->id == TypeTableEntryIdPointer);
bool is_volatile = ptr_type->data.pointer.is_volatile;
TypeTableEntry *err_union_type = get_underlying_type(ptr_type->data.pointer.child_type);
TypeTableEntry *child_type = get_underlying_type(err_union_type->data.error.child_type);
LLVMValueRef err_union_ptr = ir_llvm_value(g, instruction->value);
LLVMValueRef err_union_handle = get_handle_value(g, err_union_ptr, err_union_type, is_volatile);
if (ir_want_debug_safety(g, &instruction->base) && instruction->safety_check_on) {
LLVMValueRef err_val;
if (type_has_bits(child_type)) {
LLVMValueRef err_val_ptr = LLVMBuildStructGEP(g->builder, err_union_handle, err_union_err_index, "");
err_val = LLVMBuildLoad(g->builder, err_val_ptr, "");
} else {
err_val = err_union_handle;
}
LLVMValueRef zero = LLVMConstNull(g->err_tag_type->type_ref);
LLVMValueRef cond_val = LLVMBuildICmp(g->builder, LLVMIntEQ, err_val, zero, "");
LLVMBasicBlockRef err_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnwrapErrError");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "UnwrapErrOk");
LLVMBuildCondBr(g->builder, cond_val, ok_block, err_block);
LLVMPositionBuilderAtEnd(g->builder, err_block);
gen_debug_safety_crash(g, PanicMsgIdUnwrapErrFail);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
if (type_has_bits(child_type)) {
return LLVMBuildStructGEP(g->builder, err_union_handle, err_union_payload_index, "");
} else {
return nullptr;
}
}
static LLVMValueRef ir_render_maybe_wrap(CodeGen *g, IrExecutable *executable, IrInstructionMaybeWrap *instruction) {
TypeTableEntry *wanted_type = instruction->base.value.type;
assert(wanted_type->id == TypeTableEntryIdMaybe);
TypeTableEntry *child_type = wanted_type->data.maybe.child_type;
if (child_type->zero_bits) {
return LLVMConstInt(LLVMInt1Type(), 1, false);
}
LLVMValueRef payload_val = ir_llvm_value(g, instruction->value);
if (child_type->id == TypeTableEntryIdPointer ||
child_type->id == TypeTableEntryIdFn)
{
return payload_val;
}
assert(instruction->tmp_ptr);
LLVMValueRef val_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, maybe_child_index, "");
// child_type and instruction->value->value.type may differ by constness
gen_assign_raw(g, val_ptr, get_pointer_to_type(g, child_type, false), payload_val);
LLVMValueRef maybe_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, maybe_null_index, "");
LLVMBuildStore(g->builder, LLVMConstAllOnes(LLVMInt1Type()), maybe_ptr);
return instruction->tmp_ptr;
}
static LLVMValueRef ir_render_err_wrap_code(CodeGen *g, IrExecutable *executable, IrInstructionErrWrapCode *instruction) {
TypeTableEntry *wanted_type = instruction->base.value.type;
assert(wanted_type->id == TypeTableEntryIdErrorUnion);
TypeTableEntry *child_type = wanted_type->data.error.child_type;
LLVMValueRef err_val = ir_llvm_value(g, instruction->value);
if (!type_has_bits(child_type))
return err_val;
assert(instruction->tmp_ptr);
LLVMValueRef err_tag_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, err_union_err_index, "");
LLVMBuildStore(g->builder, err_val, err_tag_ptr);
return instruction->tmp_ptr;
}
static LLVMValueRef ir_render_err_wrap_payload(CodeGen *g, IrExecutable *executable, IrInstructionErrWrapPayload *instruction) {
TypeTableEntry *wanted_type = instruction->base.value.type;
assert(wanted_type->id == TypeTableEntryIdErrorUnion);
TypeTableEntry *child_type = wanted_type->data.error.child_type;
LLVMValueRef ok_err_val = LLVMConstNull(g->err_tag_type->type_ref);
if (!type_has_bits(child_type))
return ok_err_val;
assert(instruction->tmp_ptr);
LLVMValueRef payload_val = ir_llvm_value(g, instruction->value);
LLVMValueRef err_tag_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, err_union_err_index, "");
LLVMBuildStore(g->builder, ok_err_val, err_tag_ptr);
LLVMValueRef payload_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr, err_union_payload_index, "");
gen_assign_raw(g, payload_ptr, get_pointer_to_type(g, child_type, false), payload_val);
return instruction->tmp_ptr;
}
static LLVMValueRef ir_render_enum_tag(CodeGen *g, IrExecutable *executable, IrInstructionEnumTag *instruction) {
TypeTableEntry *enum_type = instruction->value->value.type;
TypeTableEntry *tag_type = enum_type->data.enumeration.tag_type;
if (!type_has_bits(tag_type))
return nullptr;
LLVMValueRef enum_val = ir_llvm_value(g, instruction->value);
if (enum_type->data.enumeration.gen_field_count == 0)
return enum_val;
LLVMValueRef tag_field_ptr = LLVMBuildStructGEP(g->builder, enum_val, enum_gen_tag_index, "");
return get_handle_value(g, tag_field_ptr, tag_type, false);
}
static LLVMValueRef ir_render_init_enum(CodeGen *g, IrExecutable *executable, IrInstructionInitEnum *instruction) {
TypeTableEntry *enum_type = instruction->enum_type;
uint32_t value = instruction->field->value;
LLVMTypeRef tag_type_ref = enum_type->data.enumeration.tag_type->type_ref;
LLVMValueRef tag_value = LLVMConstInt(tag_type_ref, value, false);
if (enum_type->data.enumeration.gen_field_count == 0)
return tag_value;
LLVMValueRef tmp_struct_ptr = instruction->tmp_ptr;
LLVMValueRef tag_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, enum_gen_tag_index, "");
LLVMBuildStore(g->builder, tag_value, tag_field_ptr);
TypeTableEntry *union_val_type = instruction->field->type_entry;
if (type_has_bits(union_val_type)) {
LLVMValueRef new_union_val = ir_llvm_value(g, instruction->init_value);
LLVMValueRef union_field_ptr = LLVMBuildStructGEP(g->builder, tmp_struct_ptr, enum_gen_union_index, "");
LLVMValueRef bitcasted_union_field_ptr = LLVMBuildBitCast(g->builder, union_field_ptr,
LLVMPointerType(union_val_type->type_ref, 0), "");
gen_assign_raw(g, bitcasted_union_field_ptr, get_pointer_to_type(g, union_val_type, false), new_union_val);
}
return tmp_struct_ptr;
}
static LLVMValueRef ir_render_struct_init(CodeGen *g, IrExecutable *executable, IrInstructionStructInit *instruction) {
for (size_t i = 0; i < instruction->field_count; i += 1) {
IrInstructionStructInitField *field = &instruction->fields[i];
TypeStructField *type_struct_field = field->type_struct_field;
if (!type_has_bits(type_struct_field->type_entry))
continue;
LLVMValueRef field_ptr = LLVMBuildStructGEP(g->builder, instruction->tmp_ptr,
(unsigned)type_struct_field->gen_index, "");
LLVMValueRef value = ir_llvm_value(g, field->value);
TypeTableEntry *ptr_type = get_pointer_to_type_extra(g, type_struct_field->type_entry,
false, false,
(uint32_t)type_struct_field->packed_bits_offset, (uint32_t)type_struct_field->unaligned_bit_count);
gen_assign_raw(g, field_ptr, ptr_type, value);
}
return instruction->tmp_ptr;
}
static LLVMValueRef ir_render_container_init_list(CodeGen *g, IrExecutable *executable,
IrInstructionContainerInitList *instruction)
{
TypeTableEntry *array_type = instruction->base.value.type;
assert(array_type->id == TypeTableEntryIdArray);
LLVMValueRef tmp_array_ptr = instruction->tmp_ptr;
assert(tmp_array_ptr);
size_t field_count = instruction->item_count;
TypeTableEntry *child_type = array_type->data.array.child_type;
for (size_t i = 0; i < field_count; i += 1) {
LLVMValueRef elem_val = ir_llvm_value(g, instruction->items[i]);
LLVMValueRef indices[] = {
LLVMConstNull(g->builtin_types.entry_usize->type_ref),
LLVMConstInt(g->builtin_types.entry_usize->type_ref, i, false),
};
LLVMValueRef elem_ptr = LLVMBuildInBoundsGEP(g->builder, tmp_array_ptr, indices, 2, "");
gen_assign_raw(g, elem_ptr, get_pointer_to_type(g, child_type, false), elem_val);
}
return tmp_array_ptr;
}
static LLVMValueRef ir_render_panic(CodeGen *g, IrExecutable *executable, IrInstructionPanic *instruction) {
gen_panic(g, ir_llvm_value(g, instruction->msg));
return nullptr;
}
static void set_debug_location(CodeGen *g, IrInstruction *instruction) {
AstNode *source_node = instruction->source_node;
Scope *scope = instruction->scope;
assert(source_node);
assert(scope);
ZigLLVMSetCurrentDebugLocation(g->builder, (int)source_node->line + 1,
(int)source_node->column + 1, get_di_scope(g, scope));
}
static LLVMValueRef ir_render_instruction(CodeGen *g, IrExecutable *executable, IrInstruction *instruction) {
set_debug_location(g, instruction);
switch (instruction->id) {
case IrInstructionIdInvalid:
case IrInstructionIdConst:
case IrInstructionIdTypeOf:
case IrInstructionIdToPtrType:
case IrInstructionIdPtrTypeChild:
case IrInstructionIdFieldPtr:
case IrInstructionIdSetDebugSafety:
case IrInstructionIdArrayType:
case IrInstructionIdSliceType:
case IrInstructionIdCompileVar:
case IrInstructionIdSizeOf:
case IrInstructionIdSwitchTarget:
case IrInstructionIdContainerInitFields:
case IrInstructionIdMinValue:
case IrInstructionIdMaxValue:
case IrInstructionIdCompileErr:
case IrInstructionIdCompileLog:
case IrInstructionIdArrayLen:
case IrInstructionIdImport:
case IrInstructionIdCImport:
case IrInstructionIdCInclude:
case IrInstructionIdCDefine:
case IrInstructionIdCUndef:
case IrInstructionIdEmbedFile:
case IrInstructionIdIntType:
case IrInstructionIdMemberCount:
case IrInstructionIdAlignOf:
case IrInstructionIdFnProto:
case IrInstructionIdTestComptime:
case IrInstructionIdGeneratedCode:
case IrInstructionIdCheckSwitchProngs:
case IrInstructionIdTestType:
case IrInstructionIdTypeName:
case IrInstructionIdCanImplicitCast:
case IrInstructionIdSetGlobalAlign:
case IrInstructionIdSetGlobalSection:
case IrInstructionIdSetGlobalLinkage:
case IrInstructionIdDeclRef:
case IrInstructionIdSwitchVar:
zig_unreachable();
case IrInstructionIdReturn:
return ir_render_return(g, executable, (IrInstructionReturn *)instruction);
case IrInstructionIdDeclVar:
return ir_render_decl_var(g, executable, (IrInstructionDeclVar *)instruction);
case IrInstructionIdBinOp:
return ir_render_bin_op(g, executable, (IrInstructionBinOp *)instruction);
case IrInstructionIdCast:
return ir_render_cast(g, executable, (IrInstructionCast *)instruction);
case IrInstructionIdUnreachable:
return ir_render_unreachable(g, executable, (IrInstructionUnreachable *)instruction);
case IrInstructionIdCondBr:
return ir_render_cond_br(g, executable, (IrInstructionCondBr *)instruction);
case IrInstructionIdBr:
return ir_render_br(g, executable, (IrInstructionBr *)instruction);
case IrInstructionIdUnOp:
return ir_render_un_op(g, executable, (IrInstructionUnOp *)instruction);
case IrInstructionIdLoadPtr:
return ir_render_load_ptr(g, executable, (IrInstructionLoadPtr *)instruction);
case IrInstructionIdStorePtr:
return ir_render_store_ptr(g, executable, (IrInstructionStorePtr *)instruction);
case IrInstructionIdVarPtr:
