zig/src-self-hosted/stage2.zig

1507 lines
51 KiB
Zig

// This is Zig code that is used by both stage1 and stage2.
// The prototypes in src/userland.h must match these definitions.
const std = @import("std");
const io = std.io;
const mem = std.mem;
const fs = std.fs;
const process = std.process;
const Allocator = mem.Allocator;
const ArrayList = std.ArrayList;
const Buffer = std.Buffer;
const Target = std.Target;
const CrossTarget = std.zig.CrossTarget;
const self_hosted_main = @import("main.zig");
const errmsg = @import("errmsg.zig");
const DepTokenizer = @import("dep_tokenizer.zig").Tokenizer;
const assert = std.debug.assert;
const LibCInstallation = @import("libc_installation.zig").LibCInstallation;
var stderr_file: fs.File = undefined;
var stderr: fs.File.OutStream = undefined;
var stdout: fs.File.OutStream = undefined;
comptime {
_ = @import("dep_tokenizer.zig");
}
// ABI warning
export fn stage2_zen(ptr: *[*]const u8, len: *usize) void {
const info_zen = @import("main.zig").info_zen;
ptr.* = info_zen;
len.* = info_zen.len;
}
// ABI warning
export fn stage2_panic(ptr: [*]const u8, len: usize) void {
@panic(ptr[0..len]);
}
// ABI warning
const Error = extern enum {
None,
OutOfMemory,
InvalidFormat,
SemanticAnalyzeFail,
AccessDenied,
Interrupted,
SystemResources,
FileNotFound,
FileSystem,
FileTooBig,
DivByZero,
Overflow,
PathAlreadyExists,
Unexpected,
ExactDivRemainder,
NegativeDenominator,
ShiftedOutOneBits,
CCompileErrors,
EndOfFile,
IsDir,
NotDir,
UnsupportedOperatingSystem,
SharingViolation,
PipeBusy,
PrimitiveTypeNotFound,
CacheUnavailable,
PathTooLong,
CCompilerCannotFindFile,
NoCCompilerInstalled,
ReadingDepFile,
InvalidDepFile,
MissingArchitecture,
MissingOperatingSystem,
UnknownArchitecture,
UnknownOperatingSystem,
UnknownABI,
InvalidFilename,
DiskQuota,
DiskSpace,
UnexpectedWriteFailure,
UnexpectedSeekFailure,
UnexpectedFileTruncationFailure,
Unimplemented,
OperationAborted,
BrokenPipe,
NoSpaceLeft,
NotLazy,
IsAsync,
ImportOutsidePkgPath,
UnknownCpuModel,
UnknownCpuFeature,
InvalidCpuFeatures,
InvalidLlvmCpuFeaturesFormat,
UnknownApplicationBinaryInterface,
ASTUnitFailure,
BadPathName,
SymLinkLoop,
ProcessFdQuotaExceeded,
SystemFdQuotaExceeded,
NoDevice,
DeviceBusy,
UnableToSpawnCCompiler,
CCompilerExitCode,
CCompilerCrashed,
CCompilerCannotFindHeaders,
LibCRuntimeNotFound,
LibCStdLibHeaderNotFound,
LibCKernel32LibNotFound,
UnsupportedArchitecture,
WindowsSdkNotFound,
UnknownDynamicLinkerPath,
TargetHasNoDynamicLinker,
InvalidAbiVersion,
InvalidOperatingSystemVersion,
UnknownClangOption,
NestedResponseFile,
};
const FILE = std.c.FILE;
const ast = std.zig.ast;
const translate_c = @import("translate_c.zig");
/// Args should have a null terminating last arg.
export fn stage2_translate_c(
out_ast: **ast.Tree,
out_errors_ptr: *[*]translate_c.ClangErrMsg,
out_errors_len: *usize,
args_begin: [*]?[*]const u8,
args_end: [*]?[*]const u8,
resources_path: [*:0]const u8,
) Error {
var errors: []translate_c.ClangErrMsg = &[0]translate_c.ClangErrMsg{};
out_ast.* = translate_c.translate(std.heap.c_allocator, args_begin, args_end, &errors, resources_path) catch |err| switch (err) {
error.SemanticAnalyzeFail => {
out_errors_ptr.* = errors.ptr;
out_errors_len.* = errors.len;
return .CCompileErrors;
},
error.ASTUnitFailure => return .ASTUnitFailure,
error.OutOfMemory => return .OutOfMemory,
};
return .None;
}
export fn stage2_free_clang_errors(errors_ptr: [*]translate_c.ClangErrMsg, errors_len: usize) void {
translate_c.freeErrors(errors_ptr[0..errors_len]);
}
export fn stage2_render_ast(tree: *ast.Tree, output_file: *FILE) Error {
const c_out_stream = std.io.cOutStream(output_file);
_ = std.zig.render(std.heap.c_allocator, c_out_stream, tree) catch |e| switch (e) {
error.WouldBlock => unreachable, // stage1 opens stuff in exclusively blocking mode
error.SystemResources => return .SystemResources,
error.OperationAborted => return .OperationAborted,
error.BrokenPipe => return .BrokenPipe,
error.DiskQuota => return .DiskQuota,
error.FileTooBig => return .FileTooBig,
error.NoSpaceLeft => return .NoSpaceLeft,
error.AccessDenied => return .AccessDenied,
error.OutOfMemory => return .OutOfMemory,
error.Unexpected => return .Unexpected,
error.InputOutput => return .FileSystem,
};
return .None;
}
// TODO: just use the actual self-hosted zig fmt. Until https://github.com/ziglang/zig/issues/2377,
// we use a blocking implementation.
