zig/lib/std/special/compiler_rt/floatunsisf.zig

59 lines
1.9 KiB
Zig

const builtin = @import("builtin");
const std = @import("std");
const maxInt = std.math.maxInt;
const significandBits = 23;
const exponentBias = 127;
const implicitBit = @as(u32, 1) << significandBits;
pub fn __floatunsisf(arg: u32) callconv(.C) f32 {
@setRuntimeSafety(builtin.is_test);
if (arg == 0) return 0.0;
// The exponent is the width of abs(a)
const exp = @as(u32, 31) - @clz(u32, arg);
var mantissa: u32 = undefined;
if (exp <= significandBits) {
// Shift a into the significand field and clear the implicit bit
const shift = @intCast(u5, significandBits - exp);
mantissa = @as(u32, arg) << shift ^ implicitBit;
} else {
const shift = @intCast(u5, exp - significandBits);
// Round to the nearest number after truncation
mantissa = @as(u32, arg) >> shift ^ implicitBit;
// Align to the left and check if the truncated part is halfway over
const round = arg << @intCast(u5, 31 - shift);
mantissa += @boolToInt(round > 0x80000000);
// Tie to even
mantissa += mantissa & 1;
}
// Use the addition instead of a or since we may have a carry from the
// mantissa to the exponent
var result = mantissa;
result += (exp + exponentBias) << significandBits;
return @bitCast(f32, result);
}
pub fn __aeabi_ui2f(arg: u32) callconv(.AAPCS) f32 {
@setRuntimeSafety(false);
return @call(.{ .modifier = .always_inline }, __floatunsisf, .{arg});
}
fn test_one_floatunsisf(a: u32, expected: u32) void {
const r = __floatunsisf(a);
std.testing.expect(@bitCast(u32, r) == expected);
}
test "floatunsisf" {
// Test the produced bit pattern
test_one_floatunsisf(0, 0);
test_one_floatunsisf(1, 0x3f800000);
test_one_floatunsisf(0x7FFFFFFF, 0x4f000000);
test_one_floatunsisf(0x80000000, 0x4f000000);
test_one_floatunsisf(0xFFFFFFFF, 0x4f800000);
}