return ir_render_var_ptr(g, executable, (IrInstructionVarPtr *)instruction);
case IrInstructionIdElemPtr:
return ir_render_elem_ptr(g, executable, (IrInstructionElemPtr *)instruction);
case IrInstructionIdCall:
return ir_render_call(g, executable, (IrInstructionCall *)instruction);
case IrInstructionIdStructFieldPtr:
return ir_render_struct_field_ptr(g, executable, (IrInstructionStructFieldPtr *)instruction);
case IrInstructionIdEnumFieldPtr:
return ir_render_enum_field_ptr(g, executable, (IrInstructionEnumFieldPtr *)instruction);
case IrInstructionIdAsm:
return ir_render_asm(g, executable, (IrInstructionAsm *)instruction);
case IrInstructionIdTestNonNull:
return ir_render_test_non_null(g, executable, (IrInstructionTestNonNull *)instruction);
case IrInstructionIdUnwrapMaybe:
return ir_render_unwrap_maybe(g, executable, (IrInstructionUnwrapMaybe *)instruction);
case IrInstructionIdClz:
return ir_render_clz(g, executable, (IrInstructionClz *)instruction);
case IrInstructionIdCtz:
return ir_render_ctz(g, executable, (IrInstructionCtz *)instruction);
case IrInstructionIdSwitchBr:
return ir_render_switch_br(g, executable, (IrInstructionSwitchBr *)instruction);
case IrInstructionIdPhi:
return ir_render_phi(g, executable, (IrInstructionPhi *)instruction);
case IrInstructionIdRef:
return ir_render_ref(g, executable, (IrInstructionRef *)instruction);
case IrInstructionIdErrName:
return ir_render_err_name(g, executable, (IrInstructionErrName *)instruction);
case IrInstructionIdCmpxchg:
return ir_render_cmpxchg(g, executable, (IrInstructionCmpxchg *)instruction);
case IrInstructionIdFence:
return ir_render_fence(g, executable, (IrInstructionFence *)instruction);
case IrInstructionIdDivExact:
return ir_render_div_exact(g, executable, (IrInstructionDivExact *)instruction);
case IrInstructionIdTruncate:
return ir_render_truncate(g, executable, (IrInstructionTruncate *)instruction);
case IrInstructionIdBoolNot:
return ir_render_bool_not(g, executable, (IrInstructionBoolNot *)instruction);
case IrInstructionIdMemset:
return ir_render_memset(g, executable, (IrInstructionMemset *)instruction);
case IrInstructionIdMemcpy:
return ir_render_memcpy(g, executable, (IrInstructionMemcpy *)instruction);
case IrInstructionIdSlice:
return ir_render_slice(g, executable, (IrInstructionSlice *)instruction);
case IrInstructionIdBreakpoint:
return ir_render_breakpoint(g, executable, (IrInstructionBreakpoint *)instruction);
case IrInstructionIdReturnAddress:
return ir_render_return_address(g, executable, (IrInstructionReturnAddress *)instruction);
case IrInstructionIdFrameAddress:
return ir_render_frame_address(g, executable, (IrInstructionFrameAddress *)instruction);
case IrInstructionIdOverflowOp:
return ir_render_overflow_op(g, executable, (IrInstructionOverflowOp *)instruction);
case IrInstructionIdTestErr:
return ir_render_test_err(g, executable, (IrInstructionTestErr *)instruction);
case IrInstructionIdUnwrapErrCode:
return ir_render_unwrap_err_code(g, executable, (IrInstructionUnwrapErrCode *)instruction);
case IrInstructionIdUnwrapErrPayload:
return ir_render_unwrap_err_payload(g, executable, (IrInstructionUnwrapErrPayload *)instruction);
case IrInstructionIdMaybeWrap:
return ir_render_maybe_wrap(g, executable, (IrInstructionMaybeWrap *)instruction);
case IrInstructionIdErrWrapCode:
return ir_render_err_wrap_code(g, executable, (IrInstructionErrWrapCode *)instruction);
case IrInstructionIdErrWrapPayload:
return ir_render_err_wrap_payload(g, executable, (IrInstructionErrWrapPayload *)instruction);
case IrInstructionIdEnumTag:
return ir_render_enum_tag(g, executable, (IrInstructionEnumTag *)instruction);
case IrInstructionIdInitEnum:
return ir_render_init_enum(g, executable, (IrInstructionInitEnum *)instruction);
case IrInstructionIdStructInit:
return ir_render_struct_init(g, executable, (IrInstructionStructInit *)instruction);
case IrInstructionIdPtrCast:
return ir_render_ptr_cast(g, executable, (IrInstructionPtrCast *)instruction);
case IrInstructionIdWidenOrShorten:
return ir_render_widen_or_shorten(g, executable, (IrInstructionWidenOrShorten *)instruction);
case IrInstructionIdPtrToInt:
return ir_render_ptr_to_int(g, executable, (IrInstructionPtrToInt *)instruction);
case IrInstructionIdIntToPtr:
return ir_render_int_to_ptr(g, executable, (IrInstructionIntToPtr *)instruction);
case IrInstructionIdIntToEnum:
return ir_render_int_to_enum(g, executable, (IrInstructionIntToEnum *)instruction);
case IrInstructionIdIntToErr:
return ir_render_int_to_err(g, executable, (IrInstructionIntToErr *)instruction);
case IrInstructionIdErrToInt:
return ir_render_err_to_int(g, executable, (IrInstructionErrToInt *)instruction);
case IrInstructionIdContainerInitList:
return ir_render_container_init_list(g, executable, (IrInstructionContainerInitList *)instruction);
case IrInstructionIdPanic:
return ir_render_panic(g, executable, (IrInstructionPanic *)instruction);
case IrInstructionIdEnumTagName:
return ir_render_enum_tag_name(g, executable, (IrInstructionEnumTagName *)instruction);
}
zig_unreachable();
}
static void ir_render(CodeGen *g, FnTableEntry *fn_entry) {
assert(fn_entry);
IrExecutable *executable = &fn_entry->analyzed_executable;
assert(executable->basic_block_list.length > 0);
for (size_t block_i = 0; block_i < executable->basic_block_list.length; block_i += 1) {
IrBasicBlock *current_block = executable->basic_block_list.at(block_i);
//assert(current_block->ref_count > 0);
assert(current_block->llvm_block);
LLVMPositionBuilderAtEnd(g->builder, current_block->llvm_block);
for (size_t instr_i = 0; instr_i < current_block->instruction_list.length; instr_i += 1) {
IrInstruction *instruction = current_block->instruction_list.at(instr_i);
if (instruction->ref_count == 0 && !ir_has_side_effects(instruction))
continue;
instruction->llvm_value = ir_render_instruction(g, executable, instruction);
}
current_block->llvm_exit_block = LLVMGetInsertBlock(g->builder);
}
}
static LLVMValueRef gen_const_ptr_struct_recursive(CodeGen *g, ConstExprValue *struct_const_val, size_t field_index);
static LLVMValueRef gen_const_ptr_array_recursive(CodeGen *g, ConstExprValue *array_const_val, size_t index);
static LLVMValueRef gen_parent_ptr(CodeGen *g, ConstExprValue *val, ConstParent *parent) {
switch (parent->id) {
case ConstParentIdNone:
render_const_val(g, val);
render_const_val_global(g, val, "");
return val->llvm_global;
case ConstParentIdStruct:
return gen_const_ptr_struct_recursive(g, parent->data.p_struct.struct_val,
parent->data.p_struct.field_index);
case ConstParentIdArray:
return gen_const_ptr_array_recursive(g, parent->data.p_array.array_val,
parent->data.p_array.elem_index);
}
zig_unreachable();
}
static LLVMValueRef gen_const_ptr_array_recursive(CodeGen *g, ConstExprValue *array_const_val, size_t index) {
ConstParent *parent = &array_const_val->data.x_array.parent;
LLVMValueRef base_ptr = gen_parent_ptr(g, array_const_val, parent);
TypeTableEntry *usize = g->builtin_types.entry_usize;
LLVMValueRef indices[] = {
LLVMConstNull(usize->type_ref),
LLVMConstInt(usize->type_ref, index, false),
};
return LLVMConstInBoundsGEP(base_ptr, indices, 2);
}
static LLVMValueRef gen_const_ptr_struct_recursive(CodeGen *g, ConstExprValue *struct_const_val, size_t field_index) {
ConstParent *parent = &struct_const_val->data.x_struct.parent;
LLVMValueRef base_ptr = gen_parent_ptr(g, struct_const_val, parent);
TypeTableEntry *u32 = g->builtin_types.entry_u32;
LLVMValueRef indices[] = {
LLVMConstNull(u32->type_ref),
LLVMConstInt(u32->type_ref, field_index, false),
};
return LLVMConstInBoundsGEP(base_ptr, indices, 2);
}
static LLVMValueRef pack_const_int(CodeGen *g, LLVMTypeRef big_int_type_ref, ConstExprValue *const_val) {
switch (const_val->special) {
case ConstValSpecialRuntime:
zig_unreachable();
case ConstValSpecialUndef:
return LLVMConstInt(big_int_type_ref, 0, false);
case ConstValSpecialStatic:
break;
}
TypeTableEntry *canon_type = get_underlying_type(const_val->type);
assert(!canon_type->zero_bits);
switch (canon_type->id) {
case TypeTableEntryIdInvalid:
case TypeTableEntryIdVar:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdNumLitFloat:
case TypeTableEntryIdNumLitInt:
case TypeTableEntryIdUndefLit:
case TypeTableEntryIdNullLit:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdPureError:
case TypeTableEntryIdEnum:
case TypeTableEntryIdEnumTag:
case TypeTableEntryIdTypeDecl:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdVoid:
zig_unreachable();
case TypeTableEntryIdBool:
return LLVMConstInt(big_int_type_ref, const_val->data.x_bool ? 1 : 0, false);
case TypeTableEntryIdInt:
{
LLVMValueRef int_val = gen_const_val(g, const_val);
return LLVMConstZExt(int_val, big_int_type_ref);
}
return LLVMConstInt(big_int_type_ref, bignum_to_twos_complement(&const_val->data.x_bignum), false);
case TypeTableEntryIdFloat:
{
LLVMValueRef float_val = gen_const_val(g, const_val);
LLVMValueRef int_val = LLVMConstFPToUI(float_val,
LLVMIntType((unsigned)canon_type->data.floating.bit_count));
return LLVMConstZExt(int_val, big_int_type_ref);
}
case TypeTableEntryIdPointer:
case TypeTableEntryIdFn:
case TypeTableEntryIdMaybe:
{
LLVMValueRef ptr_val = gen_const_val(g, const_val);
LLVMValueRef ptr_size_int_val = LLVMConstPtrToInt(ptr_val, g->builtin_types.entry_usize->type_ref);
return LLVMConstZExt(ptr_size_int_val, big_int_type_ref);
}
case TypeTableEntryIdArray:
zig_panic("TODO bit pack an array");
case TypeTableEntryIdUnion:
zig_panic("TODO bit pack a union");
case TypeTableEntryIdStruct:
{
assert(canon_type->data.structure.layout == ContainerLayoutPacked);
LLVMValueRef val = LLVMConstInt(big_int_type_ref, 0, false);
for (size_t i = 0; i < canon_type->data.structure.src_field_count; i += 1) {
TypeStructField *field = &canon_type->data.structure.fields[i];
if (field->gen_index == SIZE_MAX) {
continue;
}
LLVMValueRef child_val = pack_const_int(g, big_int_type_ref, &const_val->data.x_struct.fields[i]);
LLVMValueRef shift_amt = LLVMConstInt(big_int_type_ref, field->packed_bits_size, false);
val = LLVMConstShl(val, shift_amt);
val = LLVMConstOr(val, child_val);
}
return val;
}
}
zig_unreachable();
}
static LLVMValueRef gen_const_val(CodeGen *g, ConstExprValue *const_val) {
TypeTableEntry *canon_type = get_underlying_type(const_val->type);
assert(!canon_type->zero_bits);
switch (const_val->special) {
case ConstValSpecialRuntime:
zig_unreachable();
case ConstValSpecialUndef:
return LLVMGetUndef(canon_type->type_ref);
case ConstValSpecialStatic:
break;
}
switch (canon_type->id) {