export fn stage2_fmt(argc: c_int, argv: [*]const [*:0]const u8) c_int {
if (std.debug.runtime_safety) {
fmtMain(argc, argv) catch unreachable;
} else {
fmtMain(argc, argv) catch |e| {
std.debug.warn("{}\n", .{@errorName(e)});
return -1;
};
}
return 0;
}
fn fmtMain(argc: c_int, argv: [*]const [*:0]const u8) !void {
const allocator = std.heap.c_allocator;
var args_list = std.ArrayList([]const u8).init(allocator);
const argc_usize = @intCast(usize, argc);
var arg_i: usize = 0;
while (arg_i < argc_usize) : (arg_i += 1) {
try args_list.append(mem.spanZ(argv[arg_i]));
}
stdout = std.io.getStdOut().outStream();
stderr_file = std.io.getStdErr();
stderr = stderr_file.outStream();
const args = args_list.span()[2..];
var color: errmsg.Color = .Auto;
var stdin_flag: bool = false;
var check_flag: bool = false;
var input_files = ArrayList([]const u8).init(allocator);
{
var i: usize = 0;
while (i < args.len) : (i += 1) {
const arg = args[i];
if (mem.startsWith(u8, arg, "-")) {
if (mem.eql(u8, arg, "--help")) {
try stdout.writeAll(self_hosted_main.usage_fmt);
process.exit(0);
} else if (mem.eql(u8, arg, "--color")) {
if (i + 1 >= args.len) {
try stderr.writeAll("expected [auto|on|off] after --color\n");
process.exit(1);
}
i += 1;
const next_arg = args[i];
if (mem.eql(u8, next_arg, "auto")) {
color = .Auto;
} else if (mem.eql(u8, next_arg, "on")) {
color = .On;
} else if (mem.eql(u8, next_arg, "off")) {
color = .Off;
} else {
try stderr.print("expected [auto|on|off] after --color, found '{}'\n", .{next_arg});
process.exit(1);
}
} else if (mem.eql(u8, arg, "--stdin")) {
stdin_flag = true;
} else if (mem.eql(u8, arg, "--check")) {
check_flag = true;
} else {
try stderr.print("unrecognized parameter: '{}'", .{arg});
process.exit(1);
}
} else {
try input_files.append(arg);
}
}
}
if (stdin_flag) {
if (input_files.len != 0) {
try stderr.writeAll("cannot use --stdin with positional arguments\n");
process.exit(1);
}
const stdin_file = io.getStdIn();
var stdin = stdin_file.inStream();
const source_code = try stdin.readAllAlloc(allocator, self_hosted_main.max_src_size);
defer allocator.free(source_code);
const tree = std.zig.parse(allocator, source_code) catch |err| {
try stderr.print("error parsing stdin: {}\n", .{err});
process.exit(1);
};
defer tree.deinit();
var error_it = tree.errors.iterator(0);
while (error_it.next()) |parse_error| {
try printErrMsgToFile(allocator, parse_error, tree, "<stdin>", stderr_file, color);
}
if (tree.errors.len != 0) {
process.exit(1);
}
if (check_flag) {
const anything_changed = try std.zig.render(allocator, io.null_out_stream, tree);
const code = if (anything_changed) @as(u8, 1) else @as(u8, 0);
process.exit(code);
}
_ = try std.zig.render(allocator, stdout, tree);
return;
}
if (input_files.len == 0) {
try stderr.writeAll("expected at least one source file argument\n");
process.exit(1);
}
var fmt = Fmt{
.seen = Fmt.SeenMap.init(allocator),
.any_error = false,
.color = color,
.allocator = allocator,
};
for (input_files.span()) |file_path| {
try fmtPath(&fmt, file_path, check_flag);
}
if (fmt.any_error) {
process.exit(1);
}
}
const FmtError = error{
SystemResources,
OperationAborted,
IoPending,
BrokenPipe,
Unexpected,
WouldBlock,
FileClosed,
DestinationAddressRequired,
DiskQuota,
FileTooBig,
InputOutput,
NoSpaceLeft,
AccessDenied,
OutOfMemory,
RenameAcrossMountPoints,
ReadOnlyFileSystem,
LinkQuotaExceeded,
FileBusy,
} || fs.File.OpenError;
fn fmtPath(fmt: *Fmt, file_path: []const u8, check_mode: bool) FmtError!void {
if (fmt.seen.exists(file_path)) return;
try fmt.seen.put(file_path);
const max = std.math.maxInt(usize);
const source_code = fs.cwd().readFileAlloc(fmt.allocator, file_path, max) catch |err| switch (err) {
error.IsDir, error.AccessDenied => {
// TODO make event based (and dir.next())
var dir = try fs.cwd().openDir(file_path, .{ .iterate = true });
defer dir.close();
var dir_it = dir.iterate();
while (try dir_it.next()) |entry| {
if (entry.kind == .Directory or mem.endsWith(u8, entry.name, ".zig")) {
const full_path = try fs.path.join(fmt.allocator, &[_][]const u8{ file_path, entry.name });
try fmtPath(fmt, full_path, check_mode);
}
}
return;
},
else => {
// TODO lock stderr printing
try stderr.print("unable to open '{}': {}\n", .{ file_path, err });
fmt.any_error = true;
return;
},
};
defer fmt.allocator.free(source_code);
const tree = std.zig.parse(fmt.allocator, source_code) catch |err| {
try stderr.print("error parsing file '{}': {}\n", .{ file_path, err });
fmt.any_error = true;
return;
};
defer tree.deinit();
var error_it = tree.errors.iterator(0);
while (error_it.next()) |parse_error| {
try printErrMsgToFile(fmt.allocator, parse_error, tree, file_path, stderr_file, fmt.color);
}
if (tree.errors.len != 0) {
fmt.any_error = true;
return;
}
if (check_mode) {
const anything_changed = try std.zig.render(fmt.allocator, io.null_out_stream, tree);
if (anything_changed) {
try stderr.print("{}\n", .{file_path});
fmt.any_error = true;
}
} else {
const baf = try io.BufferedAtomicFile.create(fmt.allocator, file_path);
defer baf.destroy();
const anything_changed = try std.zig.render(fmt.allocator, baf.stream(), tree);
if (anything_changed) {
try stderr.print("{}\n", .{file_path});
try baf.finish();
}
}
}
const Fmt = struct {
seen: SeenMap,
any_error: bool,
color: errmsg.Color,
