zig/src/link.zig

620 lines
26 KiB
Zig

const std = @import("std");
const mem = std.mem;
const Allocator = std.mem.Allocator;
const fs = std.fs;
const log = std.log.scoped(.link);
const assert = std.debug.assert;
const Compilation = @import("Compilation.zig");
const Module = @import("Module.zig");
const trace = @import("tracy.zig").trace;
const Package = @import("Package.zig");
const Type = @import("type.zig").Type;
const Cache = @import("Cache.zig");
const build_options = @import("build_options");
const LibCInstallation = @import("libc_installation.zig").LibCInstallation;
pub const producer_string = if (std.builtin.is_test) "zig test" else "zig " ++ build_options.version;
pub const Emit = struct {
/// Where the output will go.
directory: Compilation.Directory,
/// Path to the output file, relative to `directory`.
sub_path: []const u8,
};
pub const Options = struct {
/// This is `null` when -fno-emit-bin is used. When `openPath` or `flush` is called,
/// it will have already been null-checked.
emit: ?Emit,
target: std.Target,
output_mode: std.builtin.OutputMode,
link_mode: std.builtin.LinkMode,
object_format: std.builtin.ObjectFormat,
optimize_mode: std.builtin.Mode,
machine_code_model: std.builtin.CodeModel,
root_name: []const u8,
/// Not every Compilation compiles .zig code! For example you could do `zig build-exe foo.o`.
module: ?*Module,
dynamic_linker: ?[]const u8,
/// Used for calculating how much space to reserve for symbols in case the binary file
/// does not already have a symbol table.
symbol_count_hint: u64 = 32,
/// Used for calculating how much space to reserve for executable program code in case
/// the binary file does not already have such a section.
program_code_size_hint: u64 = 256 * 1024,
entry_addr: ?u64 = null,
stack_size_override: ?u64,
image_base_override: ?u64,
include_compiler_rt: bool,
/// Set to `true` to omit debug info.
strip: bool,
/// If this is true then this link code is responsible for outputting an object
/// file and then using LLD to link it together with the link options and other objects.
/// Otherwise (depending on `use_llvm`) this link code directly outputs and updates the final binary.
use_lld: bool,
/// If this is true then this link code is responsible for making an LLVM IR Module,
/// outputting it to an object file, and then linking that together with link options and
/// other objects.
/// Otherwise (depending on `use_lld`) this link code directly outputs and updates the final binary.
use_llvm: bool,
/// Darwin-only. If this is true, `use_llvm` is true, and `is_native_os` is true, this link code will
/// use system linker `ld` instead of the LLD.
system_linker_hack: bool,
link_libc: bool,
link_libcpp: bool,
function_sections: bool,
eh_frame_hdr: bool,
emit_relocs: bool,
rdynamic: bool,
z_nodelete: bool,
z_defs: bool,
bind_global_refs_locally: bool,
is_native_os: bool,
pic: bool,
pie: bool,
valgrind: bool,
stack_check: bool,
single_threaded: bool,
verbose_link: bool,
dll_export_fns: bool,
error_return_tracing: bool,
is_compiler_rt_or_libc: bool,
parent_compilation_link_libc: bool,
each_lib_rpath: bool,
disable_lld_caching: bool,
is_test: bool,
gc_sections: ?bool = null,
allow_shlib_undefined: ?bool,
subsystem: ?std.Target.SubSystem,
linker_script: ?[]const u8,
version_script: ?[]const u8,
soname: ?[]const u8,
llvm_cpu_features: ?[*:0]const u8,
/// Extra args passed directly to LLD. Ignored when not linking with LLD.
extra_lld_args: []const []const u8,
/// Darwin-only. Set the root path to the system libraries and frameworks.