case TypeTableEntryIdTypeDecl:
zig_unreachable();
case TypeTableEntryIdInt:
case TypeTableEntryIdEnumTag:
return LLVMConstInt(canon_type->type_ref, bignum_to_twos_complement(&const_val->data.x_bignum), false);
case TypeTableEntryIdPureError:
assert(const_val->data.x_pure_err);
return LLVMConstInt(g->builtin_types.entry_pure_error->type_ref,
const_val->data.x_pure_err->value, false);
case TypeTableEntryIdFloat:
if (const_val->data.x_bignum.kind == BigNumKindFloat) {
return LLVMConstReal(canon_type->type_ref, const_val->data.x_bignum.data.x_float);
} else {
double x = (double)const_val->data.x_bignum.data.x_uint;
if (const_val->data.x_bignum.is_negative) {
x = -x;
}
return LLVMConstReal(canon_type->type_ref, x);
}
case TypeTableEntryIdBool:
if (const_val->data.x_bool) {
return LLVMConstAllOnes(LLVMInt1Type());
} else {
return LLVMConstNull(LLVMInt1Type());
}
case TypeTableEntryIdMaybe:
{
TypeTableEntry *child_type = canon_type->data.maybe.child_type;
if (child_type->zero_bits) {
return LLVMConstInt(LLVMInt1Type(), const_val->data.x_maybe ? 1 : 0, false);
} else if (child_type->id == TypeTableEntryIdPointer ||
child_type->id == TypeTableEntryIdFn)
{
if (const_val->data.x_maybe) {
return gen_const_val(g, const_val->data.x_maybe);
} else {
return LLVMConstNull(child_type->type_ref);
}
} else {
LLVMValueRef child_val;
LLVMValueRef maybe_val;
if (const_val->data.x_maybe) {
child_val = gen_const_val(g, const_val->data.x_maybe);
maybe_val = LLVMConstAllOnes(LLVMInt1Type());
} else {
child_val = LLVMConstNull(child_type->type_ref);
maybe_val = LLVMConstNull(LLVMInt1Type());
}
LLVMValueRef fields[] = {
child_val,
maybe_val,
};
return LLVMConstStruct(fields, 2, false);
}
}
case TypeTableEntryIdStruct:
{
LLVMValueRef *fields = allocate<LLVMValueRef>(canon_type->data.structure.gen_field_count);
size_t src_field_count = canon_type->data.structure.src_field_count;
if (canon_type->data.structure.layout == ContainerLayoutPacked) {
size_t src_field_index = 0;
while (src_field_index < src_field_count) {
TypeStructField *type_struct_field = &canon_type->data.structure.fields[src_field_index];
if (type_struct_field->gen_index == SIZE_MAX) {
src_field_index += 1;
continue;
}
size_t src_field_index_end = src_field_index + 1;
for (; src_field_index_end < src_field_count; src_field_index_end += 1) {
TypeStructField *it_field = &canon_type->data.structure.fields[src_field_index_end];
if (it_field->gen_index != type_struct_field->gen_index)
break;
}
if (src_field_index + 1 == src_field_index_end) {
fields[type_struct_field->gen_index] =
gen_const_val(g, &const_val->data.x_struct.fields[src_field_index]);
} else {
LLVMTypeRef big_int_type_ref = LLVMStructGetTypeAtIndex(canon_type->type_ref,
(unsigned)type_struct_field->gen_index);
LLVMValueRef val = LLVMConstInt(big_int_type_ref, 0, false);
for (size_t i = src_field_index; i < src_field_index_end; i += 1) {
TypeStructField *it_field = &canon_type->data.structure.fields[i];
if (it_field->gen_index == SIZE_MAX) {
continue;
}
LLVMValueRef child_val = pack_const_int(g, big_int_type_ref,
&const_val->data.x_struct.fields[i]);
LLVMValueRef shift_amt = LLVMConstInt(big_int_type_ref,
it_field->packed_bits_size, false);
val = LLVMConstShl(val, shift_amt);
val = LLVMConstOr(val, child_val);
}
fields[type_struct_field->gen_index] = val;
}
src_field_index = src_field_index_end;
}
} else {
for (uint32_t i = 0; i < src_field_count; i += 1) {
TypeStructField *type_struct_field = &canon_type->data.structure.fields[i];
if (type_struct_field->gen_index == SIZE_MAX) {
continue;
}
fields[type_struct_field->gen_index] = gen_const_val(g, &const_val->data.x_struct.fields[i]);
}
}
return LLVMConstNamedStruct(canon_type->type_ref, fields, canon_type->data.structure.gen_field_count);
}
case TypeTableEntryIdUnion:
{
zig_panic("TODO");
}
case TypeTableEntryIdArray:
{
uint64_t len = canon_type->data.array.len;
LLVMValueRef *values = allocate<LLVMValueRef>(len);
for (uint64_t i = 0; i < len; i += 1) {
ConstExprValue *elem_value = &const_val->data.x_array.elements[i];
values[i] = gen_const_val(g, elem_value);
}
return LLVMConstArray(LLVMTypeOf(values[0]), values, (unsigned)len);
}
case TypeTableEntryIdEnum:
{
LLVMTypeRef tag_type_ref = canon_type->data.enumeration.tag_type->type_ref;
LLVMValueRef tag_value = LLVMConstInt(tag_type_ref, const_val->data.x_enum.tag, false);
if (canon_type->data.enumeration.gen_field_count == 0) {
return tag_value;
} else {
TypeTableEntry *union_type = canon_type->data.enumeration.union_type;
TypeEnumField *enum_field = &canon_type->data.enumeration.fields[const_val->data.x_enum.tag];
assert(enum_field->value == const_val->data.x_enum.tag);
LLVMValueRef union_value;
if (type_has_bits(enum_field->type_entry)) {
uint64_t union_type_bytes = LLVMStoreSizeOfType(g->target_data_ref,
union_type->type_ref);
uint64_t field_type_bytes = LLVMStoreSizeOfType(g->target_data_ref,
enum_field->type_entry->type_ref);
uint64_t pad_bytes = union_type_bytes - field_type_bytes;
LLVMValueRef correctly_typed_value = gen_const_val(g, const_val->data.x_enum.payload);
if (pad_bytes == 0) {
union_value = correctly_typed_value;
} else {
LLVMValueRef fields[] = {
correctly_typed_value,
LLVMGetUndef(LLVMArrayType(LLVMInt8Type(), (unsigned)pad_bytes)),
};
union_value = LLVMConstStruct(fields, 2, false);
}
} else {
union_value = LLVMGetUndef(union_type->type_ref);
}
LLVMValueRef fields[] = {
tag_value,
union_value,
};
return LLVMConstStruct(fields, 2, false);
}
}
case TypeTableEntryIdFn:
return fn_llvm_value(g, const_val->data.x_fn);
case TypeTableEntryIdPointer:
{
render_const_val_global(g, const_val, "");
switch (const_val->data.x_ptr.special) {
case ConstPtrSpecialInvalid:
case ConstPtrSpecialDiscard:
zig_unreachable();
case ConstPtrSpecialRef:
{
ConstExprValue *pointee = const_val->data.x_ptr.data.ref.pointee;
render_const_val(g, pointee);
render_const_val_global(g, pointee, "");
ConstExprValue *other_val = pointee;
const_val->llvm_value = LLVMConstBitCast(other_val->llvm_global, const_val->type->type_ref);
render_const_val_global(g, const_val, "");
return const_val->llvm_value;
}
case ConstPtrSpecialBaseArray:
{
ConstExprValue *array_const_val = const_val->data.x_ptr.data.base_array.array_val;
size_t elem_index = const_val->data.x_ptr.data.base_array.elem_index;
assert(array_const_val->type->id == TypeTableEntryIdArray);
if (array_const_val->type->zero_bits) {
// make this a null pointer
TypeTableEntry *usize = g->builtin_types.entry_usize;
const_val->llvm_value = LLVMConstIntToPtr(LLVMConstNull(usize->type_ref),
const_val->type->type_ref);
render_const_val_global(g, const_val, "");
return const_val->llvm_value;
}
LLVMValueRef uncasted_ptr_val = gen_const_ptr_array_recursive(g, array_const_val,
elem_index);
LLVMValueRef ptr_val = LLVMConstBitCast(uncasted_ptr_val, const_val->type->type_ref);
const_val->llvm_value = ptr_val;
render_const_val_global(g, const_val, "");
return ptr_val;
}
case ConstPtrSpecialBaseStruct:
{
ConstExprValue *struct_const_val = const_val->data.x_ptr.data.base_struct.struct_val;
assert(struct_const_val->type->id == TypeTableEntryIdStruct);
if (struct_const_val->type->zero_bits) {
// make this a null pointer
TypeTableEntry *usize = g->builtin_types.entry_usize;
const_val->llvm_value = LLVMConstIntToPtr(LLVMConstNull(usize->type_ref),
const_val->type->type_ref);
render_const_val_global(g, const_val, "");
return const_val->llvm_value;
}
size_t src_field_index = const_val->data.x_ptr.data.base_struct.field_index;
size_t gen_field_index =
struct_const_val->type->data.structure.fields[src_field_index].gen_index;
LLVMValueRef uncasted_ptr_val = gen_const_ptr_struct_recursive(g, struct_const_val,
gen_field_index);
LLVMValueRef ptr_val = LLVMConstBitCast(uncasted_ptr_val, const_val->type->type_ref);
const_val->llvm_value = ptr_val;
render_const_val_global(g, const_val, "");
return ptr_val;
}
case ConstPtrSpecialHardCodedAddr:
{
uint64_t addr_value = const_val->data.x_ptr.data.hard_coded_addr.addr;
TypeTableEntry *usize = g->builtin_types.entry_usize;
const_val->llvm_value = LLVMConstIntToPtr(LLVMConstInt(usize->type_ref, addr_value, false),
const_val->type->type_ref);
render_const_val_global(g, const_val, "");
return const_val->llvm_value;
}
}
}
case TypeTableEntryIdErrorUnion:
{
TypeTableEntry *child_type = canon_type->data.error.child_type;
if (!type_has_bits(child_type)) {
uint64_t value = const_val->data.x_err_union.err ? const_val->data.x_err_union.err->value : 0;
return LLVMConstInt(g->err_tag_type->type_ref, value, false);
} else {
LLVMValueRef err_tag_value;
LLVMValueRef err_payload_value;
if (const_val->data.x_err_union.err) {
err_tag_value = LLVMConstInt(g->err_tag_type->type_ref, const_val->data.x_err_union.err->value, false);
err_payload_value = LLVMConstNull(child_type->type_ref);
} else {
err_tag_value = LLVMConstNull(g->err_tag_type->type_ref);
err_payload_value = gen_const_val(g, const_val->data.x_err_union.payload);
}
LLVMValueRef fields[] = {
err_tag_value,
err_payload_value,
};
return LLVMConstStruct(fields, 2, false);
}
}
case TypeTableEntryIdVoid:
return nullptr;
case TypeTableEntryIdInvalid:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdNumLitFloat:
case TypeTableEntryIdNumLitInt:
case TypeTableEntryIdUndefLit:
case TypeTableEntryIdNullLit:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdVar:
case TypeTableEntryIdArgTuple:
zig_unreachable();
}
zig_unreachable();
}
static void render_const_val(CodeGen *g, ConstExprValue *const_val) {
if (!const_val->llvm_value)
const_val->llvm_value = gen_const_val(g, const_val);
if (const_val->llvm_global)
LLVMSetInitializer(const_val->llvm_global, const_val->llvm_value);
}
static void render_const_val_global(CodeGen *g, ConstExprValue *const_val, const char *name) {
if (!const_val->llvm_global) {
LLVMTypeRef type_ref = const_val->llvm_value ? LLVMTypeOf(const_val->llvm_value) : const_val->type->type_ref;
LLVMValueRef global_value = LLVMAddGlobal(g->module, type_ref, name);
LLVMSetLinkage(global_value, LLVMInternalLinkage);
LLVMSetGlobalConstant(global_value, true);
LLVMSetUnnamedAddr(global_value, true);
LLVMSetAlignment(global_value, get_type_alignment(g, const_val->type));
const_val->llvm_global = global_value;
}
if (const_val->llvm_value)
LLVMSetInitializer(const_val->llvm_global, const_val->llvm_value);
}
static void delete_unused_builtin_fns(CodeGen *g) {
auto it = g->builtin_fn_table.entry_iterator();
for (;;) {
auto *entry = it.next();
if (!entry)
break;
BuiltinFnEntry *builtin_fn = entry->value;