allocator: *mem.Allocator,
const SeenMap = std.BufSet;
};
fn printErrMsgToFile(
allocator: *mem.Allocator,
parse_error: *const ast.Error,
tree: *ast.Tree,
path: []const u8,
file: fs.File,
color: errmsg.Color,
) !void {
const color_on = switch (color) {
.Auto => file.isTty(),
.On => true,
.Off => false,
};
const lok_token = parse_error.loc();
const span = errmsg.Span{
.first = lok_token,
.last = lok_token,
};
const first_token = tree.tokens.at(span.first);
const last_token = tree.tokens.at(span.last);
const start_loc = tree.tokenLocationPtr(0, first_token);
const end_loc = tree.tokenLocationPtr(first_token.end, last_token);
var text_buf = std.ArrayList(u8).init(allocator);
defer text_buf.deinit();
const out_stream = &text_buf.outStream();
try parse_error.render(&tree.tokens, out_stream);
const text = text_buf.span();
const stream = &file.outStream();
try stream.print("{}:{}:{}: error: {}\n", .{ path, start_loc.line + 1, start_loc.column + 1, text });
if (!color_on) return;
// Print \r and \t as one space each so that column counts line up
for (tree.source[start_loc.line_start..start_loc.line_end]) |byte| {
try stream.writeByte(switch (byte) {
'\r', '\t' => ' ',
else => byte,
});
}
try stream.writeByte('\n');
try stream.writeByteNTimes(' ', start_loc.column);
try stream.writeByteNTimes('~', last_token.end - first_token.start);
try stream.writeByte('\n');
}
export fn stage2_DepTokenizer_init(input: [*]const u8, len: usize) stage2_DepTokenizer {
const t = std.heap.c_allocator.create(DepTokenizer) catch @panic("failed to create .d tokenizer");
t.* = DepTokenizer.init(std.heap.c_allocator, input[0..len]);
return stage2_DepTokenizer{
.handle = t,
};
}
export fn stage2_DepTokenizer_deinit(self: *stage2_DepTokenizer) void {
self.handle.deinit();
}
export fn stage2_DepTokenizer_next(self: *stage2_DepTokenizer) stage2_DepNextResult {
const otoken = self.handle.next() catch {
const textz = std.Buffer.init(&self.handle.arena.allocator, self.handle.error_text) catch @panic("failed to create .d tokenizer error text");
return stage2_DepNextResult{
.type_id = .error_,
.textz = textz.span().ptr,
};
};
const token = otoken orelse {
return stage2_DepNextResult{
.type_id = .null_,
.textz = undefined,
};
};
const textz = std.Buffer.init(&self.handle.arena.allocator, token.bytes) catch @panic("failed to create .d tokenizer token text");
return stage2_DepNextResult{
.type_id = switch (token.id) {
.target => .target,
.prereq => .prereq,
},
.textz = textz.span().ptr,
};
}
const stage2_DepTokenizer = extern struct {
handle: *DepTokenizer,
};
const stage2_DepNextResult = extern struct {
type_id: TypeId,
// when type_id == error --> error text
// when type_id == null --> undefined
// when type_id == target --> target pathname
// when type_id == prereq --> prereq pathname
textz: [*]const u8,
const TypeId = extern enum {
error_,
null_,
target,
prereq,
};
};
// ABI warning
export fn stage2_attach_segfault_handler() void {
if (std.debug.runtime_safety and std.debug.have_segfault_handling_support) {
std.debug.attachSegfaultHandler();
}
}
// ABI warning
export fn stage2_progress_create() *std.Progress {
const ptr = std.heap.c_allocator.create(std.Progress) catch @panic("out of memory");
ptr.* = std.Progress{};
return ptr;
}
// ABI warning
export fn stage2_progress_destroy(progress: *std.Progress) void {
std.heap.c_allocator.destroy(progress);
}
// ABI warning
export fn stage2_progress_start_root(
progress: *std.Progress,
name_ptr: [*]const u8,
name_len: usize,
estimated_total_items: usize,
) *std.Progress.Node {
return progress.start(
name_ptr[0..name_len],
if (estimated_total_items == 0) null else estimated_total_items,
) catch @panic("timer unsupported");
}
// ABI warning
export fn stage2_progress_disable_tty(progress: *std.Progress) void {
progress.terminal = null;
}
// ABI warning
export fn stage2_progress_start(
node: *std.Progress.Node,
name_ptr: [*]const u8,
name_len: usize,
estimated_total_items: usize,
) *std.Progress.Node {
const child_node = std.heap.c_allocator.create(std.Progress.Node) catch @panic("out of memory");
child_node.* = node.start(
name_ptr[0..name_len],
if (estimated_total_items == 0) null else estimated_total_items,
);
child_node.activate();
return child_node;
}
// ABI warning
export fn stage2_progress_end(node: *std.Progress.Node) void {
node.end();
if (&node.context.root != node) {
std.heap.c_allocator.destroy(node);
}
}
// ABI warning
export fn stage2_progress_complete_one(node: *std.Progress.Node) void {
node.completeOne();
}
// ABI warning
export fn stage2_progress_update_node(node: *std.Progress.Node, done_count: usize, total_count: usize) void {
node.completed_items = done_count;
node.estimated_total_items = total_count;
node.activate();
node.context.maybeRefresh();
}
fn detectNativeCpuWithLLVM(
arch: Target.Cpu.Arch,
llvm_cpu_name_z: ?[*:0]const u8,
llvm_cpu_features_opt: ?[*:0]const u8,
) !Target.Cpu {
var result = Target.Cpu.baseline(arch);
if (llvm_cpu_name_z) |cpu_name_z| {
const llvm_cpu_name = mem.spanZ(cpu_name_z);
for (arch.allCpuModels()) |model| {
const this_llvm_name = model.llvm_name orelse continue;
if (mem.eql(u8, this_llvm_name, llvm_cpu_name)) {
// Here we use the non-dependencies-populated set,
// so that subtracting features later in this function
// affect the prepopulated set.
