* breaking changes to the API. Some of the weird decisions from before are changed to what would be more expected. - `get` returns `?V`, use `getEntry` for the old API. - `put` returns `!void`, use `fetchPut` for the old API. * HashMap now has a comptime parameter of whether to store hashes with entries. AutoHashMap has heuristics on whether to set this parameter. For example, for integers, it is false, since equality checking is cheap, but for strings, it is true, since equality checking is probably expensive. * The implementation has a separate array for entry_index / distance_from_start_index. Entries no longer has holes; it is an ArrayList, and iteration is simpler and more cache coherent. This is inspired by Python's new dictionaries. * HashMap is separated into an "unmanaged" and a "managed" API. The unmanaged API is where the actual implementation is; the managed API wraps it and provides a more convenient API, storing the allocator. * Memory usage: When there are less than or equal to 8 entries, HashMap now incurs only a single pointer-size integer as overhead, opposed to using an ArrayList. * Since the entries array is separate from the indexes array, the holes in the indexes array take up less room than the holes in the entries array otherwise would. However the entries array also allocates additional capacity for appending into the array. * HashMap now maintains insertion order. Deletion performs a "swap remove". It's now possible to modify the HashMap while iterating.
730 lines
26 KiB
Zig
730 lines
26 KiB
Zig
const std = @import("std.zig");
|
|
const debug = std.debug;
|
|
const assert = debug.assert;
|
|
const testing = std.testing;
|
|
const mem = std.mem;
|
|
const Allocator = mem.Allocator;
|
|
|
|
/// A contiguous, growable list of items in memory.
|
|
/// This is a wrapper around an array of T values. Initialize with `init`.
|
|
pub fn ArrayList(comptime T: type) type {
|
|
return ArrayListAligned(T, null);
|
|
}
|
|
|
|
pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
|
|
if (alignment) |a| {
|
|
if (a == @alignOf(T)) {
|
|
return ArrayListAligned(T, null);
|
|
}
|
|
}
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
/// Content of the ArrayList
|
|
items: Slice,
|
|
capacity: usize,
|
|
allocator: *Allocator,
|
|
|
|
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
|
|
pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;
|
|
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn init(allocator: *Allocator) Self {
|
|
return Self{
|
|
.items = &[_]T{},
|
|
.capacity = 0,
|
|
.allocator = allocator,
|
|
};
|
|
}
|
|
|
|
/// Initialize with capacity to hold at least num elements.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
|
|
var self = Self.init(allocator);
|
|
try self.ensureCapacity(num);
|
|
return self;
|
|
}
|
|
|
|
/// Release all allocated memory.
|
|
pub fn deinit(self: Self) void {
|
|
self.allocator.free(self.allocatedSlice());
|
|
}
|
|
|
|
/// Deprecated: use `items` field directly.
|
|
/// Return contents as a slice. Only valid while the list
|
|
/// doesn't change size.
|
|
pub fn span(self: var) @TypeOf(self.items) {
|
|
return self.items;
|
|
}
|
|
|
|
pub const toSlice = @compileError("deprecated: use `items` field directly");
|
|
pub const toSliceConst = @compileError("deprecated: use `items` field directly");
|
|
pub const at = @compileError("deprecated: use `list.items[i]`");
|
|
pub const ptrAt = @compileError("deprecated: use `&list.items[i]`");
|
|
pub const setOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.items[i] = item`");
|
|
pub const set = @compileError("deprecated: use `list.items[i] = item`");
|
|
pub const swapRemoveOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.swapRemove(i)`");
|
|
|
|
/// ArrayList takes ownership of the passed in slice. The slice must have been
|
|
/// allocated with `allocator`.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn fromOwnedSlice(allocator: *Allocator, slice: Slice) Self {
|
|
return Self{
|
|
.items = slice,
|
|
.capacity = slice.len,
|
|
.allocator = allocator,
|
|
};
|
|
}
|
|
|
|
pub fn toUnmanaged(self: Self) ArrayListAlignedUnmanaged(T, alignment) {
|
|
return .{ .items = self.items, .capacity = self.capacity };
|
|
}
|
|
|
|
/// The caller owns the returned memory. ArrayList becomes empty.