syslibroot: ?[]const u8,
objects: []const []const u8,
framework_dirs: []const []const u8,
frameworks: []const []const u8,
system_libs: std.StringArrayHashMapUnmanaged(void),
lib_dirs: []const []const u8,
rpath_list: []const []const u8,
version: ?std.builtin.Version,
libc_installation: ?*const LibCInstallation,
pub fn effectiveOutputMode(options: Options) std.builtin.OutputMode {
return if (options.use_lld) .Obj else options.output_mode;
}
};
pub const File = struct {
tag: Tag,
options: Options,
file: ?fs.File,
allocator: *Allocator,
/// When linking with LLD, this linker code will output an object file only at
/// this location, and then this path can be placed on the LLD linker line.
intermediary_basename: ?[]const u8 = null,
/// Prevents other processes from clobbering files in the output directory
/// of this linking operation.
lock: ?Cache.Lock = null,
pub const LinkBlock = union {
elf: Elf.TextBlock,
coff: Coff.TextBlock,
macho: MachO.TextBlock,
c: void,
wasm: void,
};
pub const LinkFn = union {
elf: Elf.SrcFn,
coff: Coff.SrcFn,
macho: MachO.SrcFn,
c: void,
wasm: ?Wasm.FnData,
};
pub const Export = union {
elf: Elf.Export,
coff: void,
macho: MachO.Export,
c: void,
wasm: void,
};
/// For DWARF .debug_info.
pub const DbgInfoTypeRelocsTable = std.HashMapUnmanaged(Type, DbgInfoTypeReloc, Type.hash, Type.eql, std.hash_map.DefaultMaxLoadPercentage);
/// For DWARF .debug_info.
pub const DbgInfoTypeReloc = struct {
/// Offset from `TextBlock.dbg_info_off` (the buffer that is local to a Decl).
/// This is where the .debug_info tag for the type is.
off: u32,
/// Offset from `TextBlock.dbg_info_off` (the buffer that is local to a Decl).
/// List of DW.AT_type / DW.FORM_ref4 that points to the type.
relocs: std.ArrayListUnmanaged(u32),
};
/// Attempts incremental linking, if the file already exists. If
/// incremental linking fails, falls back to truncating the file and
/// rewriting it. A malicious file is detected as incremental link failure
/// and does not cause Illegal Behavior. This operation is not atomic.
pub fn openPath(allocator: *Allocator, options: Options) !*File {
const use_stage1 = build_options.is_stage1 and options.use_llvm;
if (use_stage1 or options.emit == null) {
return switch (options.object_format) {
.coff, .pe => &(try Coff.createEmpty(allocator, options)).base,
.elf => &(try Elf.createEmpty(allocator, options)).base,
.macho => &(try MachO.createEmpty(allocator, options)).base,
.wasm => &(try Wasm.createEmpty(allocator, options)).base,
.c => unreachable, // Reported error earlier.
.hex => return error.HexObjectFormatUnimplemented,
.raw => return error.RawObjectFormatUnimplemented,
};
}
const emit = options.emit.?;
const use_lld = build_options.have_llvm and options.use_lld; // comptime known false when !have_llvm
const sub_path = if (use_lld) blk: {
if (options.module == null) {
// No point in opening a file, we would not write anything to it. Initialize with empty.
return switch (options.object_format) {
.coff, .pe => &(try Coff.createEmpty(allocator, options)).base,
.elf => &(try Elf.createEmpty(allocator, options)).base,
.macho => &(try MachO.createEmpty(allocator, options)).base,
.wasm => &(try Wasm.createEmpty(allocator, options)).base,
.c => unreachable, // Reported error earlier.