result = Target.Cpu{
.arch = arch,
.model = model,
.features = model.features,
};
break;
}
}
}
const all_features = arch.allFeaturesList();
if (llvm_cpu_features_opt) |llvm_cpu_features| {
var it = mem.tokenize(mem.spanZ(llvm_cpu_features), ",");
while (it.next()) |decorated_llvm_feat| {
var op: enum {
add,
sub,
} = undefined;
var llvm_feat: []const u8 = undefined;
if (mem.startsWith(u8, decorated_llvm_feat, "+")) {
op = .add;
llvm_feat = decorated_llvm_feat[1..];
} else if (mem.startsWith(u8, decorated_llvm_feat, "-")) {
op = .sub;
llvm_feat = decorated_llvm_feat[1..];
} else {
return error.InvalidLlvmCpuFeaturesFormat;
}
for (all_features) |feature, index_usize| {
const this_llvm_name = feature.llvm_name orelse continue;
if (mem.eql(u8, llvm_feat, this_llvm_name)) {
const index = @intCast(Target.Cpu.Feature.Set.Index, index_usize);
switch (op) {
.add => result.features.addFeature(index),
.sub => result.features.removeFeature(index),
}
break;
}
}
}
}
result.features.populateDependencies(all_features);
return result;
}
// ABI warning
export fn stage2_cmd_targets(
zig_triple: ?[*:0]const u8,
mcpu: ?[*:0]const u8,
dynamic_linker: ?[*:0]const u8,
) c_int {
cmdTargets(zig_triple, mcpu, dynamic_linker) catch |err| {
std.debug.warn("unable to list targets: {}\n", .{@errorName(err)});
return -1;
};
return 0;
}
fn cmdTargets(
zig_triple_oz: ?[*:0]const u8,
mcpu_oz: ?[*:0]const u8,
dynamic_linker_oz: ?[*:0]const u8,
) !void {
const cross_target = try stage2CrossTarget(zig_triple_oz, mcpu_oz, dynamic_linker_oz);
var dynamic_linker: ?[*:0]u8 = null;
const target = try crossTargetToTarget(cross_target, &dynamic_linker);
return @import("print_targets.zig").cmdTargets(
std.heap.c_allocator,
&[0][]u8{},
std.io.getStdOut().outStream(),
target,
);
}
// ABI warning
export fn stage2_target_parse(
target: *Stage2Target,
zig_triple: ?[*:0]const u8,
mcpu: ?[*:0]const u8,
dynamic_linker: ?[*:0]const u8,
) Error {
stage2TargetParse(target, zig_triple, mcpu, dynamic_linker) catch |err| switch (err) {
error.OutOfMemory => return .OutOfMemory,
error.UnknownArchitecture => return .UnknownArchitecture,
error.UnknownOperatingSystem => return .UnknownOperatingSystem,
error.UnknownApplicationBinaryInterface => return .UnknownApplicationBinaryInterface,
error.MissingOperatingSystem => return .MissingOperatingSystem,
error.InvalidLlvmCpuFeaturesFormat => return .InvalidLlvmCpuFeaturesFormat,
error.UnexpectedExtraField => return .SemanticAnalyzeFail,
error.InvalidAbiVersion => return .InvalidAbiVersion,
error.InvalidOperatingSystemVersion => return .InvalidOperatingSystemVersion,
error.FileSystem => return .FileSystem,
error.SymLinkLoop => return .SymLinkLoop,
error.SystemResources => return .SystemResources,
error.ProcessFdQuotaExceeded => return .ProcessFdQuotaExceeded,
error.SystemFdQuotaExceeded => return .SystemFdQuotaExceeded,
error.DeviceBusy => return .DeviceBusy,
};
return .None;
}
fn stage2CrossTarget(
zig_triple_oz: ?[*:0]const u8,
mcpu_oz: ?[*:0]const u8,
dynamic_linker_oz: ?[*:0]const u8,
) !CrossTarget {
const mcpu = mem.spanZ(mcpu_oz);
const dynamic_linker = mem.spanZ(dynamic_linker_oz);
var diags: CrossTarget.ParseOptions.Diagnostics = .{};
const target: CrossTarget = CrossTarget.parse(.{
.arch_os_abi = mem.spanZ(zig_triple_oz) orelse "native",
.cpu_features = mcpu,
.dynamic_linker = dynamic_linker,
.diagnostics = &diags,
}) catch |err| switch (err) {
error.UnknownCpuModel => {
std.debug.warn("Unknown CPU: '{}'\nAvailable CPUs for architecture '{}':\n", .{
diags.cpu_name.?,
@tagName(diags.arch.?),
});
for (diags.arch.?.allCpuModels()) |cpu| {
std.debug.warn(" {}\n", .{cpu.name});
}
process.exit(1);
},
error.UnknownCpuFeature => {
std.debug.warn(
\\Unknown CPU feature: '{}'
\\Available CPU features for architecture '{}':
\\
, .{
diags.unknown_feature_name,
@tagName(diags.arch.?),
});
for (diags.arch.?.allFeaturesList()) |feature| {
std.debug.warn(" {}: {}\n", .{ feature.name, feature.description });
}
process.exit(1);
},
else => |e| return e,
};
return target;
}
fn stage2TargetParse(
stage1_target: *Stage2Target,
zig_triple_oz: ?[*:0]const u8,
mcpu_oz: ?[*:0]const u8,
dynamic_linker_oz: ?[*:0]const u8,
) !void {
const target = try stage2CrossTarget(zig_triple_oz, mcpu_oz, dynamic_linker_oz);
try stage1_target.fromTarget(target);
}
// ABI warning
const Stage2LibCInstallation = extern struct {
include_dir: [*]const u8,
include_dir_len: usize,
sys_include_dir: [*]const u8,
sys_include_dir_len: usize,
crt_dir: [*]const u8,
crt_dir_len: usize,
msvc_lib_dir: [*]const u8,
msvc_lib_dir_len: usize,
kernel32_lib_dir: [*]const u8,
kernel32_lib_dir_len: usize,
fn initFromStage2(self: *Stage2LibCInstallation, libc: LibCInstallation) void {
if (libc.include_dir) |s| {
self.include_dir = s.ptr;
self.include_dir_len = s.len;
} else {
self.include_dir = "";
self.include_dir_len = 0;
}
if (libc.sys_include_dir) |s| {
self.sys_include_dir = s.ptr;
self.sys_include_dir_len = s.len;
} else {
self.sys_include_dir = "";
self.sys_include_dir_len = 0;
}
if (libc.crt_dir) |s| {
self.crt_dir = s.ptr;
self.crt_dir_len = s.len;
} else {
self.crt_dir = "";
self.crt_dir_len = 0;
}
if (libc.msvc_lib_dir) |s| {
self.msvc_lib_dir = s.ptr;
self.msvc_lib_dir_len = s.len;
} else {
self.msvc_lib_dir = "";
self.msvc_lib_dir_len = 0;
}
if (libc.kernel32_lib_dir) |s| {
self.kernel32_lib_dir = s.ptr;
self.kernel32_lib_dir_len = s.len;
} else {
self.kernel32_lib_dir = "";
self.kernel32_lib_dir_len = 0;
}
}