|
|
pub fn toOwnedSlice(self: *Self) Slice {
|
|
const allocator = self.allocator;
|
|
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
|
|
self.* = init(allocator);
|
|
return result;
|
|
}
|
|
|
|
/// Insert `item` at index `n` by moving `list[n .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insert(self: *Self, n: usize, item: T) !void {
|
|
try self.ensureCapacity(self.items.len + 1);
|
|
self.items.len += 1;
|
|
|
|
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
|
|
self.items[n] = item;
|
|
}
|
|
|
|
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insertSlice(self: *Self, i: usize, items: SliceConst) !void {
|
|
try self.ensureCapacity(self.items.len + items.len);
|
|
self.items.len += items.len;
|
|
|
|
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
|
|
mem.copy(T, self.items[i .. i + items.len], items);
|
|
}
|
|
|
|
/// Extend the list by 1 element. Allocates more memory as necessary.
|
|
pub fn append(self: *Self, item: T) !void {
|
|
const new_item_ptr = try self.addOne();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Extend the list by 1 element, but asserting `self.capacity`
|
|
/// is sufficient to hold an additional item.
|
|
pub fn appendAssumeCapacity(self: *Self, item: T) void {
|
|
const new_item_ptr = self.addOneAssumeCapacity();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Remove the element at index `i` from the list and return its value.
|
|
/// Asserts the array has at least one item.
|
|
/// This operation is O(N).
|
|
pub fn orderedRemove(self: *Self, i: usize) T {
|
|
const newlen = self.items.len - 1;
|
|
if (newlen == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
|
|
self.items[newlen] = undefined;
|
|
self.items.len = newlen;
|
|
return old_item;
|
|
}
|
|
|
|
/// Removes the element at the specified index and returns it.
|
|
/// The empty slot is filled from the end of the list.
|
|
/// This operation is O(1).
|
|
pub fn swapRemove(self: *Self, i: usize) T {
|
|
if (self.items.len - 1 == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
self.items[i] = self.pop();
|
|
return old_item;
|
|
}
|
|
|
|
/// Append the slice of items to the list. Allocates more
|
|
/// memory as necessary.
|
|
pub fn appendSlice(self: *Self, items: SliceConst) !void {
|
|
try self.ensureCapacity(self.items.len + items.len);
|
|
self.appendSliceAssumeCapacity(items);
|
|
}
|
|
|
|
/// Append the slice of items to the list, asserting the capacity is already
|
|
/// enough to store the new items.
|
|
pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
|
|
const oldlen = self.items.len;
|
|
const newlen = self.items.len + items.len;
|
|
self.items.len = newlen;
|
|
mem.copy(T, self.items[oldlen..], items);
|
|
}
|
|
|
|
pub usingnamespace if (T != u8) struct {} else struct {
|
|
pub const Writer = std.io.Writer(*Self, error{OutOfMemory}, appendWrite);
|
|
|
|
/// Initializes a Writer which will append to the list.
|
|
pub fn writer(self: *Self) Writer {
|
|
return .{ .context = self };
|
|
}
|
|
|
|
/// Deprecated: use `writer`
|
|
pub const outStream = writer;
|
|
|
|
/// Same as `append` except it returns the number of bytes written, which is always the same
|
|
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
|
|
fn appendWrite(self: *Self, m: []const u8) !usize {
|
|
try self.appendSlice(m);
|
|
return m.len;
|
|
}
|
|
};
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Allocates more memory as necessary.
|
|
pub fn appendNTimes(self: *Self, value: T, n: usize) !void {
|
|
const old_len = self.items.len;
|
|
try self.resize(self.items.len + n);
|
|
mem.set(T, self.items[old_len..self.items.len], value);
|
|
}
|
|
|
|
/// Adjust the list's length to `new_len`.