if (builtin_fn->ref_count == 0 &&
builtin_fn->fn_val)
{
LLVMDeleteFunction(entry->value->fn_val);
}
}
}
static bool should_skip_fn_codegen(CodeGen *g, FnTableEntry *fn_entry) {
if (g->is_test_build) {
if (fn_entry->is_test) {
return false;
}
if (fn_entry == g->main_fn) {
return true;
}
return false;
}
if (fn_entry->is_test) {
return true;
}
return false;
}
static LLVMValueRef gen_test_fn_val(CodeGen *g, FnTableEntry *fn_entry) {
// Must match TestFn struct from test_runner.zig
Buf *fn_name = &fn_entry->symbol_name;
LLVMValueRef str_init = LLVMConstString(buf_ptr(fn_name), (unsigned)buf_len(fn_name), true);
LLVMValueRef str_global_val = LLVMAddGlobal(g->module, LLVMTypeOf(str_init), "");
LLVMSetInitializer(str_global_val, str_init);
LLVMSetLinkage(str_global_val, LLVMPrivateLinkage);
LLVMSetGlobalConstant(str_global_val, true);
LLVMSetUnnamedAddr(str_global_val, true);
LLVMValueRef len_val = LLVMConstInt(g->builtin_types.entry_usize->type_ref, buf_len(fn_name), false);
LLVMTypeRef ptr_type = LLVMPointerType(g->builtin_types.entry_u8->type_ref, 0);
LLVMValueRef name_fields[] = {
LLVMConstBitCast(str_global_val, ptr_type),
len_val,
};
LLVMValueRef name_val = LLVMConstStruct(name_fields, 2, false);
LLVMValueRef fields[] = {
name_val,
fn_llvm_value(g, fn_entry),
};
return LLVMConstStruct(fields, 2, false);
}
static void generate_error_name_table(CodeGen *g) {
if (!g->generate_error_name_table || g->error_decls.length == 1) {
return;
}
assert(g->error_decls.length > 0);
TypeTableEntry *str_type = get_slice_type(g, g->builtin_types.entry_u8, true);
TypeTableEntry *u8_ptr_type = str_type->data.structure.fields[0].type_entry;
LLVMValueRef *values = allocate<LLVMValueRef>(g->error_decls.length);
values[0] = LLVMGetUndef(str_type->type_ref);
for (size_t i = 1; i < g->error_decls.length; i += 1) {
AstNode *error_decl_node = g->error_decls.at(i);
assert(error_decl_node->type == NodeTypeErrorValueDecl);
Buf *name = error_decl_node->data.error_value_decl.name;
LLVMValueRef str_init = LLVMConstString(buf_ptr(name), (unsigned)buf_len(name), true);
LLVMValueRef str_global = LLVMAddGlobal(g->module, LLVMTypeOf(str_init), "");
LLVMSetInitializer(str_global, str_init);
LLVMSetLinkage(str_global, LLVMPrivateLinkage);
LLVMSetGlobalConstant(str_global, true);
LLVMSetUnnamedAddr(str_global, true);
LLVMValueRef fields[] = {
LLVMConstBitCast(str_global, u8_ptr_type->type_ref),
LLVMConstInt(g->builtin_types.entry_usize->type_ref, buf_len(name), false),
};
values[i] = LLVMConstNamedStruct(str_type->type_ref, fields, 2);
}
LLVMValueRef err_name_table_init = LLVMConstArray(str_type->type_ref, values, (unsigned)g->error_decls.length);
g->err_name_table = LLVMAddGlobal(g->module, LLVMTypeOf(err_name_table_init),
buf_ptr(get_mangled_name(g, buf_create_from_str("err_name_table"), false)));
LLVMSetInitializer(g->err_name_table, err_name_table_init);
LLVMSetLinkage(g->err_name_table, LLVMPrivateLinkage);
LLVMSetGlobalConstant(g->err_name_table, true);
LLVMSetUnnamedAddr(g->err_name_table, true);
}
static void generate_enum_name_tables(CodeGen *g) {
TypeTableEntry *str_type = get_slice_type(g, g->builtin_types.entry_u8, true);
TypeTableEntry *u8_ptr_type = str_type->data.structure.fields[0].type_entry;
for (size_t enum_i = 0; enum_i < g->name_table_enums.length; enum_i += 1) {
TypeTableEntry *enum_tag_type = g->name_table_enums.at(enum_i);
assert(enum_tag_type->id == TypeTableEntryIdEnumTag);
TypeTableEntry *enum_type = enum_tag_type->data.enum_tag.enum_type;
size_t field_count = enum_type->data.enumeration.src_field_count;
LLVMValueRef *values = allocate<LLVMValueRef>(field_count);
for (size_t field_i = 0; field_i < field_count; field_i += 1) {
Buf *name = enum_type->data.enumeration.fields[field_i].name;
LLVMValueRef str_init = LLVMConstString(buf_ptr(name), (unsigned)buf_len(name), true);
LLVMValueRef str_global = LLVMAddGlobal(g->module, LLVMTypeOf(str_init), "");
LLVMSetInitializer(str_global, str_init);
LLVMSetLinkage(str_global, LLVMPrivateLinkage);
LLVMSetGlobalConstant(str_global, true);
LLVMSetUnnamedAddr(str_global, true);
LLVMValueRef fields[] = {
LLVMConstBitCast(str_global, u8_ptr_type->type_ref),
LLVMConstInt(g->builtin_types.entry_usize->type_ref, buf_len(name), false),
};
values[field_i] = LLVMConstNamedStruct(str_type->type_ref, fields, 2);
}
LLVMValueRef name_table_init = LLVMConstArray(str_type->type_ref, values, (unsigned)field_count);
Buf *table_name = get_mangled_name(g, buf_sprintf("%s_name_table", buf_ptr(&enum_type->name)), false);
LLVMValueRef name_table = LLVMAddGlobal(g->module, LLVMTypeOf(name_table_init), buf_ptr(table_name));
LLVMSetInitializer(name_table, name_table_init);
LLVMSetLinkage(name_table, LLVMPrivateLinkage);
LLVMSetGlobalConstant(name_table, true);
LLVMSetUnnamedAddr(name_table, true);
enum_tag_type->data.enum_tag.name_table = name_table;
}
}
static void build_all_basic_blocks(CodeGen *g, FnTableEntry *fn) {
IrExecutable *executable = &fn->analyzed_executable;
assert(executable->basic_block_list.length > 0);
for (size_t block_i = 0; block_i < executable->basic_block_list.length; block_i += 1) {
IrBasicBlock *bb = executable->basic_block_list.at(block_i);
bb->llvm_block = LLVMAppendBasicBlock(fn_llvm_value(g, fn), bb->name_hint);
}
IrBasicBlock *entry_bb = executable->basic_block_list.at(0);
LLVMPositionBuilderAtEnd(g->builder, entry_bb->llvm_block);
}
static void gen_global_var(CodeGen *g, VariableTableEntry *var, LLVMValueRef init_val,
TypeTableEntry *type_entry)
{
assert(var->gen_is_const);
assert(type_entry);
ImportTableEntry *import = get_scope_import(var->parent_scope);
assert(import);
bool is_local_to_unit = true;
ZigLLVMCreateGlobalVariable(g->dbuilder, get_di_scope(g, var->parent_scope), buf_ptr(&var->name),
buf_ptr(&var->name), import->di_file,
(unsigned)(var->decl_node->line + 1),
type_entry->di_type, is_local_to_unit);
// TODO ^^ make an actual global variable
}
static LLVMValueRef build_alloca(CodeGen *g, TypeTableEntry *type_entry, const char *name) {
LLVMValueRef result = LLVMBuildAlloca(g->builder, type_entry->type_ref, name);
LLVMSetAlignment(result, get_type_alignment(g, type_entry));
return result;
}
static void do_code_gen(CodeGen *g) {
assert(!g->errors.length);
delete_unused_builtin_fns(g);
generate_error_name_table(g);
generate_enum_name_tables(g);
// Generate module level variables
for (size_t i = 0; i < g->global_vars.length; i += 1) {
TldVar *tld_var = g->global_vars.at(i);
VariableTableEntry *var = tld_var->var;
if (var->value->type->id == TypeTableEntryIdNumLitFloat) {
// Generate debug info for it but that's it.
ConstExprValue *const_val = var->value;
assert(const_val->special != ConstValSpecialRuntime);
TypeTableEntry *var_type = g->builtin_types.entry_f64;
LLVMValueRef init_val = LLVMConstReal(var_type->type_ref, const_val->data.x_bignum.data.x_float);
gen_global_var(g, var, init_val, var_type);
continue;
}
if (var->value->type->id == TypeTableEntryIdNumLitInt) {
// Generate debug info for it but that's it.
ConstExprValue *const_val = var->value;
assert(const_val->special != ConstValSpecialRuntime);
TypeTableEntry *var_type = const_val->data.x_bignum.is_negative ?
g->builtin_types.entry_isize : g->builtin_types.entry_usize;
LLVMValueRef init_val = LLVMConstInt(var_type->type_ref,
bignum_to_twos_complement(&const_val->data.x_bignum), false);
gen_global_var(g, var, init_val, var_type);
continue;
}
if (!type_has_bits(var->value->type))
continue;
assert(var->decl_node);
LLVMValueRef global_value;
if (var->linkage == VarLinkageExternal) {
global_value = LLVMAddGlobal(g->module, var->value->type->type_ref, buf_ptr(&var->name));
// TODO debug info for the extern variable
LLVMSetLinkage(global_value, LLVMExternalLinkage);
} else {
bool exported = (var->linkage == VarLinkageExport);
render_const_val(g, var->value);
render_const_val_global(g, var->value, buf_ptr(get_mangled_name(g, &var->name, exported)));
global_value = var->value->llvm_global;
if (exported) {
LLVMSetLinkage(global_value, LLVMExternalLinkage);
}
if (tld_var->section_name) {
LLVMSetSection(global_value, buf_ptr(tld_var->section_name));
}
LLVMSetAlignment(global_value, tld_var->alignment ?
tld_var->alignment : get_type_alignment(g, var->value->type));
// TODO debug info for function pointers
if (var->gen_is_const && var->value->type->id != TypeTableEntryIdFn) {
gen_global_var(g, var, var->value->llvm_value, var->value->type);
}
}
LLVMSetGlobalConstant(global_value, var->gen_is_const);
var->value_ref = global_value;
}
LLVMValueRef *test_fn_vals = nullptr;
uint32_t next_test_index = 0;
if (g->is_test_build) {
test_fn_vals = allocate<LLVMValueRef>(g->test_fn_count);
}
// Generate function prototypes
for (size_t fn_proto_i = 0; fn_proto_i < g->fn_protos.length; fn_proto_i += 1) {
FnTableEntry *fn_table_entry = g->fn_protos.at(fn_proto_i);
if (should_skip_fn_codegen(g, fn_table_entry))
continue;
TypeTableEntry *fn_type = fn_table_entry->type_entry;
FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id;
LLVMValueRef fn_val = fn_llvm_value(g, fn_table_entry);
if (!type_has_bits(fn_type->data.fn.fn_type_id.return_type)) {
// nothing to do
} else if (fn_type->data.fn.fn_type_id.return_type->id == TypeTableEntryIdPointer ||
fn_type->data.fn.fn_type_id.return_type->id == TypeTableEntryIdFn)
{
addLLVMAttr(fn_val, 0, "nonnull");
} else if (handle_is_ptr(fn_type->data.fn.fn_type_id.return_type) &&
!fn_type->data.fn.fn_type_id.is_extern)
{
addLLVMArgAttr(fn_val, 0, "sret");
addLLVMArgAttr(fn_val, 0, "nonnull");
}
// set parameter attributes
for (size_t param_i = 0; param_i < fn_type_id->param_count; param_i += 1) {
FnGenParamInfo *gen_info = &fn_type->data.fn.gen_param_info[param_i];
size_t gen_index = gen_info->gen_index;
bool is_byval = gen_info->is_byval;
if (gen_index == SIZE_MAX) {
continue;
}
FnTypeParamInfo *param_info = &fn_type_id->param_info[param_i];
TypeTableEntry *param_type = gen_info->type;
if (param_info->is_noalias) {
addLLVMArgAttr(fn_val, (unsigned)gen_index, "noalias");
}
if ((param_type->id == TypeTableEntryIdPointer && param_type->data.pointer.is_const) || is_byval) {
addLLVMArgAttr(fn_val, (unsigned)gen_index, "readonly");
}
if (param_type->id == TypeTableEntryIdPointer) {
addLLVMArgAttr(fn_val, (unsigned)gen_index, "nonnull");
}
if (is_byval) {
addLLVMArgAttr(fn_val, (unsigned)gen_index, "byval");
}
}
if (fn_table_entry->is_test) {
test_fn_vals[next_test_index] = gen_test_fn_val(g, fn_table_entry);
next_test_index += 1;
}
}
// Generate the list of test function pointers.