.hex => return error.HexObjectFormatUnimplemented,
.raw => return error.RawObjectFormatUnimplemented,
};
}
// Open a temporary object file, not the final output file because we want to link with LLD.
break :blk try std.fmt.allocPrint(allocator, "{s}{s}", .{ emit.sub_path, options.target.oFileExt() });
} else emit.sub_path;
errdefer if (use_lld) allocator.free(sub_path);
const file: *File = switch (options.object_format) {
.coff, .pe => &(try Coff.openPath(allocator, sub_path, options)).base,
.elf => &(try Elf.openPath(allocator, sub_path, options)).base,
.macho => &(try MachO.openPath(allocator, sub_path, options)).base,
.wasm => &(try Wasm.openPath(allocator, sub_path, options)).base,
.c => &(try C.openPath(allocator, sub_path, options)).base,
.hex => return error.HexObjectFormatUnimplemented,
.raw => return error.RawObjectFormatUnimplemented,
};
if (use_lld) {
file.intermediary_basename = sub_path;
}
return file;
}
pub fn cast(base: *File, comptime T: type) ?*T {
if (base.tag != T.base_tag)
return null;
return @fieldParentPtr(T, "base", base);
}
pub fn makeWritable(base: *File) !void {
switch (base.tag) {
.coff, .elf, .macho => {
if (base.file != null) return;
const emit = base.options.emit orelse return;
base.file = try emit.directory.handle.createFile(emit.sub_path, .{
.truncate = false,
.read = true,
.mode = determineMode(base.options),
});
},
.c, .wasm => {},
}
}
pub fn makeExecutable(base: *File) !void {
switch (base.options.output_mode) {
.Obj => return,
.Lib => switch (base.options.link_mode) {
.Static => return,
.Dynamic => {},
},
.Exe => {},
}
switch (base.tag) {
.macho => if (base.file) |f| {
if (base.intermediary_basename != null) {
// The file we have open is not the final file that we want to
// make executable, so we don't have to close it.
return;
}
if (comptime std.Target.current.isDarwin() and std.Target.current.cpu.arch == .aarch64) {
if (base.options.target.cpu.arch != .aarch64) return; // If we're not targeting aarch64, nothing to do.
// XNU starting with Big Sur running on arm64 is caching inodes of running binaries.
// Any change to the binary will effectively invalidate the kernel's cache
// resulting in a SIGKILL on each subsequent run. Since when doing incremental
// linking we're modifying a binary in-place, this will end up with the kernel
// killing it on every subsequent run. To circumvent it, we will copy the file
// into a new inode, remove the original file, and rename the copy to match
// the original file. This is super messy, but there doesn't seem any other
// way to please the XNU.
const emit = base.options.emit orelse return;
try emit.directory.handle.copyFile(emit.sub_path, emit.directory.handle, emit.sub_path, .{});
}
f.close();
base.file = null;
},
.coff, .elf => if (base.file) |f| {
if (base.intermediary_basename != null) {
// The file we have open is not the final file that we want to
// make executable, so we don't have to close it.
return;
}
f.close();
base.file = null;
},
.c, .wasm => {},
}
}
/// May be called before or after updateDeclExports but must be called
/// after allocateDeclIndexes for any given Decl.
pub fn updateDecl(base: *File, module: *Module, decl: *Module.Decl) !void {
switch (base.tag) {
.coff => return @fieldParentPtr(Coff, "base", base).updateDecl(module, decl),
.elf => return @fieldParentPtr(Elf, "base", base).updateDecl(module, decl),
.macho => return @fieldParentPtr(MachO, "base", base).updateDecl(module, decl),
.c => return @fieldParentPtr(C, "base", base).updateDecl(module, decl),
.wasm => return @fieldParentPtr(Wasm, "base", base).updateDecl(module, decl),
}
}
pub fn updateDeclLineNumber(base: *File, module: *Module, decl: *Module.Decl) !void {
switch (base.tag) {
.coff => return @fieldParentPtr(Coff, "base", base).updateDeclLineNumber(module, decl),
.elf => return @fieldParentPtr(Elf, "base", base).updateDeclLineNumber(module, decl),
.macho => return @fieldParentPtr(MachO, "base", base).updateDeclLineNumber(module, decl),
.c, .wasm => {},
}
}
/// Must be called before any call to updateDecl or updateDeclExports for
/// any given Decl.
