zig/lib/std/zig/cross_target.zig

859 lines
32 KiB
Zig

const std = @import("../std.zig");
const assert = std.debug.assert;
const Target = std.Target;
const mem = std.mem;
/// Contains all the same data as `Target`, additionally introducing the concept of "the native target".
/// The purpose of this abstraction is to provide meaningful and unsurprising defaults.
/// This struct does reference any resources and it is copyable.
pub const CrossTarget = struct {
/// `null` means native.
cpu_arch: ?Target.Cpu.Arch = null,
cpu_model: CpuModel = CpuModel.determined_by_cpu_arch,
/// Sparse set of CPU features to add to the set from `cpu_model`.
cpu_features_add: Target.Cpu.Feature.Set = Target.Cpu.Feature.Set.empty,
/// Sparse set of CPU features to remove from the set from `cpu_model`.
cpu_features_sub: Target.Cpu.Feature.Set = Target.Cpu.Feature.Set.empty,
/// `null` means native.
os_tag: ?Target.Os.Tag = null,
/// `null` means the default version range for `os_tag`. If `os_tag` is `null` (native)
/// then `null` for this field means native.
os_version_min: ?OsVersion = null,
/// When cross compiling, `null` means default (latest known OS version).
/// When `os_tag` is native, `null` means equal to the native OS version.
os_version_max: ?OsVersion = null,
/// `null` means default when cross compiling, or native when os_tag is native.
/// If `isGnuLibC()` is `false`, this must be `null` and is ignored.
glibc_version: ?SemVer = null,
/// `null` means the native C ABI, if `os_tag` is native, otherwise it means the default C ABI.
abi: ?Target.Abi = null,
/// When `os_tag` is `null`, then `null` means native. Otherwise it means the standard path
/// based on the `os_tag`.
dynamic_linker: DynamicLinker = DynamicLinker{},
pub const CpuModel = union(enum) {
/// Always native
native,
/// Always baseline
baseline,
/// If CPU Architecture is native, then the CPU model will be native. Otherwise,
/// it will be baseline.
determined_by_cpu_arch,
explicit: *const Target.Cpu.Model,
};
pub const OsVersion = union(enum) {
none: void,
semver: SemVer,
windows: Target.Os.WindowsVersion,
};
pub const SemVer = std.builtin.Version;
pub const DynamicLinker = Target.DynamicLinker;
pub fn fromTarget(target: Target) CrossTarget {
var result: CrossTarget = .{
.cpu_arch = target.cpu.arch,
.cpu_model = .{ .explicit = target.cpu.model },
.os_tag = target.os.tag,
.os_version_min = undefined,
.os_version_max = undefined,
.abi = target.abi,
.glibc_version = if (target.isGnuLibC())
target.os.version_range.linux.glibc
else
null,
};
result.updateOsVersionRange(target.os);
const all_features = target.cpu.arch.allFeaturesList();
var cpu_model_set = target.cpu.model.features;
cpu_model_set.populateDependencies(all_features);
{
// The "add" set is the full set with the CPU Model set removed.
const add_set = &result.cpu_features_add;
add_set.* = target.cpu.features;
add_set.removeFeatureSet(cpu_model_set);
}
{
// The "sub" set is the features that are on in CPU Model set and off in the full set.
const sub_set = &result.cpu_features_sub;
sub_set.* = cpu_model_set;
sub_set.removeFeatureSet(target.cpu.features);
}
return result;
}
fn updateOsVersionRange(self: *CrossTarget, os: Target.Os) void {
switch (os.tag) {
.freestanding,
.ananas,
.cloudabi,
.fuchsia,
.kfreebsd,
.lv2,
.solaris,
.haiku,
.minix,
.rtems,
.nacl,
.cnk,
.aix,
.cuda,
.nvcl,
.amdhsa,
.ps4,
.elfiamcu,
.mesa3d,
.contiki,
.amdpal,
.hermit,
.hurd,
.wasi,
.emscripten,
.uefi,
.other,
=> {
self.os_version_min = .{ .none = {} };
self.os_version_max = .{ .none = {} };
},
.freebsd,
.macosx,
.ios,
.tvos,
.watchos,
.netbsd,
.openbsd,
.dragonfly,
=> {
self.os_version_min = .{ .semver = os.version_range.semver.min };
self.os_version_max = .{ .semver = os.version_range.semver.max };
},
.linux => {
self.os_version_min = .{ .semver = os.version_range.linux.range.min };
self.os_version_max = .{ .semver = os.version_range.linux.range.max };
},
.windows => {
self.os_version_min = .{ .windows = os.version_range.windows.min };
self.os_version_max = .{ .windows = os.version_range.windows.max };
},
}
}
/// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`.