if (g->is_test_build) {
if (g->test_fn_count == 0) {
fprintf(stderr, "No tests to run.\n");
exit(0);
}
assert(g->test_fn_count > 0);
assert(next_test_index == g->test_fn_count);
LLVMValueRef test_fn_array_init = LLVMConstArray(LLVMTypeOf(test_fn_vals[0]),
test_fn_vals, g->test_fn_count);
LLVMValueRef test_fn_array_val = LLVMAddGlobal(g->module,
LLVMTypeOf(test_fn_array_init), "");
LLVMSetInitializer(test_fn_array_val, test_fn_array_init);
LLVMSetLinkage(test_fn_array_val, LLVMInternalLinkage);
LLVMSetGlobalConstant(test_fn_array_val, true);
LLVMSetUnnamedAddr(test_fn_array_val, true);
LLVMValueRef len_val = LLVMConstInt(g->builtin_types.entry_usize->type_ref, g->test_fn_count, false);
LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(test_fn_vals[0]), 0);
LLVMValueRef fields[] = {
LLVMConstBitCast(test_fn_array_val, ptr_type),
len_val,
};
LLVMValueRef test_fn_slice_init = LLVMConstStruct(fields, 2, false);
LLVMValueRef test_fn_slice_val = LLVMAddGlobal(g->module,
LLVMTypeOf(test_fn_slice_init), "zig_test_fn_list");
LLVMSetInitializer(test_fn_slice_val, test_fn_slice_init);
LLVMSetLinkage(test_fn_slice_val, LLVMExternalLinkage);
LLVMSetGlobalConstant(test_fn_slice_val, true);
LLVMSetUnnamedAddr(test_fn_slice_val, true);
}
// Generate function definitions.
for (size_t fn_i = 0; fn_i < g->fn_defs.length; fn_i += 1) {
FnTableEntry *fn_table_entry = g->fn_defs.at(fn_i);
if (should_skip_fn_codegen(g, fn_table_entry))
continue;
LLVMValueRef fn = fn_llvm_value(g, fn_table_entry);
g->cur_fn = fn_table_entry;
g->cur_fn_val = fn;
if (handle_is_ptr(fn_table_entry->type_entry->data.fn.fn_type_id.return_type)) {
g->cur_ret_ptr = LLVMGetParam(fn, 0);
} else {
g->cur_ret_ptr = nullptr;
}
build_all_basic_blocks(g, fn_table_entry);
clear_debug_source_node(g);
// allocate temporary stack data
for (size_t alloca_i = 0; alloca_i < fn_table_entry->alloca_list.length; alloca_i += 1) {
IrInstruction *instruction = fn_table_entry->alloca_list.at(alloca_i);
LLVMValueRef *slot;
TypeTableEntry *slot_type = instruction->value.type;
if (instruction->id == IrInstructionIdCast) {
IrInstructionCast *cast_instruction = (IrInstructionCast *)instruction;
slot = &cast_instruction->tmp_ptr;
} else if (instruction->id == IrInstructionIdRef) {
IrInstructionRef *ref_instruction = (IrInstructionRef *)instruction;
slot = &ref_instruction->tmp_ptr;
assert(instruction->value.type->id == TypeTableEntryIdPointer);
slot_type = instruction->value.type->data.pointer.child_type;
} else if (instruction->id == IrInstructionIdContainerInitList) {
IrInstructionContainerInitList *container_init_list_instruction = (IrInstructionContainerInitList *)instruction;
slot = &container_init_list_instruction->tmp_ptr;
} else if (instruction->id == IrInstructionIdStructInit) {
IrInstructionStructInit *struct_init_instruction = (IrInstructionStructInit *)instruction;
slot = &struct_init_instruction->tmp_ptr;
} else if (instruction->id == IrInstructionIdCall) {
IrInstructionCall *call_instruction = (IrInstructionCall *)instruction;
slot = &call_instruction->tmp_ptr;
} else if (instruction->id == IrInstructionIdSlice) {
IrInstructionSlice *slice_instruction = (IrInstructionSlice *)instruction;
slot = &slice_instruction->tmp_ptr;
} else if (instruction->id == IrInstructionIdMaybeWrap) {
IrInstructionMaybeWrap *maybe_wrap_instruction = (IrInstructionMaybeWrap *)instruction;
slot = &maybe_wrap_instruction->tmp_ptr;
} else if (instruction->id == IrInstructionIdErrWrapPayload) {
IrInstructionErrWrapPayload *err_wrap_payload_instruction = (IrInstructionErrWrapPayload *)instruction;
slot = &err_wrap_payload_instruction->tmp_ptr;
} else if (instruction->id == IrInstructionIdErrWrapCode) {
IrInstructionErrWrapCode *err_wrap_code_instruction = (IrInstructionErrWrapCode *)instruction;
slot = &err_wrap_code_instruction->tmp_ptr;
} else if (instruction->id == IrInstructionIdInitEnum) {
IrInstructionInitEnum *init_enum_instruction = (IrInstructionInitEnum *)instruction;
slot = &init_enum_instruction->tmp_ptr;
} else {
zig_unreachable();
}
*slot = build_alloca(g, slot_type, "");
}
ImportTableEntry *import = get_scope_import(&fn_table_entry->fndef_scope->base);
// create debug variable declarations for variables and allocate all local variables
for (size_t var_i = 0; var_i < fn_table_entry->variable_list.length; var_i += 1) {
VariableTableEntry *var = fn_table_entry->variable_list.at(var_i);
if (!type_has_bits(var->value->type)) {
continue;
}
if (ir_get_var_is_comptime(var))
continue;
if (type_requires_comptime(var->value->type))
continue;
if (var->src_arg_index == SIZE_MAX) {
var->value_ref = build_alloca(g, var->value->type, buf_ptr(&var->name));
var->di_loc_var = ZigLLVMCreateAutoVariable(g->dbuilder, get_di_scope(g, var->parent_scope),
buf_ptr(&var->name), import->di_file, (unsigned)(var->decl_node->line + 1),
var->value->type->di_type, !g->strip_debug_symbols, 0);
} else {
assert(var->gen_arg_index != SIZE_MAX);
TypeTableEntry *gen_type;
FnGenParamInfo *gen_info = &fn_table_entry->type_entry->data.fn.gen_param_info[var->src_arg_index];
if (handle_is_ptr(var->value->type)) {
if (gen_info->is_byval) {
gen_type = var->value->type;
} else {
gen_type = gen_info->type;
}
var->value_ref = LLVMGetParam(fn, (unsigned)var->gen_arg_index);
} else {
gen_type = var->value->type;
var->value_ref = build_alloca(g, var->value->type, buf_ptr(&var->name));
}
if (var->decl_node) {
var->di_loc_var = ZigLLVMCreateParameterVariable(g->dbuilder, get_di_scope(g, var->parent_scope),
buf_ptr(&var->name), import->di_file,
(unsigned)(var->decl_node->line + 1),
gen_type->di_type, !g->strip_debug_symbols, 0, (unsigned)(var->gen_arg_index + 1));
}
}
}
FnTypeId *fn_type_id = &fn_table_entry->type_entry->data.fn.fn_type_id;
// create debug variable declarations for parameters
// rely on the first variables in the variable_list being parameters.
size_t next_var_i = 0;
for (size_t param_i = 0; param_i < fn_type_id->param_count; param_i += 1) {
FnGenParamInfo *info = &fn_table_entry->type_entry->data.fn.gen_param_info[param_i];
if (info->gen_index == SIZE_MAX)
continue;
VariableTableEntry *variable = fn_table_entry->variable_list.at(next_var_i);
assert(variable->src_arg_index != SIZE_MAX);
next_var_i += 1;
assert(variable);
assert(variable->value_ref);
if (!handle_is_ptr(variable->value->type)) {
clear_debug_source_node(g);
LLVMBuildStore(g->builder, LLVMGetParam(fn, (unsigned)variable->gen_arg_index), variable->value_ref);
}
if (variable->decl_node) {
gen_var_debug_decl(g, variable);
}
}
ir_render(g, fn_table_entry);
}
assert(!g->errors.length);
if (buf_len(&g->global_asm) != 0) {
LLVMSetModuleInlineAsm(g->module, buf_ptr(&g->global_asm));
}
ZigLLVMDIBuilderFinalize(g->dbuilder);
if (g->verbose) {
LLVMDumpModule(g->module);
}
// in release mode, we're sooooo confident that we've generated correct ir,
// that we skip the verify module step in order to get better performance.
#ifndef NDEBUG
char *error = nullptr;
LLVMVerifyModule(g->module, LLVMAbortProcessAction, &error);
#endif
char *err_msg = nullptr;
Buf *out_file_o = buf_create_from_buf(g->root_out_name);
const char *o_ext = target_o_file_ext(&g->zig_target);
buf_append_str(out_file_o, o_ext);
if (ZigLLVMTargetMachineEmitToFile(g->target_machine, g->module, buf_ptr(out_file_o),
LLVMObjectFile, &err_msg, !g->is_release_build))
{
zig_panic("unable to write object file: %s", err_msg);
}
g->link_objects.append(out_file_o);
}
static const uint8_t int_sizes_in_bits[] = {
8,
16,
32,
64,
};
struct CIntTypeInfo {
CIntType id;
const char *name;
bool is_signed;
};
static const CIntTypeInfo c_int_type_infos[] = {
{CIntTypeShort, "c_short", true},
{CIntTypeUShort, "c_ushort", false},
{CIntTypeInt, "c_int", true},
{CIntTypeUInt, "c_uint", false},
{CIntTypeLong, "c_long", true},
{CIntTypeULong, "c_ulong", false},
{CIntTypeLongLong, "c_longlong", true},
{CIntTypeULongLong, "c_ulonglong", false},
};
static const bool is_signed_list[] = { false, true, };
struct GlobalLinkageValue {
GlobalLinkageId id;
const char *name;
};
static const GlobalLinkageValue global_linkage_values[] = {
{GlobalLinkageIdInternal, "Internal"},
{GlobalLinkageIdStrong, "Strong"},
{GlobalLinkageIdWeak, "Weak"},
{GlobalLinkageIdLinkOnce, "LinkOnce"},
};
static void init_enum_debug_info(CodeGen *g, TypeTableEntry *enum_type) {
uint32_t field_count = enum_type->data.enumeration.src_field_count;
TypeTableEntry *tag_int_type = get_smallest_unsigned_int_type(g, field_count);
TypeTableEntry *tag_type_entry = create_enum_tag_type(g, enum_type, tag_int_type);
enum_type->data.enumeration.tag_type = tag_type_entry;
ZigLLVMDIEnumerator **di_enumerators = allocate<ZigLLVMDIEnumerator*>(field_count);
for (uint32_t i = 0; i < field_count; i += 1) {
TypeEnumField *field = &enum_type->data.enumeration.fields[i];
di_enumerators[i] = ZigLLVMCreateDebugEnumerator(g->dbuilder, buf_ptr(field->name), i);
}
// create debug type for tag
uint64_t tag_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, tag_type_entry->type_ref);
uint64_t tag_debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, tag_type_entry->type_ref);
enum_type->di_type = ZigLLVMCreateDebugEnumerationType(g->dbuilder,
nullptr, buf_ptr(&enum_type->name),
nullptr, 0,
tag_debug_size_in_bits,
tag_debug_align_in_bits,
di_enumerators, field_count,
tag_type_entry->di_type, "");
enum_type->type_ref = tag_type_entry->type_ref;
enum_type->data.enumeration.complete = true;
enum_type->data.enumeration.zero_bits_known = true;
}
static void define_builtin_types(CodeGen *g) {
{
// if this type is anywhere in the AST, we should never hit codegen.