pub fn allocateDeclIndexes(base: *File, decl: *Module.Decl) !void {
switch (base.tag) {
.coff => return @fieldParentPtr(Coff, "base", base).allocateDeclIndexes(decl),
.elf => return @fieldParentPtr(Elf, "base", base).allocateDeclIndexes(decl),
.macho => return @fieldParentPtr(MachO, "base", base).allocateDeclIndexes(decl),
.c, .wasm => {},
}
}
pub fn releaseLock(self: *File) void {
if (self.lock) |*lock| {
lock.release();
self.lock = null;
}
}
pub fn toOwnedLock(self: *File) Cache.Lock {
const lock = self.lock.?;
self.lock = null;
return lock;
}
pub fn destroy(base: *File) void {
base.releaseLock();
if (base.file) |f| f.close();
if (base.intermediary_basename) |sub_path| base.allocator.free(sub_path);
switch (base.tag) {
.coff => {
const parent = @fieldParentPtr(Coff, "base", base);
parent.deinit();
base.allocator.destroy(parent);
},
.elf => {
const parent = @fieldParentPtr(Elf, "base", base);
parent.deinit();
base.allocator.destroy(parent);
},
.macho => {
const parent = @fieldParentPtr(MachO, "base", base);
parent.deinit();
base.allocator.destroy(parent);
},
.c => {
const parent = @fieldParentPtr(C, "base", base);
parent.deinit();
base.allocator.destroy(parent);
},
.wasm => {
const parent = @fieldParentPtr(Wasm, "base", base);
parent.deinit();
base.allocator.destroy(parent);
},
}
}
/// Commit pending changes and write headers. Takes into account final output mode
/// and `use_lld`, not only `effectiveOutputMode`.
pub fn flush(base: *File, comp: *Compilation) !void {
const emit = base.options.emit orelse return; // -fno-emit-bin
if (comp.clang_preprocessor_mode == .yes) {
// TODO: avoid extra link step when it's just 1 object file (the `zig cc -c` case)
// Until then, we do `lld -r -o output.o input.o` even though the output is the same
// as the input. For the preprocessing case (`zig cc -E -o foo`) we copy the file
// to the final location. See also the corresponding TODO in Coff linking.
const full_out_path = try emit.directory.join(comp.gpa, &[_][]const u8{emit.sub_path});
defer comp.gpa.free(full_out_path);
assert(comp.c_object_table.count() == 1);
const the_entry = comp.c_object_table.items()[0];
const cached_pp_file_path = the_entry.key.status.success.object_path;
try fs.cwd().copyFile(cached_pp_file_path, fs.cwd(), full_out_path, .{});
return;
}
const use_lld = build_options.have_llvm and base.options.use_lld;
if (use_lld and base.options.output_mode == .Lib and base.options.link_mode == .Static and
!base.options.target.isWasm())
{
return base.linkAsArchive(comp);
}
switch (base.tag) {
.coff => return @fieldParentPtr(Coff, "base", base).flush(comp),
.elf => return @fieldParentPtr(Elf, "base", base).flush(comp),
.macho => return @fieldParentPtr(MachO, "base", base).flush(comp),
.c => return @fieldParentPtr(C, "base", base).flush(comp),
.wasm => return @fieldParentPtr(Wasm, "base", base).flush(comp),
}
}
/// Commit pending changes and write headers. Works based on `effectiveOutputMode`
/// rather than final output mode.