|
|
/// Does not initialize added items if any.
|
|
pub fn resize(self: *Self, new_len: usize) !void {
|
|
try self.ensureCapacity(new_len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Reduce allocated capacity to `new_len`.
|
|
/// Invalidates element pointers.
|
|
pub fn shrink(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
|
|
self.items = self.allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
|
|
error.OutOfMemory => { // no problem, capacity is still correct then.
|
|
self.items.len = new_len;
|
|
return;
|
|
},
|
|
};
|
|
self.capacity = new_len;
|
|
}
|
|
|
|
/// Reduce length to `new_len`.
|
|
/// Invalidates element pointers.
|
|
/// Keeps capacity the same.
|
|
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
pub fn ensureCapacity(self: *Self, new_capacity: usize) !void {
|
|
var better_capacity = self.capacity;
|
|
if (better_capacity >= new_capacity) return;
|
|
|
|
while (true) {
|
|
better_capacity += better_capacity / 2 + 8;
|
|
if (better_capacity >= new_capacity) break;
|
|
}
|
|
|
|
const new_memory = try self.allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
}
|
|
|
|
/// Increases the array's length to match the full capacity that is already allocated.
|
|
/// The new elements have `undefined` values. This operation does not invalidate any
|
|
/// element pointers.
|
|
pub fn expandToCapacity(self: *Self) void {
|
|
self.items.len = self.capacity;
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addOne(self: *Self) !*T {
|
|
const newlen = self.items.len + 1;
|
|
try self.ensureCapacity(newlen);
|
|
return self.addOneAssumeCapacity();
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addOneAssumeCapacity(self: *Self) *T {
|
|
assert(self.items.len < self.capacity);
|
|
|
|
self.items.len += 1;
|
|
return &self.items[self.items.len - 1];
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// Asserts the list has at least one item.
|
|
pub fn pop(self: *Self) T {
|
|
const val = self.items[self.items.len - 1];
|
|
self.items.len -= 1;
|
|
return val;
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// If the list is empty, returns `null`.
|
|
pub fn popOrNull(self: *Self) ?T {
|
|
if (self.items.len == 0) return null;
|
|
return self.pop();
|
|
}
|
|
|
|
// For a nicer API, `items.len` is the length, not the capacity.
|
|
// This requires "unsafe" slicing.
|
|
fn allocatedSlice(self: Self) Slice {
|
|
return self.items.ptr[0..self.capacity];
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Bring-your-own allocator with every function call.
|
|
/// Initialize directly and deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn ArrayListUnmanaged(comptime T: type) type {
|
|
return ArrayListAlignedUnmanaged(T, null);
|
|
}
|
|
|
|
pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
|
|
if (alignment) |a| {
|
|
if (a == @alignOf(T)) {
|
|
return ArrayListAlignedUnmanaged(T, null);
|
|
}
|
|
}
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
/// Content of the ArrayList.
|
|
items: Slice = &[_]T{},
|
|
capacity: usize = 0,
|
|
|
|
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
|
|
pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;
|
|
|
|
/// Initialize with capacity to hold at least num elements.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
|
|
var self = Self{};
|
|
try self.ensureCapacity(allocator, num);
|
|
return self;
|
|
}
|
|
|
|
/// Release all allocated memory.
|
|
pub fn deinit(self: *Self, allocator: *Allocator) void {
|
|
allocator.free(self.allocatedSlice());
|
|
self.* = undefined;
|
|
}
|
|
|
|
pub fn toManaged(self: *Self, allocator: *Allocator) ArrayListAligned(T, alignment) {
|
|
return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
|
|
}
|
|
|
|
/// The caller owns the returned memory. ArrayList becomes empty.
|
|
pub fn toOwnedSlice(self: *Self, allocator: *Allocator) Slice {
|
|
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
|
|
self.* = Self{};
|
|
return result;
|
|
}
|
|
|
|
/// Insert `item` at index `n`. Moves `list[n .. list.len]`
|
|
/// to make room.