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdInvalid);
buf_init_from_str(&entry->name, "(invalid)");
entry->zero_bits = true;
g->builtin_types.entry_invalid = entry;
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdNamespace);
buf_init_from_str(&entry->name, "(namespace)");
entry->zero_bits = true;
g->builtin_types.entry_namespace = entry;
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdBlock);
buf_init_from_str(&entry->name, "(block)");
entry->zero_bits = true;
g->builtin_types.entry_block = entry;
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdNumLitFloat);
buf_init_from_str(&entry->name, "(float literal)");
entry->zero_bits = true;
g->builtin_types.entry_num_lit_float = entry;
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdNumLitInt);
buf_init_from_str(&entry->name, "(integer literal)");
entry->zero_bits = true;
g->builtin_types.entry_num_lit_int = entry;
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdUndefLit);
buf_init_from_str(&entry->name, "(undefined)");
g->builtin_types.entry_undef = entry;
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdNullLit);
buf_init_from_str(&entry->name, "(null)");
g->builtin_types.entry_null = entry;
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdVar);
buf_init_from_str(&entry->name, "(var)");
g->builtin_types.entry_var = entry;
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdArgTuple);
buf_init_from_str(&entry->name, "(args)");
entry->zero_bits = true;
g->builtin_types.entry_arg_tuple = entry;
}
for (size_t int_size_i = 0; int_size_i < array_length(int_sizes_in_bits); int_size_i += 1) {
uint8_t size_in_bits = int_sizes_in_bits[int_size_i];
for (size_t is_sign_i = 0; is_sign_i < array_length(is_signed_list); is_sign_i += 1) {
bool is_signed = is_signed_list[is_sign_i];
TypeTableEntry *entry = make_int_type(g, is_signed, size_in_bits);
g->primitive_type_table.put(&entry->name, entry);
get_int_type_ptr(g, is_signed, size_in_bits)[0] = entry;
}
}
for (size_t i = 0; i < array_length(c_int_type_infos); i += 1) {
const CIntTypeInfo *info = &c_int_type_infos[i];
uint32_t size_in_bits = target_c_type_size_in_bits(&g->zig_target, info->id);
bool is_signed = info->is_signed;
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdInt);
entry->type_ref = LLVMIntType(size_in_bits);
buf_init_from_str(&entry->name, info->name);
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
entry->di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name),
debug_size_in_bits,
is_signed ? ZigLLVMEncoding_DW_ATE_signed() : ZigLLVMEncoding_DW_ATE_unsigned());
entry->data.integral.is_signed = is_signed;
entry->data.integral.bit_count = size_in_bits;
g->primitive_type_table.put(&entry->name, entry);
get_c_int_type_ptr(g, info->id)[0] = entry;
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdBool);
entry->type_ref = LLVMInt1Type();
buf_init_from_str(&entry->name, "bool");
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
entry->di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name),
debug_size_in_bits,
ZigLLVMEncoding_DW_ATE_boolean());
g->builtin_types.entry_bool = entry;
g->primitive_type_table.put(&entry->name, entry);
}
for (size_t sign_i = 0; sign_i < array_length(is_signed_list); sign_i += 1) {
bool is_signed = is_signed_list[sign_i];
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdInt);
entry->type_ref = LLVMIntType(g->pointer_size_bytes * 8);
const char u_or_i = is_signed ? 'i' : 'u';
buf_resize(&entry->name, 0);
buf_appendf(&entry->name, "%csize", u_or_i);
entry->data.integral.is_signed = is_signed;
entry->data.integral.bit_count = g->pointer_size_bytes * 8;
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
entry->di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name),
debug_size_in_bits,
is_signed ? ZigLLVMEncoding_DW_ATE_signed() : ZigLLVMEncoding_DW_ATE_unsigned());
g->primitive_type_table.put(&entry->name, entry);
if (is_signed) {
g->builtin_types.entry_isize = entry;
} else {
g->builtin_types.entry_usize = entry;
}
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdFloat);
entry->type_ref = LLVMFloatType();
buf_init_from_str(&entry->name, "f32");
entry->data.floating.bit_count = 32;
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
entry->di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name),
debug_size_in_bits,
ZigLLVMEncoding_DW_ATE_float());
g->builtin_types.entry_f32 = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdFloat);
entry->type_ref = LLVMDoubleType();
buf_init_from_str(&entry->name, "f64");
entry->data.floating.bit_count = 64;
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
entry->di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name),
debug_size_in_bits,
ZigLLVMEncoding_DW_ATE_float());
g->builtin_types.entry_f64 = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdFloat);
entry->type_ref = LLVMX86FP80Type();
buf_init_from_str(&entry->name, "c_long_double");
entry->data.floating.bit_count = 80;
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
entry->di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name),
debug_size_in_bits,
ZigLLVMEncoding_DW_ATE_float());
g->builtin_types.entry_c_long_double = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdVoid);
entry->type_ref = LLVMVoidType();
entry->zero_bits = true;
buf_init_from_str(&entry->name, "void");
entry->di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name),
0,
ZigLLVMEncoding_DW_ATE_unsigned());
g->builtin_types.entry_void = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdUnreachable);
entry->type_ref = LLVMVoidType();
entry->zero_bits = true;
buf_init_from_str(&entry->name, "noreturn");
entry->di_type = g->builtin_types.entry_void->di_type;
g->builtin_types.entry_unreachable = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdMetaType);
buf_init_from_str(&entry->name, "type");
entry->zero_bits = true;
g->builtin_types.entry_type = entry;
g->primitive_type_table.put(&entry->name, entry);
}
g->builtin_types.entry_u8 = get_int_type(g, false, 8);
g->builtin_types.entry_u16 = get_int_type(g, false, 16);
g->builtin_types.entry_u32 = get_int_type(g, false, 32);
g->builtin_types.entry_u64 = get_int_type(g, false, 64);
g->builtin_types.entry_i8 = get_int_type(g, true, 8);
g->builtin_types.entry_i16 = get_int_type(g, true, 16);
g->builtin_types.entry_i32 = get_int_type(g, true, 32);
g->builtin_types.entry_i64 = get_int_type(g, true, 64);
{
g->builtin_types.entry_c_void = get_typedecl_type(g, "c_void", g->builtin_types.entry_u8);
g->primitive_type_table.put(&g->builtin_types.entry_c_void->name, g->builtin_types.entry_c_void);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdPureError);
buf_init_from_str(&entry->name, "error");
// TODO allow overriding this type and keep track of max value and emit an
// error if there are too many errors declared
g->err_tag_type = g->builtin_types.entry_u16;
g->builtin_types.entry_pure_error = entry;
entry->type_ref = g->err_tag_type->type_ref;
entry->di_type = g->err_tag_type->di_type;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdEnum);
buf_init_from_str(&entry->name, "Os");
uint32_t field_count = (uint32_t)target_os_count();
entry->data.enumeration.src_field_count = field_count;
entry->data.enumeration.fields = allocate<TypeEnumField>(field_count);
for (uint32_t i = 0; i < field_count; i += 1) {
TypeEnumField *type_enum_field = &entry->data.enumeration.fields[i];
ZigLLVM_OSType os_type = get_target_os(i);
type_enum_field->name = buf_create_from_str(get_target_os_name(os_type));
type_enum_field->value = i;
type_enum_field->type_entry = g->builtin_types.entry_void;
if (os_type == g->zig_target.os) {
g->target_os_index = i;
}
}
init_enum_debug_info(g, entry);
g->builtin_types.entry_os_enum = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdEnum);
buf_init_from_str(&entry->name, "Arch");
uint32_t field_count = (uint32_t)target_arch_count();
entry->data.enumeration.src_field_count = field_count;
entry->data.enumeration.fields = allocate<TypeEnumField>(field_count);
for (uint32_t i = 0; i < field_count; i += 1) {
TypeEnumField *type_enum_field = &entry->data.enumeration.fields[i];
const ArchType *arch_type = get_target_arch(i);
type_enum_field->name = buf_alloc();
buf_resize(type_enum_field->name, 50);
get_arch_name(buf_ptr(type_enum_field->name), arch_type);
buf_resize(type_enum_field->name, strlen(buf_ptr(type_enum_field->name)));
type_enum_field->value = i;
type_enum_field->type_entry = g->builtin_types.entry_void;
if (arch_type->arch == g->zig_target.arch.arch &&
arch_type->sub_arch == g->zig_target.arch.sub_arch)
{
g->target_arch_index = i;
}
}
init_enum_debug_info(g, entry);
g->builtin_types.entry_arch_enum = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdEnum);
buf_init_from_str(&entry->name, "Environ");
uint32_t field_count = (uint32_t)target_environ_count();
entry->data.enumeration.src_field_count = field_count;
entry->data.enumeration.fields = allocate<TypeEnumField>(field_count);
for (uint32_t i = 0; i < field_count; i += 1) {
TypeEnumField *type_enum_field = &entry->data.enumeration.fields[i];
ZigLLVM_EnvironmentType environ_type = get_target_environ(i);
type_enum_field->name = buf_create_from_str(ZigLLVMGetEnvironmentTypeName(environ_type));
type_enum_field->value = i;
type_enum_field->type_entry = g->builtin_types.entry_void;
if (environ_type == g->zig_target.env_type) {
g->target_environ_index = i;
}
}
init_enum_debug_info(g, entry);
g->builtin_types.entry_environ_enum = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdEnum);
buf_init_from_str(&entry->name, "ObjectFormat");
uint32_t field_count = (uint32_t)target_oformat_count();
entry->data.enumeration.src_field_count = field_count;
entry->data.enumeration.fields = allocate<TypeEnumField>(field_count);
for (uint32_t i = 0; i < field_count; i += 1) {
TypeEnumField *type_enum_field = &entry->data.enumeration.fields[i];
ZigLLVM_ObjectFormatType oformat = get_target_oformat(i);
type_enum_field->name = buf_create_from_str(get_target_oformat_name(oformat));
type_enum_field->value = i;
type_enum_field->type_entry = g->builtin_types.entry_void;
if (oformat == g->zig_target.oformat) {
g->target_oformat_index = i;
}
}
init_enum_debug_info(g, entry);
g->builtin_types.entry_oformat_enum = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdEnum);
entry->zero_bits = true; // only allowed at compile time
buf_init_from_str(&entry->name, "GlobalLinkage");
uint32_t field_count = array_length(global_linkage_values);
entry->data.enumeration.src_field_count = field_count;
entry->data.enumeration.fields = allocate<TypeEnumField>(field_count);
for (uint32_t i = 0; i < field_count; i += 1) {
TypeEnumField *type_enum_field = &entry->data.enumeration.fields[i];
const GlobalLinkageValue *value = &global_linkage_values[i];
type_enum_field->name = buf_create_from_str(value->name);
type_enum_field->value = i;
type_enum_field->type_entry = g->builtin_types.entry_void;
}
entry->data.enumeration.complete = true;
entry->data.enumeration.zero_bits_known = true;
TypeTableEntry *tag_type_entry = get_smallest_unsigned_int_type(g, field_count);