pub fn flushModule(base: *File, comp: *Compilation) !void {
switch (base.tag) {
.coff => return @fieldParentPtr(Coff, "base", base).flushModule(comp),
.elf => return @fieldParentPtr(Elf, "base", base).flushModule(comp),
.macho => return @fieldParentPtr(MachO, "base", base).flushModule(comp),
.c => return @fieldParentPtr(C, "base", base).flushModule(comp),
.wasm => return @fieldParentPtr(Wasm, "base", base).flushModule(comp),
}
}
pub fn freeDecl(base: *File, decl: *Module.Decl) void {
switch (base.tag) {
.coff => @fieldParentPtr(Coff, "base", base).freeDecl(decl),
.elf => @fieldParentPtr(Elf, "base", base).freeDecl(decl),
.macho => @fieldParentPtr(MachO, "base", base).freeDecl(decl),
.c => unreachable,
.wasm => @fieldParentPtr(Wasm, "base", base).freeDecl(decl),
}
}
pub fn errorFlags(base: *File) ErrorFlags {
switch (base.tag) {
.coff => return @fieldParentPtr(Coff, "base", base).error_flags,
.elf => return @fieldParentPtr(Elf, "base", base).error_flags,
.macho => return @fieldParentPtr(MachO, "base", base).error_flags,
.c => return .{ .no_entry_point_found = false },
.wasm => return ErrorFlags{},
}
}
/// May be called before or after updateDecl, but must be called after
/// allocateDeclIndexes for any given Decl.
pub fn updateDeclExports(
base: *File,
module: *Module,
decl: *const Module.Decl,
exports: []const *Module.Export,
) !void {
switch (base.tag) {
.coff => return @fieldParentPtr(Coff, "base", base).updateDeclExports(module, decl, exports),
.elf => return @fieldParentPtr(Elf, "base", base).updateDeclExports(module, decl, exports),
.macho => return @fieldParentPtr(MachO, "base", base).updateDeclExports(module, decl, exports),
.c => return {},
.wasm => return @fieldParentPtr(Wasm, "base", base).updateDeclExports(module, decl, exports),
}
}
pub fn getDeclVAddr(base: *File, decl: *const Module.Decl) u64 {
switch (base.tag) {
.coff => return @fieldParentPtr(Coff, "base", base).getDeclVAddr(decl),
.elf => return @fieldParentPtr(Elf, "base", base).getDeclVAddr(decl),
.macho => return @fieldParentPtr(MachO, "base", base).getDeclVAddr(decl),
.c => unreachable,
.wasm => unreachable,
}
}
fn linkAsArchive(base: *File, comp: *Compilation) !void {
const tracy = trace(@src());
defer tracy.end();
var arena_allocator = std.heap.ArenaAllocator.init(base.allocator);
defer arena_allocator.deinit();
const arena = &arena_allocator.allocator;
const directory = base.options.emit.?.directory; // Just an alias to make it shorter to type.
// If there is no Zig code to compile, then we should skip flushing the output file because it
// will not be part of the linker line anyway.
const module_obj_path: ?[]const u8 = if (base.options.module) |module| blk: {
const use_stage1 = build_options.is_stage1 and base.options.use_llvm;
if (use_stage1) {
const obj_basename = try std.zig.binNameAlloc(arena, .{
.root_name = base.options.root_name,
.target = base.options.target,
.output_mode = .Obj,
});
const o_directory = base.options.module.?.zig_cache_artifact_directory;
const full_obj_path = try o_directory.join(arena, &[_][]const u8{obj_basename});
break :blk full_obj_path;
}
try base.flushModule(comp);
const obj_basename = base.intermediary_basename.?;
const full_obj_path = try directory.join(arena, &[_][]const u8{obj_basename});
break :blk full_obj_path;
} else null;
const compiler_rt_path: ?[]const u8 = if (base.options.include_compiler_rt)
comp.compiler_rt_obj.?.full_object_path
else
null;
// This function follows the same pattern as link.Elf.linkWithLLD so if you want some
// insight as to what's going on here you can read that function body which is more
// well-commented.
const id_symlink_basename = "llvm-ar.id";
var man: Cache.Manifest = undefined;
defer if (!base.options.disable_lld_caching) man.deinit();
var digest: [Cache.hex_digest_len]u8 = undefined;
if (!base.options.disable_lld_caching) {
man = comp.cache_parent.obtain();
// We are about to obtain this lock, so here we give other processes a chance first.
base.releaseLock();
try man.addListOfFiles(base.options.objects);
for (comp.c_object_table.items()) |entry| {
_ = try man.addFile(entry.key.status.success.object_path, null);
}
try man.addOptionalFile(module_obj_path);
try man.addOptionalFile(compiler_rt_path);
// We don't actually care whether it's a cache hit or miss; we just need the digest and the lock.