pub fn toTarget(self: CrossTarget) Target {
return .{
.cpu = self.getCpu(),
.os = self.getOs(),
.abi = self.getAbi(),
};
}
pub const ParseOptions = struct {
/// This is sometimes called a "triple". It looks roughly like this:
/// riscv64-linux-musl
/// The fields are, respectively:
/// * CPU Architecture
/// * Operating System (and optional version range)
/// * C ABI (optional, with optional glibc version)
/// The string "native" can be used for CPU architecture as well as Operating System.
/// If the CPU Architecture is specified as "native", then the Operating System and C ABI may be omitted.
arch_os_abi: []const u8 = "native",
/// Looks like "name+a+b-c-d+e", where "name" is a CPU Model name, "a", "b", and "e"
/// are examples of CPU features to add to the set, and "c" and "d" are examples of CPU features
/// to remove from the set.
/// The following special strings are recognized for CPU Model name:
/// * "baseline" - The "default" set of CPU features for cross-compiling. A conservative set
/// of features that is expected to be supported on most available hardware.
/// * "native" - The native CPU model is to be detected when compiling.
/// If this field is not provided (`null`), then the value will depend on the
/// parsed CPU Architecture. If native, then this will be "native". Otherwise, it will be "baseline".
cpu_features: ?[]const u8 = null,
/// Absolute path to dynamic linker, to override the default, which is either a natively
/// detected path, or a standard path.
dynamic_linker: ?[]const u8 = null,
/// If this is provided, the function will populate some information about parsing failures,
/// so that user-friendly error messages can be delivered.
diagnostics: ?*Diagnostics = null,
pub const Diagnostics = struct {
/// If the architecture was determined, this will be populated.
arch: ?Target.Cpu.Arch = null,
/// If the OS name was determined, this will be populated.
os_name: ?[]const u8 = null,
/// If the OS tag was determined, this will be populated.
os_tag: ?Target.Os.Tag = null,
/// If the ABI was determined, this will be populated.
abi: ?Target.Abi = null,
/// If the CPU name was determined, this will be populated.
cpu_name: ?[]const u8 = null,
/// If error.UnknownCpuFeature is returned, this will be populated.
unknown_feature_name: ?[]const u8 = null,
};
};
pub fn parse(args: ParseOptions) !CrossTarget {
var dummy_diags: ParseOptions.Diagnostics = undefined;
const diags = args.diagnostics orelse &dummy_diags;
var result: CrossTarget = .{
.dynamic_linker = DynamicLinker.init(args.dynamic_linker),
};
var it = mem.split(args.arch_os_abi, "-");
const arch_name = it.next().?;
const arch_is_native = mem.eql(u8, arch_name, "native");
if (!arch_is_native) {
result.cpu_arch = std.meta.stringToEnum(Target.Cpu.Arch, arch_name) orelse
return error.UnknownArchitecture;
}
const arch = result.getCpuArch();
diags.arch = arch;
if (it.next()) |os_text| {
try parseOs(&result, diags, os_text);
} else if (!arch_is_native) {
return error.MissingOperatingSystem;
}
const opt_abi_text = it.next();
if (opt_abi_text) |abi_text| {
var abi_it = mem.split(abi_text, ".");
const abi = std.meta.stringToEnum(Target.Abi, abi_it.next().?) orelse
return error.UnknownApplicationBinaryInterface;
result.abi = abi;
diags.abi = abi;
const abi_ver_text = abi_it.rest();
if (abi_it.next() != null) {
if (result.isGnuLibC()) {
result.glibc_version = SemVer.parse(abi_ver_text) catch |err| switch (err) {
error.Overflow => return error.InvalidAbiVersion,
error.InvalidCharacter => return error.InvalidAbiVersion,
error.InvalidVersion => return error.InvalidAbiVersion,
};
} else {
return error.InvalidAbiVersion;
}
}
}
if (it.next() != null) return error.UnexpectedExtraField;
if (args.cpu_features) |cpu_features| {
const all_features = arch.allFeaturesList();
var index: usize = 0;
while (index < cpu_features.len and
cpu_features[index] != '+' and
cpu_features[index] != '-')
{
index += 1;
}
const cpu_name = cpu_features[0..index];