entry->data.enumeration.tag_type = tag_type_entry;
g->builtin_types.entry_global_linkage_enum = entry;
g->primitive_type_table.put(&entry->name, entry);
}
{
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdEnum);
entry->zero_bits = true; // only allowed at compile time
buf_init_from_str(&entry->name, "AtomicOrder");
uint32_t field_count = 6;
entry->data.enumeration.src_field_count = field_count;
entry->data.enumeration.fields = allocate<TypeEnumField>(field_count);
entry->data.enumeration.fields[0].name = buf_create_from_str("Unordered");
entry->data.enumeration.fields[0].value = AtomicOrderUnordered;
entry->data.enumeration.fields[0].type_entry = g->builtin_types.entry_void;
entry->data.enumeration.fields[1].name = buf_create_from_str("Monotonic");
entry->data.enumeration.fields[1].value = AtomicOrderMonotonic;
entry->data.enumeration.fields[1].type_entry = g->builtin_types.entry_void;
entry->data.enumeration.fields[2].name = buf_create_from_str("Acquire");
entry->data.enumeration.fields[2].value = AtomicOrderAcquire;
entry->data.enumeration.fields[2].type_entry = g->builtin_types.entry_void;
entry->data.enumeration.fields[3].name = buf_create_from_str("Release");
entry->data.enumeration.fields[3].value = AtomicOrderRelease;
entry->data.enumeration.fields[3].type_entry = g->builtin_types.entry_void;
entry->data.enumeration.fields[4].name = buf_create_from_str("AcqRel");
entry->data.enumeration.fields[4].value = AtomicOrderAcqRel;
entry->data.enumeration.fields[4].type_entry = g->builtin_types.entry_void;
entry->data.enumeration.fields[5].name = buf_create_from_str("SeqCst");
entry->data.enumeration.fields[5].value = AtomicOrderSeqCst;
entry->data.enumeration.fields[5].type_entry = g->builtin_types.entry_void;
entry->data.enumeration.complete = true;
entry->data.enumeration.zero_bits_known = true;
TypeTableEntry *tag_type_entry = get_smallest_unsigned_int_type(g, field_count);
entry->data.enumeration.tag_type = tag_type_entry;
g->builtin_types.entry_atomic_order_enum = entry;
g->primitive_type_table.put(&entry->name, entry);
}
}
static BuiltinFnEntry *create_builtin_fn(CodeGen *g, BuiltinFnId id, const char *name, size_t count) {
BuiltinFnEntry *builtin_fn = allocate<BuiltinFnEntry>(1);
buf_init_from_str(&builtin_fn->name, name);
builtin_fn->id = id;
builtin_fn->param_count = count;
g->builtin_fn_table.put(&builtin_fn->name, builtin_fn);
return builtin_fn;
}
static void define_builtin_fns(CodeGen *g) {
{
BuiltinFnEntry *builtin_fn = create_builtin_fn(g, BuiltinFnIdBreakpoint, "breakpoint", 0);
builtin_fn->ref_count = 1;
LLVMTypeRef fn_type = LLVMFunctionType(LLVMVoidType(), nullptr, 0, false);
builtin_fn->fn_val = LLVMAddFunction(g->module, "llvm.debugtrap", fn_type);
assert(LLVMGetIntrinsicID(builtin_fn->fn_val));
g->trap_fn_val = builtin_fn->fn_val;
}
{
BuiltinFnEntry *builtin_fn = create_builtin_fn(g, BuiltinFnIdReturnAddress,
"returnAddress", 0);
TypeTableEntry *return_type = get_pointer_to_type(g, g->builtin_types.entry_u8, true);
LLVMTypeRef fn_type = LLVMFunctionType(return_type->type_ref,
&g->builtin_types.entry_i32->type_ref, 1, false);
builtin_fn->fn_val = LLVMAddFunction(g->module, "llvm.returnaddress", fn_type);
assert(LLVMGetIntrinsicID(builtin_fn->fn_val));
g->return_address_fn_val = builtin_fn->fn_val;
}
{
BuiltinFnEntry *builtin_fn = create_builtin_fn(g, BuiltinFnIdFrameAddress,
"frameAddress", 0);
TypeTableEntry *return_type = get_pointer_to_type(g, g->builtin_types.entry_u8, true);
LLVMTypeRef fn_type = LLVMFunctionType(return_type->type_ref,
&g->builtin_types.entry_i32->type_ref, 1, false);
builtin_fn->fn_val = LLVMAddFunction(g->module, "llvm.frameaddress", fn_type);
assert(LLVMGetIntrinsicID(builtin_fn->fn_val));
g->frame_address_fn_val = builtin_fn->fn_val;
}
{
BuiltinFnEntry *builtin_fn = create_builtin_fn(g, BuiltinFnIdMemcpy, "memcpy", 3);
builtin_fn->ref_count = 1;
LLVMTypeRef param_types[] = {
LLVMPointerType(LLVMInt8Type(), 0),
LLVMPointerType(LLVMInt8Type(), 0),
LLVMIntType(g->pointer_size_bytes * 8),
LLVMInt32Type(),
LLVMInt1Type(),
};
LLVMTypeRef fn_type = LLVMFunctionType(LLVMVoidType(), param_types, 5, false);
Buf *name = buf_sprintf("llvm.memcpy.p0i8.p0i8.i%d", g->pointer_size_bytes * 8);
builtin_fn->fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type);
assert(LLVMGetIntrinsicID(builtin_fn->fn_val));
g->memcpy_fn_val = builtin_fn->fn_val;
}
{
BuiltinFnEntry *builtin_fn = create_builtin_fn(g, BuiltinFnIdMemset, "memset", 3);
builtin_fn->ref_count = 1;
LLVMTypeRef param_types[] = {
LLVMPointerType(LLVMInt8Type(), 0),
LLVMInt8Type(),
LLVMIntType(g->pointer_size_bytes * 8),
LLVMInt32Type(),
LLVMInt1Type(),
};
LLVMTypeRef fn_type = LLVMFunctionType(LLVMVoidType(), param_types, 5, false);
Buf *name = buf_sprintf("llvm.memset.p0i8.i%d", g->pointer_size_bytes * 8);
builtin_fn->fn_val = LLVMAddFunction(g->module, buf_ptr(name), fn_type);
assert(LLVMGetIntrinsicID(builtin_fn->fn_val));
g->memset_fn_val = builtin_fn->fn_val;
}
create_builtin_fn(g, BuiltinFnIdSizeof, "sizeOf", 1);
create_builtin_fn(g, BuiltinFnIdAlignof, "alignOf", 1);
create_builtin_fn(g, BuiltinFnIdMaxValue, "maxValue", 1);
create_builtin_fn(g, BuiltinFnIdMinValue, "minValue", 1);
create_builtin_fn(g, BuiltinFnIdMemberCount, "memberCount", 1);
create_builtin_fn(g, BuiltinFnIdTypeof, "typeOf", 1);
create_builtin_fn(g, BuiltinFnIdAddWithOverflow, "addWithOverflow", 4);
create_builtin_fn(g, BuiltinFnIdSubWithOverflow, "subWithOverflow", 4);
create_builtin_fn(g, BuiltinFnIdMulWithOverflow, "mulWithOverflow", 4);
create_builtin_fn(g, BuiltinFnIdShlWithOverflow, "shlWithOverflow", 4);
create_builtin_fn(g, BuiltinFnIdCInclude, "cInclude", 1);
create_builtin_fn(g, BuiltinFnIdCDefine, "cDefine", 2);
create_builtin_fn(g, BuiltinFnIdCUndef, "cUndef", 1);
create_builtin_fn(g, BuiltinFnIdCompileVar, "compileVar", 1);
create_builtin_fn(g, BuiltinFnIdGeneratedCode, "generatedCode", 1);
create_builtin_fn(g, BuiltinFnIdCtz, "ctz", 1);
create_builtin_fn(g, BuiltinFnIdClz, "clz", 1);
create_builtin_fn(g, BuiltinFnIdImport, "import", 1);
create_builtin_fn(g, BuiltinFnIdCImport, "cImport", 1);
create_builtin_fn(g, BuiltinFnIdErrName, "errorName", 1);
create_builtin_fn(g, BuiltinFnIdTypeName, "typeName", 1);
create_builtin_fn(g, BuiltinFnIdIsInteger, "isInteger", 1);
create_builtin_fn(g, BuiltinFnIdIsFloat, "isFloat", 1);
create_builtin_fn(g, BuiltinFnIdCanImplicitCast, "canImplicitCast", 2);
create_builtin_fn(g, BuiltinFnIdEmbedFile, "embedFile", 1);
create_builtin_fn(g, BuiltinFnIdCmpExchange, "cmpxchg", 5);
create_builtin_fn(g, BuiltinFnIdFence, "fence", 1);
create_builtin_fn(g, BuiltinFnIdDivExact, "divExact", 2);
create_builtin_fn(g, BuiltinFnIdTruncate, "truncate", 2);
create_builtin_fn(g, BuiltinFnIdCompileErr, "compileError", 1);
create_builtin_fn(g, BuiltinFnIdCompileLog, "compileLog", SIZE_MAX);
create_builtin_fn(g, BuiltinFnIdIntType, "intType", 2);
create_builtin_fn(g, BuiltinFnIdSetDebugSafety, "setDebugSafety", 2);
create_builtin_fn(g, BuiltinFnIdSetGlobalAlign, "setGlobalAlign", 2);
create_builtin_fn(g, BuiltinFnIdSetGlobalSection, "setGlobalSection", 2);
create_builtin_fn(g, BuiltinFnIdSetGlobalLinkage, "setGlobalLinkage", 2);
create_builtin_fn(g, BuiltinFnIdPanic, "panic", 1);
create_builtin_fn(g, BuiltinFnIdPtrCast, "ptrcast", 2);
create_builtin_fn(g, BuiltinFnIdIntToPtr, "intToPtr", 2);
create_builtin_fn(g, BuiltinFnIdEnumTagName, "enumTagName", 1);
}
static void add_compile_var(CodeGen *g, const char *name, ConstExprValue *value) {
g->compile_vars.put_unique(buf_create_from_str(name), value);
}
static void define_builtin_compile_vars(CodeGen *g) {
add_compile_var(g, "is_big_endian", create_const_bool(g, g->is_big_endian));
add_compile_var(g, "is_release", create_const_bool(g, g->is_release_build));
add_compile_var(g, "is_test", create_const_bool(g, g->is_test_build));
add_compile_var(g, "os", create_const_enum_tag(g->builtin_types.entry_os_enum, g->target_os_index));
add_compile_var(g, "arch", create_const_enum_tag(g->builtin_types.entry_arch_enum, g->target_arch_index));
add_compile_var(g, "environ", create_const_enum_tag(g->builtin_types.entry_environ_enum, g->target_environ_index));
add_compile_var(g, "object_format", create_const_enum_tag(
g->builtin_types.entry_oformat_enum, g->target_oformat_index));
{
TypeTableEntry *str_type = get_slice_type(g, g->builtin_types.entry_u8, true);
ConstExprValue *const_val = allocate<ConstExprValue>(1);
const_val->special = ConstValSpecialStatic;
const_val->type = get_array_type(g, str_type, g->link_libs.length);
const_val->data.x_array.elements = allocate<ConstExprValue>(g->link_libs.length);
for (size_t i = 0; i < g->link_libs.length; i += 1) {
Buf *link_lib_buf = g->link_libs.at(i);
ConstExprValue *array_val = create_const_str_lit(g, link_lib_buf);
init_const_slice(g, &const_val->data.x_array.elements[i], array_val, 0, buf_len(link_lib_buf), true);
}
add_compile_var(g, "link_libs", const_val);
}
add_compile_var(g, "panic_implementation_provided", create_const_bool(g, false));
}
static void init(CodeGen *g, Buf *source_path) {
g->module = LLVMModuleCreateWithName(buf_ptr(source_path));
get_target_triple(&g->triple_str, &g->zig_target);
LLVMSetTarget(g->module, buf_ptr(&g->triple_str));
ZigLLVMAddModuleDebugInfoFlag(g->module);
LLVMTargetRef target_ref;
char *err_msg = nullptr;
if (LLVMGetTargetFromTriple(buf_ptr(&g->triple_str), &target_ref, &err_msg)) {
zig_panic("unable to create target based on: %s", buf_ptr(&g->triple_str));
}
LLVMCodeGenOptLevel opt_level = g->is_release_build ? LLVMCodeGenLevelAggressive : LLVMCodeGenLevelNone;
LLVMRelocMode reloc_mode = g->is_static ? LLVMRelocStatic : LLVMRelocPIC;
const char *target_specific_cpu_args;
const char *target_specific_features;
if (g->is_native_target) {
target_specific_cpu_args = ZigLLVMGetHostCPUName();
target_specific_features = ZigLLVMGetNativeFeatures();
} else {
target_specific_cpu_args = "";
target_specific_features = "";
}
g->target_machine = LLVMCreateTargetMachine(target_ref, buf_ptr(&g->triple_str),
target_specific_cpu_args, target_specific_features, opt_level, reloc_mode, LLVMCodeModelDefault);
g->target_data_ref = LLVMCreateTargetDataLayout(g->target_machine);
char *layout_str = LLVMCopyStringRepOfTargetData(g->target_data_ref);
LLVMSetDataLayout(g->module, layout_str);
g->pointer_size_bytes = LLVMPointerSize(g->target_data_ref);
g->is_big_endian = (LLVMByteOrder(g->target_data_ref) == LLVMBigEndian);
g->builder = LLVMCreateBuilder();
g->dbuilder = ZigLLVMCreateDIBuilder(g->module, true);
ZigLLVMSetFastMath(g->builder, true);
Buf *producer = buf_sprintf("zig %s", ZIG_VERSION_STRING);
bool is_optimized = g->is_release_build;
const char *flags = "";
unsigned runtime_version = 0;
ZigLLVMDIFile *compile_unit_file = ZigLLVMCreateFile(g->dbuilder, buf_ptr(source_path),
buf_ptr(&g->root_package->root_src_dir));
g->compile_unit = ZigLLVMCreateCompileUnit(g->dbuilder, ZigLLVMLang_DW_LANG_C99(),
compile_unit_file, buf_ptr(producer), is_optimized, flags, runtime_version,
"", 0, !g->strip_debug_symbols);
// This is for debug stuff that doesn't have a real file.