|
|
pub fn insert(self: *Self, allocator: *Allocator, n: usize, item: T) !void {
|
|
try self.ensureCapacity(allocator, self.items.len + 1);
|
|
self.items.len += 1;
|
|
|
|
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
|
|
self.items[n] = item;
|
|
}
|
|
|
|
/// Insert slice `items` at index `i`. Moves
|
|
/// `list[i .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insertSlice(self: *Self, allocator: *Allocator, i: usize, items: SliceConst) !void {
|
|
try self.ensureCapacity(allocator, self.items.len + items.len);
|
|
self.items.len += items.len;
|
|
|
|
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
|
|
mem.copy(T, self.items[i .. i + items.len], items);
|
|
}
|
|
|
|
/// Extend the list by 1 element. Allocates more memory as necessary.
|
|
pub fn append(self: *Self, allocator: *Allocator, item: T) !void {
|
|
const new_item_ptr = try self.addOne(allocator);
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Extend the list by 1 element, but asserting `self.capacity`
|
|
/// is sufficient to hold an additional item.
|
|
pub fn appendAssumeCapacity(self: *Self, item: T) void {
|
|
const new_item_ptr = self.addOneAssumeCapacity();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Remove the element at index `i` from the list and return its value.
|
|
/// Asserts the array has at least one item.
|
|
/// This operation is O(N).
|
|
pub fn orderedRemove(self: *Self, i: usize) T {
|
|
const newlen = self.items.len - 1;
|
|
if (newlen == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
|
|
self.items[newlen] = undefined;
|
|
self.items.len = newlen;
|
|
return old_item;
|
|
}
|
|
|
|
/// Removes the element at the specified index and returns it.
|
|
/// The empty slot is filled from the end of the list.
|
|
/// This operation is O(1).
|
|
pub fn swapRemove(self: *Self, i: usize) T {
|
|
if (self.items.len - 1 == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
self.items[i] = self.pop();
|
|
return old_item;
|
|
}
|
|
|
|
/// Append the slice of items to the list. Allocates more
|
|
/// memory as necessary.
|
|
pub fn appendSlice(self: *Self, allocator: *Allocator, items: SliceConst) !void {
|
|
try self.ensureCapacity(allocator, self.items.len + items.len);
|
|
self.appendSliceAssumeCapacity(items);
|
|
}
|
|
|
|
/// Append the slice of items to the list, asserting the capacity is enough
|
|
/// to store the new items.
|
|
pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
|
|
const oldlen = self.items.len;
|
|
const newlen = self.items.len + items.len;
|
|
|
|
self.items.len = newlen;
|
|
mem.copy(T, self.items[oldlen..], items);
|
|
}
|
|
|
|
/// Same as `append` except it returns the number of bytes written, which is always the same
|
|
/// as `m.len`. The purpose of this function existing is to match `std.io.OutStream` API.
|
|
/// This function may be called only when `T` is `u8`.
|
|
fn appendWrite(self: *Self, allocator: *Allocator, m: []const u8) !usize {
|
|
try self.appendSlice(allocator, m);
|
|
return m.len;
|
|
}
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Allocates more memory as necessary.
|
|
pub fn appendNTimes(self: *Self, allocator: *Allocator, value: T, n: usize) !void {
|
|
const old_len = self.items.len;
|
|
try self.resize(allocator, self.items.len + n);
|
|
mem.set(T, self.items[old_len..self.items.len], value);
|
|
}
|
|
|
|
/// Adjust the list's length to `new_len`.
|
|
/// Does not initialize added items if any.
|
|
pub fn resize(self: *Self, allocator: *Allocator, new_len: usize) !void {
|
|
try self.ensureCapacity(allocator, new_len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Reduce allocated capacity to `new_len`.
|
|
/// Invalidates element pointers.
|
|
pub fn shrink(self: *Self, allocator: *Allocator, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
|
|
self.items = allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
|
|
error.OutOfMemory => { // no problem, capacity is still correct then.