diags.cpu_name = cpu_name;
const add_set = &result.cpu_features_add;
const sub_set = &result.cpu_features_sub;
if (mem.eql(u8, cpu_name, "native")) {
result.cpu_model = .native;
} else if (mem.eql(u8, cpu_name, "baseline")) {
result.cpu_model = .baseline;
} else {
result.cpu_model = .{ .explicit = try arch.parseCpuModel(cpu_name) };
}
while (index < cpu_features.len) {
const op = cpu_features[index];
const set = switch (op) {
'+' => add_set,
'-' => sub_set,
else => unreachable,
};
index += 1;
const start = index;
while (index < cpu_features.len and
cpu_features[index] != '+' and
cpu_features[index] != '-')
{
index += 1;
}
const feature_name = cpu_features[start..index];
for (all_features) |feature, feat_index_usize| {
const feat_index = @intCast(Target.Cpu.Feature.Set.Index, feat_index_usize);
if (mem.eql(u8, feature_name, feature.name)) {
set.addFeature(feat_index);
break;
}
} else {
diags.unknown_feature_name = feature_name;
return error.UnknownCpuFeature;
}
}
}
return result;
}
/// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`.
pub fn getCpu(self: CrossTarget) Target.Cpu {
switch (self.cpu_model) {
.native => {
// This works when doing `zig build` because Zig generates a build executable using
// native CPU model & features. However this will not be accurate otherwise, and
// will need to be integrated with `std.zig.system.NativeTargetInfo.detect`.
return Target.current.cpu;
},
.baseline => {
var adjusted_baseline = Target.Cpu.baseline(self.getCpuArch());
self.updateCpuFeatures(&adjusted_baseline.features);
return adjusted_baseline;
},
.determined_by_cpu_arch => if (self.cpu_arch == null) {
// This works when doing `zig build` because Zig generates a build executable using
// native CPU model & features. However this will not be accurate otherwise, and
// will need to be integrated with `std.zig.system.NativeTargetInfo.detect`.
return Target.current.cpu;
} else {
var adjusted_baseline = Target.Cpu.baseline(self.getCpuArch());
self.updateCpuFeatures(&adjusted_baseline.features);
return adjusted_baseline;
},
.explicit => |model| {
var adjusted_model = model.toCpu(self.getCpuArch());
self.updateCpuFeatures(&adjusted_model.features);
return adjusted_model;
},
}
}
pub fn getCpuArch(self: CrossTarget) Target.Cpu.Arch {
return self.cpu_arch orelse Target.current.cpu.arch;
}
pub fn getCpuModel(self: CrossTarget) *const Target.Cpu.Model {
return switch (self.cpu_model) {
.explicit => |cpu_model| cpu_model,
else => self.getCpu().model,
};
}
pub fn getCpuFeatures(self: CrossTarget) Target.Cpu.Feature.Set {
return self.getCpu().features;
}
/// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`.
pub fn getOs(self: CrossTarget) Target.Os {
// `Target.current.os` works when doing `zig build` because Zig generates a build executable using
// native OS version range. However this will not be accurate otherwise, and
// will need to be integrated with `std.zig.system.NativeTargetInfo.detect`.
var adjusted_os = if (self.os_tag) |os_tag| Target.Os.defaultVersionRange(os_tag) else Target.current.os;
if (self.os_version_min) |min| switch (min) {
.none => {},
.semver => |semver| switch (self.getOsTag()) {
.linux => adjusted_os.version_range.linux.range.min = semver,
else => adjusted_os.version_range.semver.min = semver,
},
.windows => |win_ver| adjusted_os.version_range.windows.min = win_ver,
};
if (self.os_version_max) |max| switch (max) {
.none => {},
.semver => |semver| switch (self.getOsTag()) {
.linux => adjusted_os.version_range.linux.range.max = semver,
else => adjusted_os.version_range.semver.max = semver,
},
.windows => |win_ver| adjusted_os.version_range.windows.max = win_ver,
};
if (self.glibc_version) |glibc| {
assert(self.isGnuLibC());
adjusted_os.version_range.linux.glibc = glibc;
}
return adjusted_os;
}
pub fn getOsTag(self: CrossTarget) Target.Os.Tag {
return self.os_tag orelse Target.current.os.tag;
}
/// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`.