g->dummy_di_file = nullptr;
define_builtin_types(g);
define_builtin_fns(g);
define_builtin_compile_vars(g);
g->invalid_instruction = allocate<IrInstruction>(1);
g->invalid_instruction->value.type = g->builtin_types.entry_invalid;
g->const_void_val.special = ConstValSpecialStatic;
g->const_void_val.type = g->builtin_types.entry_void;
}
void codegen_parseh(CodeGen *g, Buf *src_dirname, Buf *src_basename, Buf *source_code) {
find_libc_include_path(g);
Buf *full_path = buf_alloc();
os_path_join(src_dirname, src_basename, full_path);
ImportTableEntry *import = allocate<ImportTableEntry>(1);
import->source_code = source_code;
import->path = full_path;
g->root_import = import;
import->decls_scope = create_decls_scope(nullptr, nullptr, nullptr, import);
init(g, full_path);
import->di_file = ZigLLVMCreateFile(g->dbuilder, buf_ptr(src_basename), buf_ptr(src_dirname));
ZigList<ErrorMsg *> errors = {0};
int err = parse_h_buf(import, &errors, source_code, g, nullptr);
if (err) {
fprintf(stderr, "unable to parse .h file: %s\n", err_str(err));
exit(1);
}
if (errors.length > 0) {
for (size_t i = 0; i < errors.length; i += 1) {
ErrorMsg *err_msg = errors.at(i);
print_err_msg(err_msg, g->err_color);
}
exit(1);
}
}
static ImportTableEntry *add_special_code(CodeGen *g, PackageTableEntry *package, const char *basename) {
Buf *code_basename = buf_create_from_str(basename);
Buf path_to_code_src = BUF_INIT;
os_path_join(g->zig_std_special_dir, code_basename, &path_to_code_src);
Buf *abs_full_path = buf_alloc();
int err;
if ((err = os_path_real(&path_to_code_src, abs_full_path))) {
zig_panic("unable to open '%s': %s", buf_ptr(&path_to_code_src), err_str(err));
}
Buf *import_code = buf_alloc();
if ((err = os_fetch_file_path(abs_full_path, import_code))) {
zig_panic("unable to open '%s': %s", buf_ptr(&path_to_code_src), err_str(err));
}
return add_source_file(g, package, abs_full_path, g->zig_std_special_dir, code_basename, import_code);
}
static PackageTableEntry *create_bootstrap_pkg(CodeGen *g) {
PackageTableEntry *package = new_package(buf_ptr(g->zig_std_special_dir), "");
package->package_table.put(buf_create_from_str("std"), g->std_package);
package->package_table.put(buf_create_from_str("@root"), g->root_package);
return package;
}
static PackageTableEntry *create_zigrt_pkg(CodeGen *g) {
PackageTableEntry *package = new_package(buf_ptr(g->zig_std_special_dir), "");
package->package_table.put(buf_create_from_str("std"), g->std_package);
package->package_table.put(buf_create_from_str("@root"), g->root_package);
return package;
}
void codegen_add_root_code(CodeGen *g, Buf *src_dir, Buf *src_basename, Buf *source_code) {
Buf source_path = BUF_INIT;
os_path_join(src_dir, src_basename, &source_path);
buf_init_from_buf(&g->root_package->root_src_path, src_basename);
init(g, &source_path);
Buf *abs_full_path = buf_alloc();
int err;
if ((err = os_path_real(&source_path, abs_full_path))) {
zig_panic("unable to open '%s': %s", buf_ptr(&source_path), err_str(err));
}
g->root_import = add_source_file(g, g->root_package, abs_full_path, src_dir, src_basename, source_code);
assert(g->root_out_name);
assert(g->out_type != OutTypeUnknown);
if (!g->is_test_build && g->have_pub_main && (g->out_type == OutTypeObj || g->out_type == OutTypeExe)) {
g->bootstrap_import = add_special_code(g, create_bootstrap_pkg(g), "bootstrap.zig");
}
if (!g->omit_zigrt) {
g->zigrt_package = create_zigrt_pkg(g);
add_special_code(g, g->zigrt_package, "zigrt.zig");
}
if (g->verbose) {
fprintf(stderr, "\nIR Generation and Semantic Analysis:\n");
fprintf(stderr, "--------------------------------------\n");
}
if (!g->error_during_imports) {
semantic_analyze(g);
}
if (g->errors.length == 0) {
if (g->verbose) {
fprintf(stderr, "OK\n");
}
} else {
for (size_t i = 0; i < g->errors.length; i += 1) {
ErrorMsg *err = g->errors.at(i);
print_err_msg(err, g->err_color);
}
exit(1);
}
if (g->verbose) {
fprintf(stderr, "\nCode Generation:\n");
fprintf(stderr, "------------------\n");
}
do_code_gen(g);
}
void codegen_add_root_assembly(CodeGen *g, Buf *src_dir, Buf *src_basename, Buf *source_code) {
Buf source_path = BUF_INIT;
os_path_join(src_dir, src_basename, &source_path);
init(g, &source_path);
assert(g->root_out_name);
assert(g->out_type != OutTypeUnknown);
buf_init_from_str(&g->global_asm, ".intel_syntax noprefix\n");
buf_append_buf(&g->global_asm, source_code);
do_code_gen(g);
}
void codegen_add_object(CodeGen *g, Buf *object_path) {
g->link_objects.append(object_path);
}
static const char *c_int_type_names[] = {
[CIntTypeShort] = "short",
[CIntTypeUShort] = "unsigned short",
[CIntTypeInt] = "int",
[CIntTypeUInt] = "unsigned int",
[CIntTypeLong] = "long",
[CIntTypeULong] = "unsigned long",
[CIntTypeLongLong] = "long long",
[CIntTypeULongLong] = "unsigned long long",
};
static void get_c_type(CodeGen *g, TypeTableEntry *type_entry, Buf *out_buf) {
assert(type_entry);
for (size_t i = 0; i < array_length(c_int_type_names); i += 1) {
if (type_entry == g->builtin_types.entry_c_int[i]) {
buf_init_from_str(out_buf, c_int_type_names[i]);
return;
}
}
if (type_entry == g->builtin_types.entry_c_long_double) {
buf_init_from_str(out_buf, "long double");
return;
}
if (type_entry == g->builtin_types.entry_c_void) {
buf_init_from_str(out_buf, "void");
return;
}
if (type_entry == g->builtin_types.entry_isize) {
g->c_want_stdint = true;
buf_init_from_str(out_buf, "intptr_t");
return;
}
if (type_entry == g->builtin_types.entry_usize) {
g->c_want_stdint = true;
buf_init_from_str(out_buf, "uintptr_t");
return;
}
switch (type_entry->id) {
case TypeTableEntryIdVoid:
buf_init_from_str(out_buf, "void");
break;
case TypeTableEntryIdBool:
buf_init_from_str(out_buf, "bool");
g->c_want_stdbool = true;
break;
case TypeTableEntryIdUnreachable:
buf_init_from_str(out_buf, "__attribute__((__noreturn__)) void");
break;
case TypeTableEntryIdFloat:
switch (type_entry->data.floating.bit_count) {
case 32:
buf_init_from_str(out_buf, "float");
break;
case 64:
buf_init_from_str(out_buf, "double");
break;
default:
zig_unreachable();
}
break;
case TypeTableEntryIdInt:
g->c_want_stdint = true;
buf_resize(out_buf, 0);
buf_appendf(out_buf, "%sint%" PRIu32 "_t",
type_entry->data.integral.is_signed ? "" : "u",
type_entry->data.integral.bit_count);
break;
case TypeTableEntryIdPointer:
{
Buf child_buf = BUF_INIT;
TypeTableEntry *child_type = type_entry->data.pointer.child_type;
get_c_type(g, child_type, &child_buf);
const char *const_str = type_entry->data.pointer.is_const ? "const " : "";
buf_resize(out_buf, 0);
buf_appendf(out_buf, "%s%s *", const_str, buf_ptr(&child_buf));
break;
}
case TypeTableEntryIdMaybe:
{
TypeTableEntry *child_type = type_entry->data.maybe.child_type;
if (child_type->zero_bits) {
buf_init_from_str(out_buf, "bool");
return;
} else if (child_type->id == TypeTableEntryIdPointer ||
child_type->id == TypeTableEntryIdFn)
{
return get_c_type(g, child_type, out_buf);
} else {
zig_unreachable();
}
}
case TypeTableEntryIdArray:
case TypeTableEntryIdStruct:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdPureError:
case TypeTableEntryIdEnum:
case TypeTableEntryIdUnion:
case TypeTableEntryIdFn:
case TypeTableEntryIdTypeDecl:
case TypeTableEntryIdEnumTag:
zig_panic("TODO implement get_c_type for more types");
case TypeTableEntryIdInvalid:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdNumLitFloat:
case TypeTableEntryIdNumLitInt:
case TypeTableEntryIdUndefLit:
case TypeTableEntryIdNullLit:
case TypeTableEntryIdVar:
case TypeTableEntryIdArgTuple:
zig_unreachable();
}
}
void codegen_generate_h_file(CodeGen *g) {
assert(!g->is_test_build);
Buf *h_file_out_path = buf_sprintf("%s.h", buf_ptr(g->root_out_name));
FILE *out_h = fopen(buf_ptr(h_file_out_path), "wb");
if (!out_h)
zig_panic("unable to open %s: %s", buf_ptr(h_file_out_path), strerror(errno));
Buf *export_macro = buf_sprintf("%s_EXPORT", buf_ptr(g->root_out_name));
buf_upcase(export_macro);
Buf *extern_c_macro = buf_sprintf("%s_EXTERN_C", buf_ptr(g->root_out_name));
buf_upcase(extern_c_macro);
Buf h_buf = BUF_INIT;
buf_resize(&h_buf, 0);
for (size_t fn_def_i = 0; fn_def_i < g->fn_defs.length; fn_def_i += 1) {
FnTableEntry *fn_table_entry = g->fn_defs.at(fn_def_i);
if (fn_table_entry->linkage == GlobalLinkageIdInternal)
continue;
FnTypeId *fn_type_id = &fn_table_entry->type_entry->data.fn.fn_type_id;
Buf return_type_c = BUF_INIT;
get_c_type(g, fn_type_id->return_type, &return_type_c);
buf_appendf(&h_buf, "%s %s %s(",
buf_ptr(export_macro),
buf_ptr(&return_type_c),
buf_ptr(&fn_table_entry->symbol_name));
Buf param_type_c = BUF_INIT;
if (fn_type_id->param_count > 0) {
for (size_t param_i = 0; param_i < fn_type_id->param_count; param_i += 1) {
FnTypeParamInfo *param_info = &fn_type_id->param_info[param_i];
AstNode *param_decl_node = get_param_decl_node(fn_table_entry, param_i);
Buf *param_name = param_decl_node->data.param_decl.name;
const char *comma_str = (param_i == 0) ? "" : ", ";
const char *restrict_str = param_info->is_noalias ? "restrict" : "";
get_c_type(g, param_info->type, &param_type_c);
buf_appendf(&h_buf, "%s%s%s %s", comma_str, buf_ptr(&param_type_c),
restrict_str, buf_ptr(param_name));
}
buf_appendf(&h_buf, ")");
} else {
buf_appendf(&h_buf, "void)");
}
buf_appendf(&h_buf, ";\n");
}
Buf *ifdef_dance_name = buf_sprintf("%s_%s_H",
buf_ptr(g->root_out_name), buf_ptr(g->root_out_name));
buf_upcase(ifdef_dance_name);
fprintf(out_h, "#ifndef %s\n", buf_ptr(ifdef_dance_name));
fprintf(out_h, "#define %s\n\n", buf_ptr(ifdef_dance_name));
if (g->c_want_stdbool)
fprintf(out_h, "#include <stdbool.h>\n");
if (g->c_want_stdint)
fprintf(out_h, "#include <stdint.h>\n");
fprintf(out_h, "\n");
fprintf(out_h, "#ifdef __cplusplus\n");
fprintf(out_h, "#define %s extern \"C\"\n", buf_ptr(extern_c_macro));
fprintf(out_h, "#else\n");
fprintf(out_h, "#define %s\n", buf_ptr(extern_c_macro));
fprintf(out_h, "#endif\n");
fprintf(out_h, "\n");
fprintf(out_h, "#if defined(_WIN32)\n");
fprintf(out_h, "#define %s %s __declspec(dllimport)\n", buf_ptr(export_macro), buf_ptr(extern_c_macro));
fprintf(out_h, "#else\n");
fprintf(out_h, "#define %s %s __attribute__((visibility (\"default\")))\n",
buf_ptr(export_macro), buf_ptr(extern_c_macro));
fprintf(out_h, "#endif\n");
fprintf(out_h, "\n");
fprintf(out_h, "%s", buf_ptr(&h_buf));
fprintf(out_h, "\n#endif\n");
if (fclose(out_h))
zig_panic("unable to close h file: %s", strerror(errno));
}