_ = try man.hit();
digest = man.final();
var prev_digest_buf: [digest.len]u8 = undefined;
const prev_digest: []u8 = Cache.readSmallFile(
directory.handle,
id_symlink_basename,
&prev_digest_buf,
) catch |err| b: {
log.debug("archive new_digest={} readFile error: {}", .{ digest, @errorName(err) });
break :b prev_digest_buf[0..0];
};
if (mem.eql(u8, prev_digest, &digest)) {
log.debug("archive digest={} match - skipping invocation", .{digest});
base.lock = man.toOwnedLock();
return;
}
// We are about to change the output file to be different, so we invalidate the build hash now.
directory.handle.deleteFile(id_symlink_basename) catch |err| switch (err) {
error.FileNotFound => {},
else => |e| return e,
};
}
var object_files = std.ArrayList([*:0]const u8).init(base.allocator);
defer object_files.deinit();
try object_files.ensureCapacity(base.options.objects.len + comp.c_object_table.items().len + 2);
for (base.options.objects) |obj_path| {
object_files.appendAssumeCapacity(try arena.dupeZ(u8, obj_path));
}
for (comp.c_object_table.items()) |entry| {
object_files.appendAssumeCapacity(try arena.dupeZ(u8, entry.key.status.success.object_path));
}
if (module_obj_path) |p| {
object_files.appendAssumeCapacity(try arena.dupeZ(u8, p));
}
if (compiler_rt_path) |p| {
object_files.appendAssumeCapacity(try arena.dupeZ(u8, p));
}
const full_out_path = try directory.join(arena, &[_][]const u8{base.options.emit.?.sub_path});
const full_out_path_z = try arena.dupeZ(u8, full_out_path);
if (base.options.verbose_link) {
std.debug.print("ar rcs {}", .{full_out_path_z});
for (object_files.items) |arg| {
std.debug.print(" {}", .{arg});
}
std.debug.print("\n", .{});
}
const llvm = @import("llvm.zig");
const os_type = @import("target.zig").osToLLVM(base.options.target.os.tag);
const bad = llvm.WriteArchive(full_out_path_z, object_files.items.ptr, object_files.items.len, os_type);
if (bad) return error.UnableToWriteArchive;
if (!base.options.disable_lld_caching) {
Cache.writeSmallFile(directory.handle, id_symlink_basename, &digest) catch |err| {
std.log.warn("failed to save archive hash digest file: {}", .{@errorName(err)});
};
man.writeManifest() catch |err| {
std.log.warn("failed to write cache manifest when archiving: {}", .{@errorName(err)});
};
base.lock = man.toOwnedLock();
}
}
pub const Tag = enum {
coff,
elf,
macho,
c,
wasm,
};
pub const ErrorFlags = struct {
no_entry_point_found: bool = false,
};
pub const C = @import("link/C.zig");
pub const Coff = @import("link/Coff.zig");
pub const Elf = @import("link/Elf.zig");
pub const MachO = @import("link/MachO.zig");
pub const Wasm = @import("link/Wasm.zig");
};
pub fn determineMode(options: Options) fs.File.Mode {
// On common systems with a 0o022 umask, 0o777 will still result in a file created
// with 0o755 permissions, but it works appropriately if the system is configured
// more leniently. As another data point, C's fopen seems to open files with the
// 666 mode.
const executable_mode = if (std.Target.current.os.tag == .windows) 0 else 0o777;
switch (options.effectiveOutputMode()) {
.Lib => return switch (options.link_mode) {
.Dynamic => executable_mode,
.Static => fs.File.default_mode,
},
.Exe => return executable_mode,
.Obj => return fs.File.default_mode,
}
}