fn toStage2(self: Stage2LibCInstallation) LibCInstallation {
var libc: LibCInstallation = .{};
if (self.include_dir_len != 0) {
libc.include_dir = self.include_dir[0..self.include_dir_len];
}
if (self.sys_include_dir_len != 0) {
libc.sys_include_dir = self.sys_include_dir[0..self.sys_include_dir_len];
}
if (self.crt_dir_len != 0) {
libc.crt_dir = self.crt_dir[0..self.crt_dir_len];
}
if (self.msvc_lib_dir_len != 0) {
libc.msvc_lib_dir = self.msvc_lib_dir[0..self.msvc_lib_dir_len];
}
if (self.kernel32_lib_dir_len != 0) {
libc.kernel32_lib_dir = self.kernel32_lib_dir[0..self.kernel32_lib_dir_len];
}
return libc;
}
};
// ABI warning
export fn stage2_libc_parse(stage1_libc: *Stage2LibCInstallation, libc_file_z: [*:0]const u8) Error {
stderr_file = std.io.getStdErr();
stderr = stderr_file.outStream();
const libc_file = mem.spanZ(libc_file_z);
var libc = LibCInstallation.parse(std.heap.c_allocator, libc_file, stderr) catch |err| switch (err) {
error.ParseError => return .SemanticAnalyzeFail,
error.DiskQuota => return .DiskQuota,
error.FileTooBig => return .FileTooBig,
error.InputOutput => return .FileSystem,
error.NoSpaceLeft => return .NoSpaceLeft,
error.AccessDenied => return .AccessDenied,
error.BrokenPipe => return .BrokenPipe,
error.SystemResources => return .SystemResources,
error.OperationAborted => return .OperationAborted,
error.WouldBlock => unreachable,
error.Unexpected => return .Unexpected,
error.EndOfStream => return .EndOfFile,
error.IsDir => return .IsDir,
error.ConnectionResetByPeer => unreachable,
error.OutOfMemory => return .OutOfMemory,
error.Unseekable => unreachable,
error.SharingViolation => return .SharingViolation,
error.PathAlreadyExists => unreachable,
error.FileNotFound => return .FileNotFound,
error.PipeBusy => return .PipeBusy,
error.NameTooLong => return .PathTooLong,
error.InvalidUtf8 => return .BadPathName,
error.BadPathName => return .BadPathName,
error.SymLinkLoop => return .SymLinkLoop,
error.ProcessFdQuotaExceeded => return .ProcessFdQuotaExceeded,
error.SystemFdQuotaExceeded => return .SystemFdQuotaExceeded,
error.NoDevice => return .NoDevice,
error.NotDir => return .NotDir,
error.DeviceBusy => return .DeviceBusy,
};
stage1_libc.initFromStage2(libc);
return .None;
}
// ABI warning
export fn stage2_libc_find_native(stage1_libc: *Stage2LibCInstallation) Error {
var libc = LibCInstallation.findNative(.{
.allocator = std.heap.c_allocator,
.verbose = true,
}) catch |err| switch (err) {
error.OutOfMemory => return .OutOfMemory,
error.FileSystem => return .FileSystem,
error.UnableToSpawnCCompiler => return .UnableToSpawnCCompiler,
error.CCompilerExitCode => return .CCompilerExitCode,
error.CCompilerCrashed => return .CCompilerCrashed,
error.CCompilerCannotFindHeaders => return .CCompilerCannotFindHeaders,
error.LibCRuntimeNotFound => return .LibCRuntimeNotFound,
error.LibCStdLibHeaderNotFound => return .LibCStdLibHeaderNotFound,
error.LibCKernel32LibNotFound => return .LibCKernel32LibNotFound,
error.UnsupportedArchitecture => return .UnsupportedArchitecture,
error.WindowsSdkNotFound => return .WindowsSdkNotFound,
};
stage1_libc.initFromStage2(libc);
return .None;
}
// ABI warning
export fn stage2_libc_render(stage1_libc: *Stage2LibCInstallation, output_file: *FILE) Error {
var libc = stage1_libc.toStage2();
const c_out_stream = std.io.cOutStream(output_file);
libc.render(c_out_stream) catch |err| switch (err) {
error.WouldBlock => unreachable, // stage1 opens stuff in exclusively blocking mode
error.SystemResources => return .SystemResources,
error.OperationAborted => return .OperationAborted,
error.BrokenPipe => return .BrokenPipe,
error.DiskQuota => return .DiskQuota,
error.FileTooBig => return .FileTooBig,
error.NoSpaceLeft => return .NoSpaceLeft,
error.AccessDenied => return .AccessDenied,
error.Unexpected => return .Unexpected,
error.InputOutput => return .FileSystem,
};
return .None;
}
// ABI warning
const Stage2Target = extern struct {
arch: c_int,
vendor: c_int,
abi: c_int,
os: c_int,
is_native_os: bool,
is_native_cpu: bool,
glibc_or_darwin_version: ?*Stage2SemVer,
llvm_cpu_name: ?[*:0]const u8,
llvm_cpu_features: ?[*:0]const u8,
cpu_builtin_str: ?[*:0]const u8,
cache_hash: ?[*:0]const u8,
cache_hash_len: usize,
os_builtin_str: ?[*:0]const u8,
dynamic_linker: ?[*:0]const u8,
standard_dynamic_linker_path: ?[*:0]const u8,
llvm_cpu_features_asm_ptr: [*]const [*:0]const u8,
llvm_cpu_features_asm_len: usize,
fn fromTarget(self: *Stage2Target, cross_target: CrossTarget) !void {
const allocator = std.heap.c_allocator;
var dynamic_linker: ?[*:0]u8 = null;
const target = try crossTargetToTarget(cross_target, &dynamic_linker);
var cache_hash = try std.Buffer.allocPrint(allocator, "{}\n{}\n", .{
target.cpu.model.name,
target.cpu.features.asBytes(),
});
defer cache_hash.deinit();
const generic_arch_name = target.cpu.arch.genericName();
var cpu_builtin_str_buffer = try std.Buffer.allocPrint(allocator,
\\Cpu{{
\\ .arch = .{},
\\ .model = &Target.{}.cpu.{},
\\ .features = Target.{}.featureSet(&[_]Target.{}.Feature{{
\\
, .{
@tagName(target.cpu.arch),
generic_arch_name,
target.cpu.model.name,
generic_arch_name,
generic_arch_name,
});
defer cpu_builtin_str_buffer.deinit();
var llvm_features_buffer = try std.Buffer.initSize(allocator, 0);
defer llvm_features_buffer.deinit();
// Unfortunately we have to do the work twice, because Clang does not support
// the same command line parameters for CPU features when assembling code as it does
// when compiling C code.