pub fn getOsVersionMin(self: CrossTarget) OsVersion {
if (self.os_version_min) |version_min| return version_min;
var tmp: CrossTarget = undefined;
tmp.updateOsVersionRange(self.getOs());
return tmp.os_version_min.?;
}
/// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`.
pub fn getOsVersionMax(self: CrossTarget) OsVersion {
if (self.os_version_max) |version_max| return version_max;
var tmp: CrossTarget = undefined;
tmp.updateOsVersionRange(self.getOs());
return tmp.os_version_max.?;
}
/// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`.
pub fn getAbi(self: CrossTarget) Target.Abi {
if (self.abi) |abi| return abi;
if (self.os_tag == null) {
// This works when doing `zig build` because Zig generates a build executable using
// native CPU model & features. However this will not be accurate otherwise, and
// will need to be integrated with `std.zig.system.NativeTargetInfo.detect`.
return Target.current.abi;
}
return Target.Abi.default(self.getCpuArch(), self.getOs());
}
pub fn isFreeBSD(self: CrossTarget) bool {
return self.getOsTag() == .freebsd;
}
pub fn isDarwin(self: CrossTarget) bool {
return self.getOsTag().isDarwin();
}
pub fn isNetBSD(self: CrossTarget) bool {
return self.getOsTag() == .netbsd;
}
pub fn isUefi(self: CrossTarget) bool {
return self.getOsTag() == .uefi;
}
pub fn isDragonFlyBSD(self: CrossTarget) bool {
return self.getOsTag() == .dragonfly;
}
pub fn isLinux(self: CrossTarget) bool {
return self.getOsTag() == .linux;
}
pub fn isWindows(self: CrossTarget) bool {
return self.getOsTag() == .windows;
}
pub fn oFileExt(self: CrossTarget) [:0]const u8 {
return self.getAbi().oFileExt();
}
pub fn exeFileExt(self: CrossTarget) [:0]const u8 {
return Target.exeFileExtSimple(self.getCpuArch(), self.getOsTag());
}
pub fn staticLibSuffix(self: CrossTarget) [:0]const u8 {
return Target.staticLibSuffix_cpu_arch_abi(self.getCpuArch(), self.getAbi());
}
pub fn dynamicLibSuffix(self: CrossTarget) [:0]const u8 {
return self.getOsTag().dynamicLibSuffix();
}
pub fn libPrefix(self: CrossTarget) [:0]const u8 {
return Target.libPrefix_cpu_arch_abi(self.getCpuArch(), self.getAbi());
}
pub fn isNativeCpu(self: CrossTarget) bool {
return self.cpu_arch == null and
(self.cpu_model == .native or self.cpu_model == .determined_by_cpu_arch) and
self.cpu_features_sub.isEmpty() and self.cpu_features_add.isEmpty();
}
pub fn isNativeOs(self: CrossTarget) bool {
return self.os_tag == null and self.os_version_min == null and self.os_version_max == null and
self.dynamic_linker.get() == null and self.glibc_version == null;
}
pub fn isNative(self: CrossTarget) bool {
return self.isNativeCpu() and self.isNativeOs() and self.abi == null;
}
pub fn zigTriple(self: CrossTarget, allocator: *mem.Allocator) error{OutOfMemory}![]u8 {
if (self.isNative()) {
return allocator.dupe(u8, "native");
}
const arch_name = if (self.cpu_arch) |arch| @tagName(arch) else "native";
const os_name = if (self.os_tag) |os_tag| @tagName(os_tag) else "native";
var result = std.ArrayList(u8).init(allocator);
defer result.deinit();
try result.outStream().print("{}-{}", .{ arch_name, os_name });
// The zig target syntax does not allow specifying a max os version with no min, so
// if either are present, we need the min.
