zig/lib/std/special/compiler_rt/floatsiXf.zig

120 lines
4.1 KiB
Zig

const builtin = @import("builtin");
const std = @import("std");
const maxInt = std.math.maxInt;
fn floatsiXf(comptime T: type, a: i32) T {
@setRuntimeSafety(builtin.is_test);
const Z = std.meta.IntType(false, T.bit_count);
const S = std.meta.IntType(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1));
if (a == 0) {
return @as(T, 0.0);
}
const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T);
const exponentBias = ((1 << exponentBits - 1) - 1);
const implicitBit = @as(Z, 1) << significandBits;
const signBit = @as(Z, 1 << Z.bit_count - 1);
const sign = a >> 31;
// Take absolute value of a via abs(x) = (x^(x >> 31)) - (x >> 31).
const abs_a = (a ^ sign) -% sign;
// The exponent is the width of abs(a)
const exp = @as(Z, 31 - @clz(i32, abs_a));
const sign_bit = if (sign < 0) signBit else 0;
var mantissa: Z = undefined;
// Shift a into the significand field and clear the implicit bit.
if (exp <= significandBits) {
// No rounding needed
const shift = @intCast(S, significandBits - exp);
mantissa = @intCast(Z, @bitCast(u32, abs_a)) << shift ^ implicitBit;
} else {
const shift = @intCast(S, exp - significandBits);
// Round to the nearest number after truncation
mantissa = @intCast(Z, @bitCast(u32, abs_a)) >> shift ^ implicitBit;
// Align to the left and check if the truncated part is halfway over
const round = @bitCast(u32, abs_a) << @intCast(u5, 31 - shift);
mantissa += @boolToInt(round > 0x80000000);
// Tie to even
mantissa += mantissa & 1;
}
// Use the addition instead of a or since we may have a carry from the
// mantissa to the exponent
var result = mantissa;
result += (exp + exponentBias) << significandBits;
result += sign_bit;
return @bitCast(T, result);
}
pub fn __floatsisf(arg: i32) callconv(.C) f32 {
@setRuntimeSafety(builtin.is_test);
return @call(.{ .modifier = .always_inline }, floatsiXf, .{ f32, arg });
}
pub fn __floatsidf(arg: i32) callconv(.C) f64 {
@setRuntimeSafety(builtin.is_test);
return @call(.{ .modifier = .always_inline }, floatsiXf, .{ f64, arg });
}
pub fn __floatsitf(arg: i32) callconv(.C) f128 {
@setRuntimeSafety(builtin.is_test);
return @call(.{ .modifier = .always_inline }, floatsiXf, .{ f128, arg });
}
pub fn __aeabi_i2d(arg: i32) callconv(.AAPCS) f64 {
@setRuntimeSafety(false);
return @call(.{ .modifier = .always_inline }, __floatsidf, .{arg});
}
pub fn __aeabi_i2f(arg: i32) callconv(.AAPCS) f32 {
@setRuntimeSafety(false);
return @call(.{ .modifier = .always_inline }, __floatsisf, .{arg});
}
fn test_one_floatsitf(a: i32, expected: u128) void {
const r = __floatsitf(a);
std.testing.expect(@bitCast(u128, r) == expected);
}
fn test_one_floatsidf(a: i32, expected: u64) void {
const r = __floatsidf(a);
std.testing.expect(@bitCast(u64, r) == expected);
}
fn test_one_floatsisf(a: i32, expected: u32) void {
const r = __floatsisf(a);
std.testing.expect(@bitCast(u32, r) == expected);
}
test "floatsidf" {
test_one_floatsidf(0, 0x0000000000000000);
test_one_floatsidf(1, 0x3ff0000000000000);
test_one_floatsidf(-1, 0xbff0000000000000);
test_one_floatsidf(0x7FFFFFFF, 0x41dfffffffc00000);
test_one_floatsidf(@bitCast(i32, @intCast(u32, 0x80000000)), 0xc1e0000000000000);
}
test "floatsisf" {
test_one_floatsisf(0, 0x00000000);
test_one_floatsisf(1, 0x3f800000);
test_one_floatsisf(-1, 0xbf800000);
test_one_floatsisf(0x7FFFFFFF, 0x4f000000);
test_one_floatsisf(@bitCast(i32, @intCast(u32, 0x80000000)), 0xcf000000);
}
test "floatsitf" {
test_one_floatsitf(0, 0);
test_one_floatsitf(0x7FFFFFFF, 0x401dfffffffc00000000000000000000);
test_one_floatsitf(0x12345678, 0x401b2345678000000000000000000000);
test_one_floatsitf(-0x12345678, 0xc01b2345678000000000000000000000);
test_one_floatsitf(@bitCast(i32, @intCast(u32, 0xffffffff)), 0xbfff0000000000000000000000000000);
test_one_floatsitf(@bitCast(i32, @intCast(u32, 0x80000000)), 0xc01e0000000000000000000000000000);
}