var asm_features_list = std.ArrayList([*:0]const u8).init(allocator);
defer asm_features_list.deinit();
for (target.cpu.arch.allFeaturesList()) |feature, index_usize| {
const index = @intCast(Target.Cpu.Feature.Set.Index, index_usize);
const is_enabled = target.cpu.features.isEnabled(index);
if (feature.llvm_name) |llvm_name| {
const plus_or_minus = "-+"[@boolToInt(is_enabled)];
try llvm_features_buffer.appendByte(plus_or_minus);
try llvm_features_buffer.append(llvm_name);
try llvm_features_buffer.append(",");
}
if (is_enabled) {
// TODO some kind of "zig identifier escape" function rather than
// unconditionally using @"" syntax
try cpu_builtin_str_buffer.append(" .@\"");
try cpu_builtin_str_buffer.append(feature.name);
try cpu_builtin_str_buffer.append("\",\n");
}
}
switch (target.cpu.arch) {
.riscv32, .riscv64 => {
if (std.Target.riscv.featureSetHas(target.cpu.features, .relax)) {
try asm_features_list.append("-mrelax");
} else {
try asm_features_list.append("-mno-relax");
}
},
else => {
// TODO
// Argh, why doesn't the assembler accept the list of CPU features?!
// I don't see a way to do this other than hard coding everything.
},
}
try cpu_builtin_str_buffer.append(
\\ }),
\\};
\\
);
assert(mem.endsWith(u8, llvm_features_buffer.span(), ","));
llvm_features_buffer.shrink(llvm_features_buffer.len() - 1);
var os_builtin_str_buffer = try std.Buffer.allocPrint(allocator,
\\Os{{
\\ .tag = .{},
\\ .version_range = .{{
, .{@tagName(target.os.tag)});
defer os_builtin_str_buffer.deinit();
// We'll re-use the OS version range builtin string for the cache hash.
const os_builtin_str_ver_start_index = os_builtin_str_buffer.len();
@setEvalBranchQuota(2000);
switch (target.os.tag) {
.freestanding,
.ananas,
.cloudabi,
.dragonfly,
.fuchsia,
.ios,
.kfreebsd,
.lv2,
.solaris,
.haiku,
.minix,
.rtems,
.nacl,
.cnk,
.aix,
.cuda,
.nvcl,
.amdhsa,
.ps4,
.elfiamcu,
.tvos,
.watchos,
.mesa3d,
.contiki,
.amdpal,
.hermit,
.hurd,
.wasi,
.emscripten,
.uefi,
.other,
=> try os_builtin_str_buffer.append(" .none = {} }\n"),
.freebsd,
.macosx,
.netbsd,
.openbsd,
=> try os_builtin_str_buffer.outStream().print(
\\ .semver = .{{
\\ .min = .{{
\\ .major = {},
\\ .minor = {},
\\ .patch = {},
\\ }},
\\ .max = .{{
\\ .major = {},
\\ .minor = {},
\\ .patch = {},
\\ }},
\\ }}}},
\\
, .{
target.os.version_range.semver.min.major,
target.os.version_range.semver.min.minor,
target.os.version_range.semver.min.patch,
target.os.version_range.semver.max.major,
target.os.version_range.semver.max.minor,
target.os.version_range.semver.max.patch,
}),
.linux => try os_builtin_str_buffer.outStream().print(
\\ .linux = .{{
\\ .range = .{{
\\ .min = .{{
\\ .major = {},
\\ .minor = {},
\\ .patch = {},
\\ }},
\\ .max = .{{
\\ .major = {},
\\ .minor = {},
\\ .patch = {},
\\ }},
\\ }},
\\ .glibc = .{{
\\ .major = {},
\\ .minor = {},
\\ .patch = {},
\\ }},
\\ }}}},
\\
, .{
target.os.version_range.linux.range.min.major,
target.os.version_range.linux.range.min.minor,
target.os.version_range.linux.range.min.patch,
target.os.version_range.linux.range.max.major,
target.os.version_range.linux.range.max.minor,
target.os.version_range.linux.range.max.patch,
target.os.version_range.linux.glibc.major,
target.os.version_range.linux.glibc.minor,
target.os.version_range.linux.glibc.patch,
}),
.windows => try os_builtin_str_buffer.outStream().print(
\\ .windows = .{{
\\ .min = .{},
\\ .max = .{},
\\ }}}},
\\
, .{
@tagName(target.os.version_range.windows.min),
@tagName(target.os.version_range.windows.max),
}),
}
try os_builtin_str_buffer.append("};\n");
try cache_hash.append(
os_builtin_str_buffer.span()[os_builtin_str_ver_start_index..os_builtin_str_buffer.len()],
);
const glibc_or_darwin_version = blk: {
if (target.isGnuLibC()) {
const stage1_glibc = try std.heap.c_allocator.create(Stage2SemVer);
const stage2_glibc = target.os.version_range.linux.glibc;
stage1_glibc.* = .{
.major = stage2_glibc.major,
.minor = stage2_glibc.minor,
.patch = stage2_glibc.patch,
};
break :blk stage1_glibc;
} else if (target.isDarwin()) {
const stage1_semver = try std.heap.c_allocator.create(Stage2SemVer);
const stage2_semver = target.os.version_range.semver.min;
stage1_semver.* = .{
.major = stage2_semver.major,
.minor = stage2_semver.minor,
.patch = stage2_semver.patch,
};
break :blk stage1_semver;
} else {
break :blk null;
}
};
const std_dl = target.standardDynamicLinkerPath();
const std_dl_z = if (std_dl.get()) |dl|
(try mem.dupeZ(std.heap.c_allocator, u8, dl)).ptr
else
null;
const cache_hash_slice = cache_hash.toOwnedSlice();
const asm_features = asm_features_list.toOwnedSlice();
self.* = .{