if (self.os_version_min != null or self.os_version_max != null) {
switch (self.getOsVersionMin()) {
.none => {},
.semver => |v| try result.outStream().print(".{}", .{v}),
.windows => |v| try result.outStream().print("{s}", .{v}),
}
}
if (self.os_version_max) |max| {
switch (max) {
.none => {},
.semver => |v| try result.outStream().print("...{}", .{v}),
.windows => |v| try result.outStream().print("..{s}", .{v}),
}
}
if (self.glibc_version) |v| {
try result.outStream().print("-{}.{}", .{ @tagName(self.getAbi()), v });
} else if (self.abi) |abi| {
try result.outStream().print("-{}", .{@tagName(abi)});
}
return result.toOwnedSlice();
}
pub fn allocDescription(self: CrossTarget, allocator: *mem.Allocator) ![]u8 {
// TODO is there anything else worthy of the description that is not
// already captured in the triple?
return self.zigTriple(allocator);
}
pub fn linuxTriple(self: CrossTarget, allocator: *mem.Allocator) ![]u8 {
return Target.linuxTripleSimple(allocator, self.getCpuArch(), self.getOsTag(), self.getAbi());
}
pub fn wantSharedLibSymLinks(self: CrossTarget) bool {
return self.getOsTag() != .windows;
}
pub const VcpkgLinkage = std.builtin.LinkMode;
/// Returned slice must be freed by the caller.
pub fn vcpkgTriplet(self: CrossTarget, allocator: *mem.Allocator, linkage: VcpkgLinkage) ![]u8 {
const arch = switch (self.getCpuArch()) {
.i386 => "x86",
.x86_64 => "x64",
.arm,
.armeb,
.thumb,
.thumbeb,
.aarch64_32,
=> "arm",
.aarch64,
.aarch64_be,
=> "arm64",
else => return error.UnsupportedVcpkgArchitecture,
};
const os = switch (self.getOsTag()) {
.windows => "windows",
.linux => "linux",
.macosx => "macos",
else => return error.UnsupportedVcpkgOperatingSystem,
};
const static_suffix = switch (linkage) {
.Static => "-static",
.Dynamic => "",
};
return std.fmt.allocPrint(allocator, "{}-{}{}", .{ arch, os, static_suffix });
}
pub const Executor = union(enum) {
native,
qemu: []const u8,
wine: []const u8,
wasmtime: []const u8,
unavailable,
};
/// Note that even a `CrossTarget` which returns `false` for `isNative` could still be natively executed.
/// For example `-target arm-native` running on an aarch64 host.
pub fn getExternalExecutor(self: CrossTarget) Executor {
const cpu_arch = self.getCpuArch();
const os_tag = self.getOsTag();
const os_match = os_tag == Target.current.os.tag;
// If the OS and CPU arch match, the binary can be considered native.
if (os_match and cpu_arch == Target.current.cpu.arch) {
// However, we also need to verify that the dynamic linker path is valid.
// TODO Until that is implemented, we prevent returning `.native` when the OS is non-native.
if (self.os_tag == null) {
return .native;
}
}
// If the OS matches, we can use QEMU to emulate a foreign architecture.