|
|
self.items.len = new_len;
|
|
return;
|
|
},
|
|
};
|
|
self.capacity = new_len;
|
|
}
|
|
|
|
/// Reduce length to `new_len`.
|
|
/// Invalidates element pointers.
|
|
/// Keeps capacity the same.
|
|
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
pub fn ensureCapacity(self: *Self, allocator: *Allocator, new_capacity: usize) !void {
|
|
var better_capacity = self.capacity;
|
|
if (better_capacity >= new_capacity) return;
|
|
|
|
while (true) {
|
|
better_capacity += better_capacity / 2 + 8;
|
|
if (better_capacity >= new_capacity) break;
|
|
}
|
|
|
|
const new_memory = try allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
}
|
|
|
|
/// Increases the array's length to match the full capacity that is already allocated.
|
|
/// The new elements have `undefined` values.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn expandToCapacity(self: *Self) void {
|
|
self.items.len = self.capacity;
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addOne(self: *Self, allocator: *Allocator) !*T {
|
|
const newlen = self.items.len + 1;
|
|
try self.ensureCapacity(allocator, newlen);
|
|
return self.addOneAssumeCapacity();
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn addOneAssumeCapacity(self: *Self) *T {
|
|
assert(self.items.len < self.capacity);
|
|
|
|
self.items.len += 1;
|
|
return &self.items[self.items.len - 1];
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// Asserts the list has at least one item.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn pop(self: *Self) T {
|
|
const val = self.items[self.items.len - 1];
|
|
self.items.len -= 1;
|
|
return val;
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// If the list is empty, returns `null`.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn popOrNull(self: *Self) ?T {
|
|
if (self.items.len == 0) return null;
|
|
return self.pop();
|
|
}
|
|
|
|
/// For a nicer API, `items.len` is the length, not the capacity.
|
|
/// This requires "unsafe" slicing.
|
|
fn allocatedSlice(self: Self) Slice {
|
|
return self.items.ptr[0..self.capacity];
|
|
}
|
|
};
|
|
}
|
|
|
|
test "std.ArrayList.init" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity == 0);
|
|
}
|
|
|
|
test "std.ArrayList.initCapacity" {
|
|
var list = try ArrayList(i8).initCapacity(testing.allocator, 200);
|
|
defer list.deinit();
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity >= 200);
|
|
}
|
|
|
|
test "std.ArrayList.basic" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
list.append(@intCast(i32, i + 1)) catch unreachable;
|
|
}
|
|
}
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
testing.expect(list.items[i] == @intCast(i32, i + 1));
|
|
}
|
|
}
|
|
|
|
for (list.items) |v, i| {
|
|
testing.expect(v == @intCast(i32, i + 1));
|
|
}
|
|
|
|
testing.expect(list.pop() == 10);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
|
|
testing.expect(list.items.len == 12);
|
|
testing.expect(list.pop() == 3);
|
|
testing.expect(list.pop() == 2);
|
|
testing.expect(list.pop() == 1);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(&[_]i32{}) catch unreachable;
|
|
testing.expect(list.items.len == 9);
|
|
|
|
// can only set on indices < self.items.len
|
|
list.items[7] = 33;
|
|
list.items[8] = 42;
|
|
|
|
testing.expect(list.pop() == 42);
|
|
testing.expect(list.pop() == 33);
|
|
}
|
|
|
|
test "std.ArrayList.appendNTimes" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.appendNTimes(2, 10);
|
|
testing.expectEqual(@as(usize, 10), list.items.len);
|
|
for (list.items) |element| {
|
|
testing.expectEqual(@as(i32, 2), element);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList.appendNTimes with failing allocator" {
|
|
var list = ArrayList(i32).init(testing.failing_allocator);