.arch = @enumToInt(target.cpu.arch) + 1, // skip over ZigLLVM_UnknownArch
.vendor = 0,
.os = @enumToInt(target.os.tag),
.abi = @enumToInt(target.abi),
.llvm_cpu_name = if (target.cpu.model.llvm_name) |s| s.ptr else null,
.llvm_cpu_features = llvm_features_buffer.toOwnedSlice().ptr,
.llvm_cpu_features_asm_ptr = asm_features.ptr,
.llvm_cpu_features_asm_len = asm_features.len,
.cpu_builtin_str = cpu_builtin_str_buffer.toOwnedSlice().ptr,
.os_builtin_str = os_builtin_str_buffer.toOwnedSlice().ptr,
.cache_hash = cache_hash_slice.ptr,
.cache_hash_len = cache_hash_slice.len,
.is_native_os = cross_target.isNativeOs(),
.is_native_cpu = cross_target.isNativeCpu(),
.glibc_or_darwin_version = glibc_or_darwin_version,
.dynamic_linker = dynamic_linker,
.standard_dynamic_linker_path = std_dl_z,
};
}
};
fn enumInt(comptime Enum: type, int: c_int) Enum {
return @intToEnum(Enum, @intCast(@TagType(Enum), int));
}
fn crossTargetToTarget(cross_target: CrossTarget, dynamic_linker_ptr: *?[*:0]u8) !Target {
var info = try std.zig.system.NativeTargetInfo.detect(std.heap.c_allocator, cross_target);
if (info.cpu_detection_unimplemented) {
// TODO We want to just use detected_info.target but implementing
// CPU model & feature detection is todo so here we rely on LLVM.
const llvm = @import("llvm.zig");
const llvm_cpu_name = llvm.GetHostCPUName();
const llvm_cpu_features = llvm.GetNativeFeatures();
const arch = std.Target.current.cpu.arch;
info.target.cpu = try detectNativeCpuWithLLVM(arch, llvm_cpu_name, llvm_cpu_features);
cross_target.updateCpuFeatures(&info.target.cpu.features);
info.target.cpu.arch = cross_target.getCpuArch();
}
if (info.dynamic_linker.get()) |dl| {
dynamic_linker_ptr.* = try mem.dupeZ(std.heap.c_allocator, u8, dl);
} else {
dynamic_linker_ptr.* = null;
}
return info.target;
}
// ABI warning
const Stage2SemVer = extern struct {
major: u32,
minor: u32,
patch: u32,
};
// ABI warning
const Stage2NativePaths = extern struct {
include_dirs_ptr: [*][*:0]u8,
include_dirs_len: usize,
lib_dirs_ptr: [*][*:0]u8,
lib_dirs_len: usize,
rpaths_ptr: [*][*:0]u8,
rpaths_len: usize,
warnings_ptr: [*][*:0]u8,
warnings_len: usize,
};
// ABI warning
export fn stage2_detect_native_paths(stage1_paths: *Stage2NativePaths) Error {
stage2DetectNativePaths(stage1_paths) catch |err| switch (err) {
error.OutOfMemory => return .OutOfMemory,
};
return .None;
}
fn stage2DetectNativePaths(stage1_paths: *Stage2NativePaths) !void {
var paths = try std.zig.system.NativePaths.detect(std.heap.c_allocator);
errdefer paths.deinit();
try convertSlice(paths.include_dirs.span(), &stage1_paths.include_dirs_ptr, &stage1_paths.include_dirs_len);
try convertSlice(paths.lib_dirs.span(), &stage1_paths.lib_dirs_ptr, &stage1_paths.lib_dirs_len);
try convertSlice(paths.rpaths.span(), &stage1_paths.rpaths_ptr, &stage1_paths.rpaths_len);
try convertSlice(paths.warnings.span(), &stage1_paths.warnings_ptr, &stage1_paths.warnings_len);
}
fn convertSlice(slice: [][:0]u8, ptr: *[*][*:0]u8, len: *usize) !void {
len.* = slice.len;
const new_slice = try std.heap.c_allocator.alloc([*:0]u8, slice.len);
for (slice) |item, i| {
new_slice[i] = item.ptr;
}
ptr.* = new_slice.ptr;
}
const clang_args = @import("clang_options.zig").list;
// ABI warning
pub const ClangArgIterator = extern struct {
has_next: bool,
zig_equivalent: ZigEquivalent,
only_arg: [*:0]const u8,
second_arg: [*:0]const u8,
other_args_ptr: [*]const [*:0]const u8,
other_args_len: usize,
argv_ptr: [*]const [*:0]const u8,
argv_len: usize,
next_index: usize,
root_args: ?*Args,
// ABI warning
pub const ZigEquivalent = extern enum {
target,
o,
c,
other,
positional,
l,
ignore,
driver_punt,
pic,
no_pic,
nostdlib,
nostdlib_cpp,
shared,
rdynamic,
wl,
preprocess,
optimize,
debug,
sanitize,
linker_script,
verbose_cmds,
for_linker,
linker_input_z,
};
const Args = struct {
next_index: usize,
argv_ptr: [*]const [*:0]const u8,
argv_len: usize,
};
pub fn init(argv: []const [*:0]const u8) ClangArgIterator {
return .{
.next_index = 2, // `zig cc foo` this points to `foo`
.has_next = argv.len > 2,
.zig_equivalent = undefined,
.only_arg = undefined,
.second_arg = undefined,
.other_args_ptr = undefined,
.other_args_len = undefined,
.argv_ptr = argv.ptr,
.argv_len = argv.len,
.root_args = null,
};
}
pub fn next(self: *ClangArgIterator) !void {
assert(self.has_next);
assert(self.next_index < self.argv_len);
// In this state we know that the parameter we are looking at is a root parameter
// rather than an argument to a parameter.
self.other_args_ptr = self.argv_ptr + self.next_index;
self.other_args_len = 1; // We adjust this value below when necessary.