if (os_match) {
return switch (cpu_arch) {
.aarch64 => Executor{ .qemu = "qemu-aarch64" },
.aarch64_be => Executor{ .qemu = "qemu-aarch64_be" },
.arm => Executor{ .qemu = "qemu-arm" },
.armeb => Executor{ .qemu = "qemu-armeb" },
.i386 => Executor{ .qemu = "qemu-i386" },
.mips => Executor{ .qemu = "qemu-mips" },
.mipsel => Executor{ .qemu = "qemu-mipsel" },
.mips64 => Executor{ .qemu = "qemu-mips64" },
.mips64el => Executor{ .qemu = "qemu-mips64el" },
.powerpc => Executor{ .qemu = "qemu-ppc" },
.powerpc64 => Executor{ .qemu = "qemu-ppc64" },
.powerpc64le => Executor{ .qemu = "qemu-ppc64le" },
.riscv32 => Executor{ .qemu = "qemu-riscv32" },
.riscv64 => Executor{ .qemu = "qemu-riscv64" },
.s390x => Executor{ .qemu = "qemu-s390x" },
.sparc => Executor{ .qemu = "qemu-sparc" },
.x86_64 => Executor{ .qemu = "qemu-x86_64" },
else => return .unavailable,
};
}
switch (os_tag) {
.windows => switch (cpu_arch.ptrBitWidth()) {
32 => return Executor{ .wine = "wine" },
64 => return Executor{ .wine = "wine64" },
else => return .unavailable,
},
.wasi => switch (cpu_arch.ptrBitWidth()) {
32 => return Executor{ .wasmtime = "wasmtime" },
else => return .unavailable,
},
else => return .unavailable,
}
}
pub fn isGnuLibC(self: CrossTarget) bool {
return Target.isGnuLibC_os_tag_abi(self.getOsTag(), self.getAbi());
}
pub fn setGnuLibCVersion(self: *CrossTarget, major: u32, minor: u32, patch: u32) void {
assert(self.isGnuLibC());
self.glibc_version = SemVer{ .major = major, .minor = minor, .patch = patch };
}
pub fn getObjectFormat(self: CrossTarget) Target.ObjectFormat {
return Target.getObjectFormatSimple(self.getOsTag(), self.getCpuArch());
}
pub fn updateCpuFeatures(self: CrossTarget, set: *Target.Cpu.Feature.Set) void {
set.removeFeatureSet(self.cpu_features_sub);
set.addFeatureSet(self.cpu_features_add);
set.populateDependencies(self.getCpuArch().allFeaturesList());
set.removeFeatureSet(self.cpu_features_sub);
}
fn parseOs(result: *CrossTarget, diags: *ParseOptions.Diagnostics, text: []const u8) !void {
var it = mem.split(text, ".");
const os_name = it.next().?;
diags.os_name = os_name;
const os_is_native = mem.eql(u8, os_name, "native");
if (!os_is_native) {
result.os_tag = std.meta.stringToEnum(Target.Os.Tag, os_name) orelse
return error.UnknownOperatingSystem;
}
const tag = result.getOsTag();
diags.os_tag = tag;
const version_text = it.rest();
if (it.next() == null) return;
switch (tag) {
.freestanding,
.ananas,
.cloudabi,
.fuchsia,
.kfreebsd,
.lv2,
.solaris,
.haiku,
.minix,
.rtems,
.nacl,
.cnk,
.aix,
.cuda,
.nvcl,
.amdhsa,
.ps4,
.elfiamcu,
.mesa3d,
.contiki,
.amdpal,
.hermit,
.hurd,
.wasi,
.emscripten,
.uefi,
.other,
=> return error.InvalidOperatingSystemVersion,
.freebsd,
.macosx,
.ios,
.tvos,
.watchos,
.netbsd,
.openbsd,
.linux,
.dragonfly,
=> {
var range_it = mem.split(version_text, "...");
const min_text = range_it.next().?;
const min_ver = SemVer.parse(min_text) catch |err| switch (err) {
error.Overflow => return error.InvalidOperatingSystemVersion,
error.InvalidCharacter => return error.InvalidOperatingSystemVersion,
error.InvalidVersion => return error.InvalidOperatingSystemVersion,
};
result.os_version_min = .{ .semver = min_ver };
const max_text = range_it.next() orelse return;
const max_ver = SemVer.parse(max_text) catch |err| switch (err) {
error.Overflow => return error.InvalidOperatingSystemVersion,
error.InvalidCharacter => return error.InvalidOperatingSystemVersion,
error.InvalidVersion => return error.InvalidOperatingSystemVersion,
};
result.os_version_max = .{ .semver = max_ver };
},
.windows => {
var range_it = mem.split(version_text, "...");
const min_text = range_it.next().?;
const min_ver = std.meta.stringToEnum(Target.Os.WindowsVersion, min_text) orelse
return error.InvalidOperatingSystemVersion;
result.os_version_min = .{ .windows = min_ver };