|
|
defer list.deinit();
|
|
testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
|
|
}
|
|
|
|
test "std.ArrayList.orderedRemove" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.append(5);
|
|
try list.append(6);
|
|
try list.append(7);
|
|
|
|
//remove from middle
|
|
testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
|
|
testing.expectEqual(@as(i32, 5), list.items[3]);
|
|
testing.expectEqual(@as(usize, 6), list.items.len);
|
|
|
|
//remove from end
|
|
testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
|
|
testing.expectEqual(@as(usize, 5), list.items.len);
|
|
|
|
//remove from front
|
|
testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
|
|
testing.expectEqual(@as(i32, 2), list.items[0]);
|
|
testing.expectEqual(@as(usize, 4), list.items.len);
|
|
}
|
|
|
|
test "std.ArrayList.swapRemove" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.append(5);
|
|
try list.append(6);
|
|
try list.append(7);
|
|
|
|
//remove from middle
|
|
testing.expect(list.swapRemove(3) == 4);
|
|
testing.expect(list.items[3] == 7);
|
|
testing.expect(list.items.len == 6);
|
|
|
|
//remove from end
|
|
testing.expect(list.swapRemove(5) == 6);
|
|
testing.expect(list.items.len == 5);
|
|
|
|
//remove from front
|
|
testing.expect(list.swapRemove(0) == 1);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items.len == 4);
|
|
}
|
|
|
|
test "std.ArrayList.insert" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.insert(0, 5);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items[1] == 1);
|
|
testing.expect(list.items[2] == 2);
|
|
testing.expect(list.items[3] == 3);
|
|
}
|
|
|
|
test "std.ArrayList.insertSlice" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.insertSlice(1, &[_]i32{ 9, 8 });
|
|
testing.expect(list.items[0] == 1);
|
|
testing.expect(list.items[1] == 9);
|
|
testing.expect(list.items[2] == 8);
|
|
testing.expect(list.items[3] == 2);
|
|
testing.expect(list.items[4] == 3);
|
|
testing.expect(list.items[5] == 4);
|
|
|
|
const items = [_]i32{1};
|
|
try list.insertSlice(0, items[0..0]);
|
|
testing.expect(list.items.len == 6);
|
|
testing.expect(list.items[0] == 1);
|
|
}
|
|
|
|
const Item = struct {
|
|
integer: i32,
|
|
sub_items: ArrayList(Item),
|
|
};
|
|
|
|
test "std.ArrayList: ArrayList(T) of struct T" {
|
|
var root = Item{ .integer = 1, .sub_items = ArrayList(Item).init(testing.allocator) };
|
|
defer root.sub_items.deinit();
|
|
try root.sub_items.append(Item{ .integer = 42, .sub_items = ArrayList(Item).init(testing.allocator) });
|
|
testing.expect(root.sub_items.items[0].integer == 42);
|
|
}
|
|
|
|
test "std.ArrayList(u8) implements outStream" {
|
|
var buffer = ArrayList(u8).init(std.testing.allocator);
|
|
defer buffer.deinit();
|
|
|
|
const x: i32 = 42;
|
|
const y: i32 = 1234;
|
|
try buffer.outStream().print("x: {}\ny: {}\n", .{ x, y });
|
|
|
|
testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.span());
|
|
}
|
|
|
|
test "std.ArrayList.shrink still sets length on error.OutOfMemory" {
|
|
// use an arena allocator to make sure realloc returns error.OutOfMemory
|
|
var arena = std.heap.ArenaAllocator.init(testing.allocator);
|
|
defer arena.deinit();
|
|
|
|
var list = ArrayList(i32).init(&arena.allocator);
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
|
|
list.shrink(1);
|
|
testing.expect(list.items.len == 1);
|
|
}
|
|
|
|
test "std.ArrayList.writer" {
|
|
var list = ArrayList(u8).init(std.testing.allocator);
|
|
defer list.deinit();
|
|
|
|
const writer = list.writer();
|
|
try writer.writeAll("a");
|
|
try writer.writeAll("bc");
|
|
try writer.writeAll("d");
|
|
try writer.writeAll("efg");
|
|
testing.expectEqualSlices(u8, list.items, "abcdefg");
|
|
}
|