var arg = mem.span(self.argv_ptr[self.next_index]);
self.incrementArgIndex();
if (mem.startsWith(u8, arg, "@")) {
if (self.root_args != null) return error.NestedResponseFile;
// This is a "compiler response file". We must parse the file and treat its
// contents as command line parameters.
const allocator = std.heap.c_allocator;
const max_bytes = 10 * 1024 * 1024; // 10 MiB of command line arguments is a reasonable limit
const resp_file_path = arg[1..];
const resp_contents = fs.cwd().readFileAlloc(allocator, resp_file_path, max_bytes) catch |err| {
std.debug.warn("unable to read response file '{}': {}\n", .{ resp_file_path, @errorName(err) });
process.exit(1);
};
defer allocator.free(resp_contents);
// TODO is there a specification for this file format? Let's find it and make this parsing more robust
// at the very least I'm guessing this needs to handle quotes and `#` comments.
var it = mem.tokenize(resp_contents, " \t\r\n");
var resp_arg_list = std.ArrayList([*:0]const u8).init(allocator);
defer resp_arg_list.deinit();
{
errdefer {
for (resp_arg_list.span()) |item| {
allocator.free(mem.span(item));
}
}
while (it.next()) |token| {
const dupe_token = try mem.dupeZ(allocator, u8, token);
errdefer allocator.free(dupe_token);
try resp_arg_list.append(dupe_token);
}
const args = try allocator.create(Args);
errdefer allocator.destroy(args);
args.* = .{
.next_index = self.next_index,
.argv_ptr = self.argv_ptr,
.argv_len = self.argv_len,
};
self.root_args = args;
}
const resp_arg_slice = resp_arg_list.toOwnedSlice();
self.next_index = 0;
self.argv_ptr = resp_arg_slice.ptr;
self.argv_len = resp_arg_slice.len;
if (resp_arg_slice.len == 0) {
self.resolveRespFileArgs();
return;
}
self.has_next = true;
self.other_args_ptr = self.argv_ptr + self.next_index;
self.other_args_len = 1; // We adjust this value below when necessary.
arg = mem.span(self.argv_ptr[self.next_index]);
self.incrementArgIndex();
}
if (!mem.startsWith(u8, arg, "-")) {
self.zig_equivalent = .positional;
self.only_arg = arg.ptr;
return;
}
find_clang_arg: for (clang_args) |clang_arg| switch (clang_arg.syntax) {
.flag => {
const prefix_len = clang_arg.matchEql(arg);
if (prefix_len > 0) {
self.zig_equivalent = clang_arg.zig_equivalent;
self.only_arg = arg.ptr + prefix_len;
break :find_clang_arg;
}
},
.joined, .comma_joined => {
// joined example: --target=foo
// comma_joined example: -Wl,-soname,libsoundio.so.2
const prefix_len = clang_arg.matchStartsWith(arg);
if (prefix_len != 0) {
self.zig_equivalent = clang_arg.zig_equivalent;
self.only_arg = arg.ptr + prefix_len; // This will skip over the "--target=" part.
break :find_clang_arg;
}
},
.joined_or_separate => {
// Examples: `-lfoo`, `-l foo`
const prefix_len = clang_arg.matchStartsWith(arg);
if (prefix_len == arg.len) {
if (self.next_index >= self.argv_len) {
std.debug.warn("Expected parameter after '{}'\n", .{arg});
process.exit(1);
}
self.only_arg = self.argv_ptr[self.next_index];
self.incrementArgIndex();
self.other_args_len += 1;
self.zig_equivalent = clang_arg.zig_equivalent;
break :find_clang_arg;
} else if (prefix_len != 0) {
self.zig_equivalent = clang_arg.zig_equivalent;
self.only_arg = arg.ptr + prefix_len;
break :find_clang_arg;
}
},
.joined_and_separate => {
// Example: `-Xopenmp-target=riscv64-linux-unknown foo`
const prefix_len = clang_arg.matchStartsWith(arg);
if (prefix_len != 0) {
self.only_arg = arg.ptr + prefix_len;
if (self.next_index >= self.argv_len) {
std.debug.warn("Expected parameter after '{}'\n", .{arg});
process.exit(1);
}
self.second_arg = self.argv_ptr[self.next_index];
self.incrementArgIndex();
self.other_args_len += 1;
self.zig_equivalent = clang_arg.zig_equivalent;
break :find_clang_arg;
}
},
.separate => if (clang_arg.matchEql(arg) > 0) {
if (self.next_index >= self.argv_len) {
std.debug.warn("Expected parameter after '{}'\n", .{arg});
process.exit(1);
}
self.only_arg = self.argv_ptr[self.next_index];
self.incrementArgIndex();
self.other_args_len += 1;
self.zig_equivalent = clang_arg.zig_equivalent;
break :find_clang_arg;
},
.remaining_args_joined => {
const prefix_len = clang_arg.matchStartsWith(arg);
if (prefix_len != 0) {
@panic("TODO");
}
},
.multi_arg => if (clang_arg.matchEql(arg) > 0) {
@panic("TODO");
},
}
else {
std.debug.warn("Unknown Clang option: '{}'\n", .{arg});
process.exit(1);
}
}
fn incrementArgIndex(self: *ClangArgIterator) void {
self.next_index += 1;
self.resolveRespFileArgs();
}
fn resolveRespFileArgs(self: *ClangArgIterator) void {
const allocator = std.heap.c_allocator;
if (self.next_index >= self.argv_len) {
if (self.root_args) |root_args| {
self.next_index = root_args.next_index;
self.argv_ptr = root_args.argv_ptr;
self.argv_len = root_args.argv_len;
allocator.destroy(root_args);
self.root_args = null;
}
if (self.next_index >= self.argv_len) {
self.has_next = false;
}
}
}
};
export fn stage2_clang_arg_iterator(
result: *ClangArgIterator,
argc: usize,
argv: [*]const [*:0]const u8,
) void {
result.* = ClangArgIterator.init(argv[0..argc]);
}
export fn stage2_clang_arg_next(it: *ClangArgIterator) Error {
it.next() catch |err| switch (err) {
error.NestedResponseFile => return .NestedResponseFile,
error.OutOfMemory => return .OutOfMemory,
};
return .None;
}