const max_text = range_it.next() orelse return;
const max_ver = std.meta.stringToEnum(Target.Os.WindowsVersion, max_text) orelse
return error.InvalidOperatingSystemVersion;
result.os_version_max = .{ .windows = max_ver };
},
}
}
};
test "CrossTarget.parse" {
if (Target.current.isGnuLibC()) {
var cross_target = try CrossTarget.parse(.{});
cross_target.setGnuLibCVersion(2, 1, 1);
const text = try cross_target.zigTriple(std.testing.allocator);
defer std.testing.allocator.free(text);
var buf: [256]u8 = undefined;
const triple = std.fmt.bufPrint(
buf[0..],
"native-native-{}.2.1.1",
.{@tagName(std.Target.current.abi)},
) catch unreachable;
std.testing.expectEqualSlices(u8, triple, text);
}
{
const cross_target = try CrossTarget.parse(.{
.arch_os_abi = "aarch64-linux",
.cpu_features = "native",
});
std.testing.expect(cross_target.cpu_arch.? == .aarch64);
std.testing.expect(cross_target.cpu_model == .native);
}
{
const cross_target = try CrossTarget.parse(.{ .arch_os_abi = "native" });
std.testing.expect(cross_target.cpu_arch == null);
std.testing.expect(cross_target.isNative());
const text = try cross_target.zigTriple(std.testing.allocator);
defer std.testing.allocator.free(text);
std.testing.expectEqualSlices(u8, "native", text);
}
{
const cross_target = try CrossTarget.parse(.{
.arch_os_abi = "x86_64-linux-gnu",
.cpu_features = "x86_64-sse-sse2-avx-cx8",
});
const target = cross_target.toTarget();
std.testing.expect(target.os.tag == .linux);
std.testing.expect(target.abi == .gnu);
std.testing.expect(target.cpu.arch == .x86_64);
std.testing.expect(!Target.x86.featureSetHas(target.cpu.features, .sse));
std.testing.expect(!Target.x86.featureSetHas(target.cpu.features, .avx));
std.testing.expect(!Target.x86.featureSetHas(target.cpu.features, .cx8));
std.testing.expect(Target.x86.featureSetHas(target.cpu.features, .cmov));
std.testing.expect(Target.x86.featureSetHas(target.cpu.features, .fxsr));
const text = try cross_target.zigTriple(std.testing.allocator);
defer std.testing.allocator.free(text);
std.testing.expectEqualSlices(u8, "x86_64-linux-gnu", text);
}
{
const cross_target = try CrossTarget.parse(.{
.arch_os_abi = "arm-linux-musleabihf",
.cpu_features = "generic+v8a",
});
const target = cross_target.toTarget();
std.testing.expect(target.os.tag == .linux);
std.testing.expect(target.abi == .musleabihf);
std.testing.expect(target.cpu.arch == .arm);
std.testing.expect(target.cpu.model == &Target.arm.cpu.generic);
std.testing.expect(Target.arm.featureSetHas(target.cpu.features, .v8a));
const text = try cross_target.zigTriple(std.testing.allocator);
defer std.testing.allocator.free(text);
std.testing.expectEqualSlices(u8, "arm-linux-musleabihf", text);
}
{
const cross_target = try CrossTarget.parse(.{
.arch_os_abi = "aarch64-linux.3.10...4.4.1-gnu.2.27",
.cpu_features = "generic+v8a",
});
const target = cross_target.toTarget();
std.testing.expect(target.cpu.arch == .aarch64);
std.testing.expect(target.os.tag == .linux);
std.testing.expect(target.os.version_range.linux.range.min.major == 3);
std.testing.expect(target.os.version_range.linux.range.min.minor == 10);
std.testing.expect(target.os.version_range.linux.range.min.patch == 0);
std.testing.expect(target.os.version_range.linux.range.max.major == 4);
std.testing.expect(target.os.version_range.linux.range.max.minor == 4);
std.testing.expect(target.os.version_range.linux.range.max.patch == 1);
std.testing.expect(target.os.version_range.linux.glibc.major == 2);
std.testing.expect(target.os.version_range.linux.glibc.minor == 27);
std.testing.expect(target.os.version_range.linux.glibc.patch == 0);
std.testing.expect(target.abi == .gnu);
const text = try cross_target.zigTriple(std.testing.allocator);
defer std.testing.allocator.free(text);
std.testing.expectEqualSlices(u8, "aarch64-linux.3.10...4.4.1-gnu.2.27", text);
}
}